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Abstract: A continuous mathematical model of non-invasive avascular tumor growth in tissue is
presented. The model considers tissue as a biphasic material, comprised of a solid matrix and
interstitial fluid. The convective motion of tissue elements happens due to the gradients of stress,
which change as a result of tumor cells proliferation and death. The model accounts for glucose as
the crucial nutrient, supplied from the normal tissue, and can reproduce both diffusion-limited and
stress-limited tumor growth. Approximate tumor growth curves are obtained semi-analytically in
the limit of infinite tissue hydraulic conductivity, which implies instantaneous equalization of arising
stress gradients. These growth curves correspond well to the numerical solutions and represent
classical sigmoidal curves with a short initial exponential phase, subsequent almost linear growth
phase and a phase with growth deceleration, in which tumor tends to reach its maximum volume.
The influence of two model parameters on tumor growth curves is investigated: tissue hydraulic
conductivity, which links the values of stress gradient and convective velocity of tissue phases, and
tumor nutrient supply level, which corresponds to different permeability and surface area density
of capillaries in the normal tissue that surrounds the tumor. In particular, it is demonstrated, that
sufficiently low tissue hydraulic conductivity (intrinsic, e.g., to tumors arising from connective tissue)
and sufficiently high nutrient supply can lead to formation of giant benign tumors, reaching tens of
centimeters in diameter, which are indeed observed clinically.

Keywords: mathematical oncology; spatially distributed modeling; biomechanics; tumor mechanical
properties; reaction–diffusion–convection equations; computer experiment; giant benign tumors

MSC: 35K57; 35Q92; 92C05

1. Introduction

All cancers, except for blood cancers, form solid tumors. Under favorable conditions,
cancer cells should divide virtually indefinitely [1], resulting in exponential growth of
tumor volume. However, exponential growth manifests itself only at the earliest stage of the
tumor growth. Starting from the 1970s, experimental studies on the growth of multicellular
tumor spheroids in nutrient solution have repeatedly produced S-shaped or sigmoidal
growth curves [2,3]. Several factors were shown to limit the growth of spheroids. One of
them is diffusional limitation of nutrient supply. It leads to the fact, that in a sufficiently
large spheroid only a fraction of cells, situated in its rim, can obtain enough nutrients to
proliferate. Cells, located deeper, enter a quiescent state, which requires significantly less
nutrients to maintain. The radius of a spheroid, that has such structure, increases almost
linearly with time. With further growth, tumor cells in the core of the spheroid begin to die
under severe nutrient depletion [4]. The flow of the dead material out of the spheroid slows
down its growth rate. Spheroid growth saturates when the dead material outflow—along
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with other mechanisms of volume loss, like cell shedding [5]—compensates for the ongoing
tumor cell proliferation.

The growth pattern of a solid tumor, growing in a tissue, is analogical in case of
compact tumor growth. Such growth type is intrinsic to benign and low-stage malignant
tumors. Upon tumor progression, its cells develop two main mechanisms to overcome
starvation [1]. One of them is induction of angiogenesis, i.e., the formation of new capillaries
in the tumor microenvironment. Angiogenesis by itself is generally considered to not
change tumor growth pattern qualitatively. However, transition from avascular to vascular
tumor leads to increase of its growth speed at a linear stage and to increase of its maximum
volume [6]. Another mechanism is invasion of cells into surrounding tissue, which allows
them to move away from nutrient-deficient regions and changes tumor growth pattern at a
qualitative level. Invasion of nearby tissues is a direct indicator of malignant cancer [7].

Another growth-limiting factor, which was underestimated until the end of the 20th
century, is stress-induced growth inhibition [8]. Nowadays, it is clear that the rate of tumor
cells proliferation depends on the stress, exerted by the solid components of a tissue, i.e.,
the cells and the elements of extracellular matrix [9]. Importantly, the proliferation and
death of tumor cells by themselves influence the distribution of solid stress within the
tumor and surrounding normal tissue.

Solid stress can cause organ dysfunction [10], stimulate malignant tumor pheno-
type [11], induce resistance to chemotherapy [12] and lead to capillary compression, thus
negatively affecting the delivery of drugs to the tumor [13]. Mathematical modeling of
tumor growth with account of solid stress, which can, in particular, address these is-
sues [14–16], is of significant theoretical and practical interest. In the first works in this area,
tumor tissue is considered as a liquid-like medium [17,18] or an anisotropic linearly elastic
medium. In the latter case, the mechanical stress tensor [19,20] is introduced into the model.
Despite the relative simplicity of this approach, its use allows reproducing experimental
observations and obtaining nontrivial hypotheses of a qualitative nature. For example,
the work [20] reproduced the effect of reduction of the maximum size of the tumor under
the increase of the externally applied pressure. The work [21] predicted the possibility of
reaching the final tumor size in a non-monotonic manner, through damped oscillations.

Recently, more complex approaches have appeared, adapted from the area of solid
mechanics. The works [15,22] are based on the multiplicative decomposition of tissue
deformation gradient tensor into two components. They correspond to the tumor pro-
liferation, described as the stretching of the tumor tissue, and to the elastic response of
tumor and normal tissue. The stresses and deformations, occurring in them, are usually
described using the neo-Hookean model for hyperelastic materials. Some works include a
third component of the deformation gradient tensor. In the work [23], it corresponds to
the formation of residual stress in the tumor, and the works [24,25] use it to account for
reorganization of intercellular adhesive bonds in response to sufficient deformation.

Models, based on approaches from solid mechanics, can yield more realistic reproduc-
tion of solid stress distribution within the tissue [23] and can even provide quantitative
predictions that are consistent with experimental results [26]. However, their solution is
associated with much greater computational costs and they are not amenable to analytical
investigation, like simpler approaches [20]. Importantly, both types of approaches have
been used in some of the works for the consideration of the interplay of cells and interstitial
fluid via modeling normal and tumor tissue as biphasic medium [20,23]. It should be
noted, however, that in general, modeling tumor growth with account of biomechanical
properties is not a very popular area. One of the unexplored topics, to our knowledge, is
the combined influence of both crucial growth-limiting factors—nutrient availability and
mechanical stress—on tumor growth.

In this work, a relatively simple mathematical model is presented, that considers
growth of a non-invasive avascular tumor in biphasic tissue. The model is described in
Section 2. It allows for semi-analytical investigation of tumor growth in the limit of infinite
tissue hydraulic conductivity, which is performed in Section 3. The influence of combined
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variation of tissue hydraulic conductivity and nutrient supply level on tumor growth is
studied in Section 4. Section 5 contains discussion of the results from the biological point
of view and indications of the future directions of the model development.

2. Model
2.1. Full System

The model, introduced herein, considers spherically-symmetrical growth of non-
invasive avascular tumor in normal tissue. Tumor and normal tissue consist of porous solid
matrix with volume fraction c(r, t), and interstitial fluid, which is able to flow through the
pores, with volume fraction f (r, t). Here, r and t are independent variables of radial coor-
dinate and time. Solid phase can be locally produced, e.g., by tumor cell proliferation with
the use of interstitial fluid and substances dissolved in it as a source of mass. Destruction
of solid phase, e.g., cell death, happens with its transfer into fluid phase. The rates of these
processes depend on the local level of glucose g(r, t) and on the local solid stress σ(r, t).
The choice of glucose as the crucial nutrient is due to its major energetic role in tumor cell
metabolism and its indispensability for biosynthesis [27]. For simplicity, it is assumed that
solid stress is isotropic, i.e., it acts with equal magnitude in all directions. Thus, solid phase
behaves like an elastic fluid-like substance. Under assumption that the densities of two
phases are equal and constant, this results in the following general equations for dynamics
of tissue phases:

solid phase:
∂c
∂t

=

production/
destruction︷ ︸︸ ︷
F(c, g, σ)

convection︷ ︸︸ ︷
− 1

r2
∂(Iccr2)

∂r
,

interstitial fluid:
∂ f
∂t

=

production/
destruction︷ ︸︸ ︷
−F(c, g, σ)

convection︷ ︸︸ ︷
− 1

r2

∂(I f f r2)

∂r
,

(1)

where I f = I f (r, t) denotes the velocity of convective motion of interstitial fluid through
the pores of the solid phase and Ic = Ic(r, t) denotes the solid phase convective velocity.
Further, the tissue is considered to be fully saturated, i.e., the two phases constitute its entire
volume, which is normalized to unity: c + f = 1. Upon summing the two equations for
phases dynamics, the resulting left hand side nullifies as the derivative of a constant, and
the kinetic terms cancel out due to the mass conservation. Thus, the resulting convection
term is equal to zero, which yields the following relation for the velocities of tissue phases:

Icc = −I f f . (2)

Under assumptions that all external body forces (e.g., gravity) are negligible, the
interstitial fluid flow through the pores is slow enough for the inertial effects to become
insignificant and the solid phase is homogeneously permeable, Darcy’s law can be used to
obtain the rate of volumetric flow of interstitial fluid the following way:

f (I f − Ic) = −
K
µ

∂p
∂r

, (3)

where K is the solid phase permeability, µ is the fluid viscosity, p = p(r, t) is the fluid
pressure. It follows from the porous media theory [28] that the gradients of fluid pressure
and solid stress can be linked the following way:

∂p
∂r

= −∂σ

∂r
, (4)

where the assumption that solid stress is isotropic is accounted for (see the work [9]
where analogous approach is used). Equations (2)–(4), together with the condition of fully
saturated tissue, yield
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Ic = −
K
µ

∂σ

∂r
. (5)

In general, the permeability of the solid phase K should depend on its volume fraction.
However, such dependence is neglected herein for two reasons. Firstly, in this work
only dynamics of cells as solid matrix constituents are accounted for explicitly, while
extracellular matrix dynamics are not considered. However, the implicit variation of
extracellular matrix density is assumed to significantly influence the value of K. Secondly,
as it will be shown in Section 4, in the considered system, the local fraction of tumor cells
mostly varies in rather moderate range (≈80–120% of its initial value), except for the case
of the formation of a fluid-filled core, within which, however, the fluid does not move, and
therefore the law of its movement does not need to be corrected.

Tumor cells and normal cells are assumed to have equal densities, their volumetric
fractions are n(r, t) and h(r, t) correspondingly. Tumor cells consume glucose, and they
can proliferate and die. The only component of the dynamics of normal cells is passive
convective motion, analogous to that of tumor cells.

The full system of equations, that accounts for the abovementioned assumptions, is
given below. Note that the equation for the interstitial fluid dynamics does not need to be
considered explicitly.

tumor cells:
∂n
∂t

=

proliferation︷ ︸︸ ︷
Bn ·Θp(g) ·Θσ(σ)

death︷ ︸︸ ︷
−Mn ·Θd(g)

convection︷ ︸︸ ︷
− 1

r2
∂(Icnr2)

∂r
,

normal cells:
∂h
∂t

=

convection︷ ︸︸ ︷
− 1

r2
∂(Ichr2)

∂r
,

glucose:
∂g
∂t

=

inflow︷ ︸︸ ︷
Ph[1− g]

diffusion︷ ︸︸ ︷
+

Dg

r2
∂2(gr2)

∂r2

consumption by proliferating cells︷ ︸︸ ︷
−Qpn ·Θp(g) ·Θσ(σ)

consumption by quiescent cells︷ ︸︸ ︷
−Qqn · {[1−Θp(g)] ·Θσ(σ) + [1−Θσ(σ)]} · [1−Θd(g)],

cells velocity: Ic = −
K
µ

∂σ

∂r
,

solid stress: σ ≡ σ(c) =


0, c ≤ cs,

k
[c− c0] · [c− cs]2

[c0 − cs]2
, cs < c < c0,

k[c− c0], c ≥ c0,

where Θp(g) = [1 + tanh(ε{g− gp})]/2,
Θd(g) = [1 + tanh(ε{gd − g})]/2,
Θσ(σ) = [1 + tanh(ε{σcr − σ})]/2,

c = n + h.

(6)

The model accounts for two tumor growth-limiting factors discussed in Section 1, i.e.,
tumor cells can proliferate only under sufficient level of glucose and sufficiently low solid
stress. Otherwise they become quiescent, unless glucose level is not too low. In this case,
they die due to nutrient deficiency. Herein for the sake of analytical study, quite simple
forms of dependencies of tumor cell proliferation and death rates on glucose level and
solid stress are considered, i.e., smooth approximations of the Heaviside function. All
model parameters are positive. The level of glucose needed for the tumor cells proliferation
is higher than that needed for their survival, i.e., gp > gd. Since the vast majority of
glucose flows into tissue by diffusion through the walls of capillaries [29], only this type of
transvascular transport is considered in the model. The capillaries are assumed to rapidly
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lose their functionality and degrade within the tumor due to their rupture as a result of
displacement and due to chemical reasons [30]. In light of this and since angiogenesis is
not considered, the surface area density of capillaries is simply taken to be proportional to
the fraction of normal cells, the coefficient of proportionality being implicitly accounted for
in the parameter P. Proliferating tumor cells consume glucose faster than quiescent cells,
since they use it as a substrate for biosynthesis, i.e., Qp > Qq. Glucose consumption by
normal cells is neglected for simplicity.

The function of the solid stress is based on the quite general assumption that the spatial
variability at the microscale can be neglected and the volume fraction of cells can be chosen
as a surrogate for the distance between them [9,20]. This function is illustrated in Figure 1.
It is a smooth function, which corresponds to experimental observations at a qualitative
level [31]. It assumes that at normal cell fraction, i.e., c = c0, cells interaction yields zero
solid stress. If cells are pushed together, c > c0, the repulsive interaction appears, i.e., σ > 0.
With an increase in the distance between cells, at c < c0, the adhesive interaction manifests
itself. At first it strengthens, and then gradually weakens due to the sequential ruptures of
individual intercellular contacts. The stress eventually becomes zero at c = cs < c0. For
the sake of analytical simplicity, the part of the function that corresponds to the repulsive
interaction, is taken to be linear. In order for the critical fraction of cells, at which cell
proliferation ceases, to be less than one, the condition σcr < k[1− c0] must be met.

σ
cr

σ, kPa 

c
0 

c
s 

c
m 

c
 

Figure 1. Dependence of solid stress σ on cell fraction c, used in Equation (6). If cell fraction is greater
than its normal value c0, the repulsive interaction appears. If c < c0, the adhesive interaction at first
strengthens and then weakens with the decrease of cell fraction. For sufficiently sparsely distributed
cells at c < cs there is no interaction between them. The parameter values are based on the basic
parameter set, listed below in Table 1. cm ≡ [2c0 + cs]/3 is the cell fraction at which solid stress
is minimal.
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2.2. Infinite Hydraulic Conductivity Limit

An important approximation, that significantly simplifies analytical tractability, is the
case of infinite solid phase permeability K and/or infinitesimal fluid viscosity µ. Since
these two parameters are used in the work only together as the fraction K/µ, it will be
further referred to as a single parameter of tissue hydraulic conductivity. At this limit
arising infinitesimal gradients of solid stress lead to instantaneous redistribution of tissue
phases and equalization of solid stress. Thus, the fractions of cells and fluid in tissue can be
only equal to c0 and f0 = 1− c0. The equation of cells velocity in the system of Equation (6)
degenerates, instead it can be found by summing up first two equations of this system,
∂[n + h]/∂t being taken equal to zero. This results in the following system of equations:

tumor cells:
∂n
∂t

=

proliferation︷ ︸︸ ︷
Bn ·Θp(g)

death︷ ︸︸ ︷
−Mn ·Θd(g)

convection︷ ︸︸ ︷
− 1

r2
∂(Icnr2)

∂r
,

normal cells:
∂h
∂t

=

convection︷ ︸︸ ︷
− 1

r2
∂(Ichr2)

∂r
,

glucose:
∂g
∂t

=

inflow︷ ︸︸ ︷
Ph[1− g]

diffusion︷ ︸︸ ︷
+

Dg

r2
∂2(gr2)

∂r2

consumption by proliferating and quiescent cells︷ ︸︸ ︷
−Qpn ·Θp(g)−Qqn · [1−Θp(g)] · [1−Θd(g)],

cells velocity:
1
r2

∂(Icr2)

∂r
=

1
c0
[Bn ·Θp(g)−Mn ·Θd(g)],

where Θp(g) = [1 + tanh(ε{g− gp})]/2,
Θd(g) = [1 + tanh(ε{gd − g})]/2.

(7)

Such approximation has been used in the previous works of our research group [32–35].
The conditions, under which this approximation is applicable, will be discussed in Section 4.1.

2.3. Parameters

The parameters of the model were estimated according to the data of various ex-
perimental works. The basic set of parameters is listed in Table 1. The dimensionless
model values of parameters are the approximations of their normalized values, which
were obtained with the use of the following normalization parameters: tn = 1 h for time,
xn = 10−2 cm for length, gn = 1 mg/ml for glucose concentration (note that the molecular
mass of glucose is 180 g/mol), σn = 1 kPa for stress and nn = 3 · 108 cells/ml for maximum
density of tumor cells. The latter value was taken from the experimental work on growth
of multicellular tumor spheroids [36]. The values for the proliferation rate of tumor cells
and their glucose consumption rate were taken close to their values at the initial stage
of spheroid growth according to the data of this work. Tumor cell doubling time is thus
approximately a day. Tumor cells death rate was roughly taken to be an order of magnitude
lower, since, firstly, experimental data suggests than across various cell lines, more than
half of tumor cells survive after about two days of complete starvation [37]; secondly, under
lack of glucose, tumor cells are able to prolong their survival by using other nutrients,
including lactate, generated by other cells via metabolism of glucose [38].
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Table 1. Basic set of model parameters.

Parameter Description Estimated Value Model Value Based On

For the full model and the K/µ → ∞ limit:
B tumor cells proliferation rate 0.03 h−1 0.03 [36]
M tumor cells death rate 0.003 h−1 0.003 [37] + see text
P nutrient supply level 1.1× 10−3 s−1 4 & varied [29] + see text

Dg glucose diffusion coefficient 2.8× 10−6 cm2/s 100 [39]
Qp rate of glucose consumption by proliferating cells 1.2× 10−16 mol

cells·s 24 [36]
Qq rate of glucose consumption by quiescent cells 3× 10−18 mol

cells·s 0.5 see text
c0 initial fraction of cells 0.8 0.8 [20]
gp critical level of glucose for tumor cell proliferation 0.55 mM 0.1 see text
gd critical level of glucose for tumor cell survival 0.055 mM 0.01 see text
ε Heaviside smoothing parameter – 1000 (numerical)/

∞ (analytical) see text
RT

0 initial radius of tissue region 1 cm 100 (num. + an. full)/
∞ (an. K/µ→ ∞ limit) see text

Only for the full model:
σcr critical stress for cell proliferation 15 kPa 15 [9] + see text

K/µ tissue hydraulic conductivity 10−8 cm2

mmHg·s 3 & varied [40] + see text
k solid stress function coefficient 100 kPa 100 [9]
cs minimum cell-sensing cell fraction 0.3 0.3 [20]

The value of P has the physical meaning of microvasculature permeability surface
area product. It thus was assessed as the product of two values, based on experimental
data: capillary surface area density 100 cm2/cm3, which is close to its average value for the
human muscle, and the permeability of continuous capillaries for glucose 1.1× 10−5 cm/s
(this is the most abundant type of capillaries, present in muscles as well). Parameter
P was varied to study the influence of nutrient supply level on tumor growth, since it
varies in different normal tissues depending on their metabolic demand. Variation of
this parameter may also reflect angiogenesis and antiangiogenic therapy, since during
tumor angiogenesis, both density of microvasculature and permeability of capillaries walls
increase [41]. However, such reasoning assumes that capillaries do not grow into tumors,
and the properties of microvasculature change equally throughout the normal tissue (see
the work [34]). The highest value of P was chosen to be 16 times greater than its basic
value, this coefficient being chosen as a very approximate product of two estimated factors.
Firstly, experiments in mouse tumor models showed that the local density of microvessels
near a tumor can increase up to six times [42]. Secondly, in the work [32], it was shown
that a 2.5-fold increase in the permeability of tumor capillaries to glucose should be a
physiologically reasonable estimation.

The assessment of glucose consumption rate by quiescent tumor cells was based on
the observation, made in the work [43], that it should be at least 40 times lower than
the glucose consumption rate by proliferating cells. The values of parameters gp and gd
cannot be assessed straightforwardly, since the functions of the dependence of tumor cell
proliferation and death rates on glucose were chosen for phenomenological reasons. The
values of these parameters were roughly assessed to differ by an order of magnitude. The
use of infinite value of Heaviside smoothing parameter ε significantly simplifies analytical
estimations, but leads to non-monotonic behavior of variable profiles during numerical
simulations. Therefore, its value was adjusted for them in order to diminish this effect.
Of note, such a large value of ε allowed keeping the concentrations of glucose positive
throughout the tumor and to keep the maximum fraction of cells not approaching unity.
The basic value of initial radius of normal tissue region was chosen to be significantly low
to keep the cost of numerical simulations tolerable, but significantly high for the nutrient
inflow to be only slightly affected during the tumor growth in comparison to infinitely
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large normal tissue (except for the particular case of the final stage of growth of giant
benign tumors, discussed in Sections 4.3 and 4.4).

The value of the critical stress for cell proliferation σcr was roughly assessed by the
extrapolation of the data of the work [9], in which a set of experiments was performed on
growth of tumor spheroids, subjected to varying external mechanical pressure. Moreover,
the maximal experimentally measured values of growth-induced solid stress in tumors,
grown in mice, as well suggest that tumor cell proliferation should stop at approximately
the same stress level [44]. Under the chosen value of σcr, the critical fraction of cells, at
which cell proliferation ceases, is ccr = 0.95. Importantly, experimental data suggests
that in order for hydrostatic pressure alone to stop cell proliferation, it should be about
three orders of magnitude higher than σcr [45], which is the reason that its influence on
cell proliferation is neglected herein. The basic value of tissue hydraulic conductivity
K/µ is based on experimental measurements, performed on tumors grown in mice in the
work [40]. As shown in this work, this parameter varies significantly between tumors of
various cell lines and can be at least up to two orders of magnitude higher. However, other
experimental data suggest that it can also be at least two orders of magnitude lower, e.g.,
in case of fibrosarcoma [46]. This is a type of tumor, derived from fibrous connective tissue
and characterized by the abundance of proliferating fibroblasts. These cells produce the
elements of extracellular matrix, thus decreasing the permeability of the solid phase of the
tissue. The influence of variation of tissue hydraulic conductivity on tumor growth will be
discussed in Section 4.

2.4. Numerical Solving

During numerical simulations, the sets of Equations (6) and (7) were solved in a region
with initial size RT

0 , which further increased due to the tumor growth. The following initial
conditions were used, which represent a normal tissue with a small spherical colony of
tumor cells with radius R0 = 0.1 mm, located in its center, where r = 0:

n = c0,
h = 0,
g = 1

f or r ≤ R0;


n = 0,
h = c0,
g = 1

f or r > R0. (8)

For cells, a zero-flux boundary condition was used at the center, and constant values
n = 0 and h = c0 were used at the moving tissue boundary. Of note, this condition implied
the constancy of solid stress and interstitial fluid pressure there. Furthermore, it implied
the inflow of fluid through the moving normal tissue boundary that eventually provided
the overall increase of mass during the tumor growth. For glucose, a zero-flux boundary
condition was used at both edges. In case of infinite hydraulic conductivity limit, the
convective velocity was set to zero at the tumor center, resulting in the following equation
for it:

Ic(r, t) =
1
r2

∫ r

0

z2

c0
[Bn(z, t) ·Θp(g(z, t))−Mn(z, t) ·Θd(g(z, t))]dz. (9)

The method of splitting into physical processes was used for all variables, i.e., kinetic
equations, diffusion equation and convective equations were solved successively during
each time step. Implicit Crank–Nicholson scheme was used for glucose diffusion equation.
Convective equations were solved using the conservative flux-corrected transport algo-
rithm with implicit anti-diffusion stage. Importantly, this method by itself nevertheless
introduces a small amount of irremovable diffusion, which leads to artificial invasion of
tumor into normal tissue. Another problem of straightforward implementation of this
method is the impossibility to correctly simulate the movement of the free tissue boundary
on a uniform space grid. In order to overcome these problems, two additional floating grid
points were introduced to indicate the interface between the tumor and normal tissue and
the location of the free tissue boundary. The positions of these grid points were calculated
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on the basis of cell volume conservation during the solution of convective equations at
each time step.

During the solution of the full model, variation of the hydraulic conductivity parame-
ter affected the stability of the numerical algorithm, its greater values demanding a lower
time step. Therefore, time step was dynamically adjusted by empirical methods in order to
keep solutions stable. Its maximum value was restricted by a glucose diffusion coefficient,
which also defined its choice during the solution of the model in the infinite hydraulic
conductivity limit. The correctness of choice of time and space steps followed from the
comparison of numerical and analytical solutions, presented in Sections 3.4 and 4.1. Since
time step was defined by convective equations and sometimes glucose diffusion coefficient,
it was decided to solve kinetic equations by a relatively simple explicit Euler method.

Flux-corrected transport algorithm was introduced in the work [47], while other
classical methods are described in many books (see, e.g., [48]). The computational code
was implemented in C++ and can be found in the Supplementary Materials.

3. Estimation of Growth Curves in the Limit of Infinite Tissue Hydraulic Conductivity

The system of Equation (7) allows for semi-analytically derived approximations of the
tumor growth curves, produced by the full system of Equation (6) in case of sufficiently
large values of K/µ. As it was noted in Section 2.2, in this case the fraction of both
tumor and normal cells in tissue can only be equal to c0. Since a non-invasive tumor was
considered, there always exists a clear border between tumor and normal tissue. Its location
in space will be denoted as R = R(t). Moreover, in case of ε→ ∞ from the construction of
the model, it also follows that the point in space Rp(t), where glucose level is gp, indicates
a clear border between proliferating and quiescent cells, and the point Rd(t), where glucose
level is gd, indicates a clear border between quiescent and dying cells. Thus, in every
moment of time, the solution can be split into several regions, in each of which some
terms of the system of Equation (7) can be omitted or simplified. Importantly, since the
tumor growth speed should be significantly lower than the characteristic speed of glucose
diffusion within the tissue, quasistationary approximation can be used for estimation of the
profile of glucose in every moment (i.e., setting ∂g/∂t = 0). Glucose profile can be found
by procedure, exemplified in the previous work [34], i.e., the so-called method of stitching
of functions, that are the common analytical solutions of the reduced forms of the system
of Equation (7) in every region. That is, the coefficients in these common solutions should
be picked in such a way that glucose distribution turns into a piecewise function that is
continuously differentiable in order to provide the continuity of glucose concentration and
of its flow. Solution of such tasks allows for the assessment of tumor growth curve R(t),
which will be discussed in this section. The calculations, performed as a result of such an
approach, are described in Appendix A. Initial conditions for the performed calculations
matched Equation (8). On the left border, a zero-flux boundary condition was used for
glucose. The initial size of the normal tissue RT

0 was taken in this section to be infinite for
simplicity, therefore, the right boundary condition for glucose was limr→∞ g(r) = 1.

3.1. First Growth Stage: Exponential Phase

An important moment for the tumor growth curve estimation is the moment Tp :
g(0, Tp) = gp, at which quiescent tumor cells have just begun to appear. The distributions
of the variables for this moment are shown in Figure 2. Here and further on, the basic set
of parameters, listed in Table 1, is used for illustrations, unless otherwise stated.
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Figure 2. The distributions of the variables of the tumor growth model, governed by the system of
Equation (6), at the moment when first quiescent tumor cells have just begun to appear. Prior to this
moment, all tumor cells were constantly proliferating.

The tumor radius can be found as the only solution, yielded by stitching of two
functions of glucose distributions in regions of tumor and normal tissue, that has physi-
cal meaning:

R(Tp) =

√
Dg

c0P

{
− 1 + 2

√
2[1− gp]P + Qp

Qp

×cos

(
1
3

[
π − arctg

√
−1 +

{2[1− gp]P + Qp}3

Q3
p

])}
.

(10)

For the basic parameter set R(Tp) ≈ 0.36 mm. Interestingly, this function has limits
for both infinitesimal and infinitely large levels of nutrient supply from the normal tissue:

lim
P→0

R(Tp) =

√
2[1− gp]Dg

c0Qp
, lim

P→∞
R(Tp) =

√
6[1− gp]Dg

c0Qp
, (11)

which are ≈0.31 mm and ≈0.53 mm for the basic parameter set. Thus, for infinitely large
normal tissue the maximum radius of a tumor, which consists of only proliferating cells,
cannot fall below a certain threshold under an arbitrarily small level of nutrient supply from
surrounding normal tissue. This is in contrast with the corresponding result for planar
geometry—according to the results of the work [34], limP→0 R(Tp) = 0 for the planar
case. For finite normal tissue, this limit as well equals zero in the three-dimensional case;
however, a noticeable decrease of R(Tp) requires a very significant decrease in nutrient
supply level. For instance, if RT

0 = 1 cm, P should be decreased about 430 times from its
basic value for R(Tp) to become lower than 0.3 mm.

The speed of tumor front propagation V(Tp) ≡ Ṙ(Tp), where upper dot denotes
differentiation with respect to time, can be assessed via Equation (9), which, applied to
r(t) = R(t), corresponds to the volume or mass conservation law for the tumor cells. That
is, the increase of the tumor cells volume during the infinitesimal period of time dt, close
to Tp, is provided by the newborn cells, all tumor cells being in proliferative state at this
period of time:
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4πR(Tp)
2 · c0V(Tp)dt =

4
3

πR(Tp)
3 · c0Bdt. (12)

Therefore, V(Tp) = BR(Tp)/3, which is ≈0.60 mm/week for the basic parameter set.
From the beginning of tumor growth up to this moment, all tumor cells prolif-

erate, since glucose level at each point in space falls monotonically with time and
g(r, t) > gp ∀r < R(t) ∀t < Tp. Therefore, in the beginning of the tumor growth, its
radius increases exponentially:

R(t) = R0eBt/3, t ≤ Tp =
3
B

ln (R(Tp)/R0), (13)

Tp being ≈5.3 days for R0 = 0.1 mm and the basic parameter set.

3.2. Second Growth Stage: Two-Layered Tumor

Figure 3 illustrates the distributions of the model variables at the moment Td :
g(0, Td) = gd, when cells at the tumor center have just begun to die.
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Figure 3. The distributions of the variables of the tumor growth model, governed by the system of
Equation (6) at the moment when first tumor cells have just begun to die.

The tumor radius at this moment is:

R(Td) =

√
Dg

c0P

{
− 1 + 2

√
2[1− gd]PQq + 6[gp − gd]P[Qp −Qq] + QpQq

QpQq

×cos

(
1
3

[
π − arctg

√
−1 +

{2[1− gd]PQq + 6[gp − gd]P[Qp −Qq] + QpQq}3

{6
√

6[gp − gd]3/2[PQp]3/2[Qp −Qq] + [QpQq]3/2}2

])}
.

(14)

For the basic parameter set R(Td) ≈ 1.27 mm. This function also has limits for both
infinitesimal and infinitely large levels of nutrient supply:
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lim
P→0

R(Td) =

√
2Dg

c0QpQq

{
[1− gd]Qq + 3[gp − gd][Qp −Qq]

}
,

lim
P→∞

R(Td) = 2

√
2Dg

c0QpQq

{
[1− gd]Qq + 3[gp − gd][Qp −Qq]

}
×cos

(
1
3

[
π − arctg

√
−1 +

{2[1− gd]Qq + 6[gp − gd][Qp −Qq]}3

Qp{6
√

6[gp − gd]3/2[Qp −Qq]}2

])
,

(15)

which are ≈1.19 mm and ≈1.49 mm for the basic parameter set.
The radius of the quiescent zone is

Rp(Td) =

√
6[gp − gd]Dg

c0Qq
, (16)

which, interestingly, does not depend on the nutrient supply level. For the basic parameter
set Rp(Td) ≈ 1.16 mm. Note that the minimal width of proliferating rim thus is

lim
P→0

(R(Td)− Rp(Td)) =

√
6Dg[gp − gd]

c0Qq
+

2Dg{[1− gd]− 3[gp − gd]}
c0Qp

−

√
6Dg[gp − gd]

c0Qq
, (17)

which is ≈0.03 mm for the basic set of parameters. If gp > [1 + 2gd]/3, this value is
negative. In this case under sufficiently low nutrient supply level tumor should achieve a
state in which all its cells are quiescent and stop growing before glucose level in the tumor
center falls down to gd.

As in Section 3.1, the speed of the tumor front propagation V(Td) ≡ Ṙ(Td) can be
assessed via the mass conservation law:

V(Td) = B
R(Td)

3 − Rp(Td)
3

3R(Td)2 , (18)

which is ≈0.49 mm/week for the basic parameter set.
Unlike the case of the exponential phase, no explicit expression for R(t) can be derived

for the second stage of tumor growth, at which quiescent and proliferating zones are
present. This part of the growth curve, however, can be estimated numerically by using
the fact that replacing gd in right hand sides of Equations (14) and (16) with g0 ∈ [gd, gp]
yields the values of R(t) and Rp(t) for some moment of time Tp < t < Td. In particular,
implicit function g0(R) can be approximated from Equation (14) for R(Tp) < R < R(Td).
Then, Equation (16) and mass conservation law lead to the ODE

Ṙ(t) = B
R(t)3 − {6[gp − g0(R(t))]Dg/(c0Qq)}3/2

3R(t)2 ∀t : Tp < t < Td, (19)

which can be solved numerically. The value of Td followed from its solution, for the basic
set of parameters, it is ≈16.6 days.

3.3. Third Growth Stage: Tending to Plateau

As it follows from Equation (9), the death of tumor cells contributes to the decelaration
of tumor front propagation, and the larger the total volume of dying cells, the greater
this contribution. At the last stage, the tumor growth tends to a complete stop, and
the distributions of model variables tend to stable profiles, depicted in Figure 4, where
R̂ ≡ limt→∞R(t), R̂p ≡ limt→∞Rp(t), R̂d ≡ limt→∞Rd(t). Note that the glucose level is
uniform within the core of dying cells.
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Figure 4. The limit stable distributions of the variables of the tumor growth model, governed by the
system of Equation (6).

The values of R̂, R̂p and R̂d can be, in the general case, found only numerically. The
stitching of glucose distributions functions yields the following relations between them:

R̂p(R̂d) =
f (R̂d) + g(R̂d)

2/3√
c0Qq · g(R̂d)1/3

,

f (R̂d) = 2[gp − gd]Dg + [
√

c0QqR̂d]
2, g(R̂d) = −[

√
c0QqR̂d]

3 +
√
[
√

c0QqR̂d]6 − f (R̂d)3,
(20)

R̂(R̂d) =

√
Dg

c0P

{
− 1 + 2

√
h(R̂d)

3DgQpR̂p(R̂d)
cos

(
1
3

[
π − arctg

√
−1 +

h(R̂d)3

l(R̂d)

])}
,

h(R̂d) = 3Dg{2[1− gp]P + Qp}R̂p(R̂d) + c0P{3QpR̂p(R̂d)
3 − 2Qq[R̂p(R̂d)

3 − R̂3
d]},

l(R̂d) = 27QpR̂p(R̂d)
3
[

D3/2
g Qp + [c0P]3/2{QpR̂p(R̂d)

3 −Qq[R̂p(R̂d)
3 − R̂3

d]}
]2

.

(21)

Another relation between these values is yielded by the fact that tumor front propaga-
tion speed for the stable state equals to zero. Hence, due to the mass conservation:

B[R̂3 − R̂3
p] = MR̂3

d. (22)

The resulting system of Equations (20)–(22) can be solved numerically. For the basic set
of parameters, R̂d ≈ 3.42 mm, R̂p ≈ 4.13 mm and R̂ ≈ 4.21 mm. Furthermore, numerical
simulations suggested that, under infinite nutrient supply from normal tissue, there exist
limit values limP→∞R̂d ≈ 10.36 mm, limP→∞R̂p ≈ 11.05 mm, limP→∞R̂ ≈ 11.34 mm. For
P = 64, that, as it was noted in Section 2.3, was chosen as a physiologically justified limit
of variation, maximum tumor radius is R̂ ≈ 7.87 mm, which is ≈ 70% of its limit value.
There also exist the limits for infinitesimal nutrient supply level: limP→0R̂d ≈ 1.15 mm,
limP→0R̂p ≈ 1.94 mm, limP→0R̂ ≈ 1.95 mm.

The part of the growth curve for the last stage of tumor growth, at which dying cells
are present, can be estimated numerically by using the fact that replacing R̂d in the right
hand sides of Equations (20) and (21) with Rd ∈ [0, R̂d] yields the values of R(Rd(t)) and
Rp(Rd(t)) for some moment of time t > Td. With their use, the ODE for the radius of
spheroid of dying cells can be obtained via mass conservation law:
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Ṙd(t) =
B[R(Rd(t))3 − Rp(Rd(t))3]−MRd(t)3

3R(Rd(t))2 · [∂R(Rd)/∂Rd]t
, (23)

and inserting the solution into the right hand side of Equation (21) yields the function
R(Rd(t)), that approximates the growth curve for t > Td. For the basic set of parameters,
tumor radius reaches 90% of its maximum value at≈96.6 days, and 99% of it at≈191.3 days.

3.4. Comparison with Numerical Simulations

Figure 5 compares the tumor growth curves for the system of Equation (7), obtained by
the methodology, described in Sections 3.1–3.3, with the results of the numerical simulations
of the same system, performed as described in Section 2.4. Five cases with different values
of P were considered, other parameters being from their basic set. As it is seen from the
figure, the results, produced by two methods, are in good agreement. In every case, the
discrepancy between the estimations of tumor radius does not exceed 0.5%, reaching its
maximum at the beginning of the second stage of tumor growth.

P=64
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Figure 5. Tumor growth curves, produced by system of Equation (7) for different nutrient supply
levels P, obtained by semi-analytical methodology (solid lines) and by numerical simulations (gray
dots). Multicolored crosses denote the moments when glucose concentration in tumor center equals
gp, below which tumor cells turn to quiescent state, and gd, below which tumor cells die. The denoted
limit values for tumor radius under infinitesimal and infinitely large values of P are defined by
Equations (11) and (15), except for limP→0R̂, which is estimated numerically, as well as limP→∞R̂ ≈
11.34 mm, which is not shown.

4. Study of Influence of Tissue Hydraulic Conductivity and Nutrient Supply Level on
Tumor Growth

The dynamics of the full model, expressed by the system of Equation (6), was studied
via numerical simulations, performed as described in Section 2.4, under variation of tissue
hydraulic conductivity K/µ and nutrient supply level P. The same set of five values of P,
as in the previous section, was used. The results are arranged in this section by decreasing
values of K/µ.

4.1. High Hydraulic Conductivity: When the Infinite Hydraulic Conductivity Limit Is Applicable

Numerical simulations with the basic value of K/µ = 3 produced tumor growth
patterns, visually almost indiscernible from those shown in Figure 5. Namely, simulations
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of the full model produced the values of tumor radii, which up to the beginning of the
third stage of tumor growth were lower by no more than 0.3%, than in the approximate
model that assumed infinite hydraulic conductivity. On the third stage of growth, this
difference began to decrease. Under high values of P, the simulations of the full model
eventually resulted in slightly greater radii of tumors, than in the approximate model—by
≈0.3% under P = 16 and by ≈0.5% under P = 64. The smallness of this difference was due
to the fact that such high value of hydraulic conductivity led to sufficiently fast smoothing
of the solid stress gradients, caused by spatial variations of cell fractions in tissue. Indeed,
even under the highest value of P = 64, the fractions of cells did not deviate from their
initial level c0 by more than ≈0.4% up and ≈1.3% down. Therefore, the results suggested
that the infinite tissue hydraulic conductivity limit should provide good approximation for
the full model under values of K/µ at least as great as 10−8 cm2/(mmHg · s) within the
physiologically reasonable range of nutrient supply level. Of note, each simulation of the
full model with K/µ = 3 lasted about 200 times longer than the corresponding simulation
of the approximate model. However, under high K/µ, it is the cell movement that was the
most crucial factor defining the appropriate size of the time step, and with the decrease of
K/µ the numerical cost noticeably decreased.

4.2. Intermediate Hydraulic Conductivity: Fluid-Filled Core Forms under High Nutrient
Inflow Level

Figure 6 shows tumor growth curves, obtained numerically in case of K/µ = 0.3. The
growth curves for the already discussed case of K/µ = 3 are also present for comparison as
dashed lines. As it is seen from this figure, with the decrease in K/µ, the change of tumor
growth curves followed the same tendency, which was discussed in the previous section.
Namely, tumor radii became slightly lower during the first several dozens of days of tumor
growth, but eventually they became greater. The final increase in the tumor sizes was more
pronounced with the increase in P. For the four lowest values of P the decrease of K/µ by
an order of magnitude led to the increase of maximum tumor radius by ≈0.3%, ≈1.0%,
≈1.7% and ≈3.5%. For the largest value of P = 64, it increased by ≈25.3%.

Figure 7 provides two snapshots of distributions of the model variables under K/µ =
0.3 and P = 16, which allow explaining qualitatively such changes in dynamics for the
lowest four values of P. Figure 7a corresponds to the 14th day of tumor growth, which
was the last day when glucose concentration in the tumor center was greater than gd, and
thus tumor cells had not died yet. Under this value of K/µ, the spatial variations in cell
fractions smoothed out on a time scale comparable to that of tumor growth. Therefore, the
fraction of cells within the tumor remained noticeably increased due to their proliferation
in comparison to their initial value c0. Since the tumor cells were more densely packed
than in case of K/µ = 3, while their overall proliferation rates were comparable, tumor
had a slightly smaller size during the first days of growth in the case with the lower value
of K/µ.

Figure 7b corresponds to the 350-th day of tumor growth, after which further dif-
ferences in profiles of variables remained indiscernible. Therefore, this snapshot may be
referred to as their stable state. As the movement of the normal tissue practically ceased at
this moment, the distribution of fraction of its cells was almost uniform, close to c0. Due
to the death of tumor cells, their fraction was close to c0 only at the interface with the
normal tissue and decreased towards the tumor center. Dying tumor cells were less densely
packed in this case in comparison with the case of greater value of K/µ = 3. Therefore, in
order to stop tumor growth, significantly larger region of dying tumor cells was needed
to compensate for the proliferation of cells in the tumor rims, the amounts of which were
quite comparable in both cases. That resulted in greater total size of the stable tumor in the
case of lower K/µ.
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Figure 6. Tumor growth curves, produced by numerical simulations of the system of Equation (6)
under different nutrient supply levels P and tissue hydraulic conductivity K/µ = 0.3 (solid lines) and
K/µ = 3 (dashed lines). Red dotted line denotes the limit value of tumor radius under K/µ = 0.3
and P = 64.
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h, normal cells
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Figure 7. Distributions of the variables of the tumor growth model, governed by the system of Equation (6), produced by
numerical simulations under tissue hydraulic conductivity K/µ = 0.3 and nutrient supply level P = 16 on the (a) 14th and
(b) 350th days of tumor growth. Dotted lines denote the value of initial fraction of cells c0.

Note that Figure 7b allows deducing the qualitative pattern of cells and fluid dy-
namics within a stable tumor. According to Equation (6), the direction of the cell velocity
throughout the tumor was opposite to the direction of tumor cell fraction gradient—since
the fraction of tumor cells throughout the tumor was greater than the value cm ≈ 0.63,
at which solid stress function would achieve its minimum. Thus, the new cells, which
appeared at the outer tumor rim, moved towards the necrotic core, where they died turning
into fluid. According to Equation (2), the fluid moved in opposite direction, i.e., towards
the tumor boundary, where it was used again for cell proliferation.

For the largest used value of P = 64 the tumor growth pattern changed qualitatively,
resulting in more prominent increase in maximum tumor volume, compared to the case of
K/µ = 3 (see Figure 6). As Figure 8a shows, around the 114th day of the tumor growth
the fraction of tumor cells in the tumor center reached the value of cm. Before this moment
all the tumor cells located close to the tumor center had been pulled towards it. However,
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upon further decrease of cell fraction in the tumor center, cells situated there began to be
pulled away from it. With further tumor growth, a necrotic fluid-filled core effectively
devoid of tumor cells formed within the tumor center. The transition to such a state was
accompanied by complex redistribution of zones with lower and higher fractions of tumor
cells within the tumor core. The details of these transient dynamics turned out to be very
sensitive to the time and space steps; however, they were not investigated in detail, since
after the cells in the tumor core effectively died out, the differences between simulations
practically leveled out.

r, mm

n,

tumor

cells

g, glucose

h,

normal

cells

day 1000

r, mm

n, tumor cells

g, glucose

h,

normal

cells

day 114

a) b)

Figure 8. Distributions of the variables of the tumor growth model, governed by the system of Equation (6), produced by
numerical simulations under tissue hydraulic conductivity K/µ = 0.3 and nutrient supply level P = 64 on the (a) 114th day
of tumor growth and (b) 1000th day of tumor growth, at which the tumor core is filled with fluid. Dotted lines denote the
value of initial fraction of cells c0.

The radius of the region of dying tumor cells, at which such transition should take
place, can be estimated by finding the size Rcr

d , that admits the stationary solution for the
following equation for dying tumor cells, obtained from Equation (6) taking into account
cs ≤ n ≤ c0:

Mn =
K
µ

k
[c0 − cs]2r2

∂

∂r
(nr2 ∂

∂r
([n− c0] · [n− cs]

2)), (24)

with boundary conditions n(Rcr
d ) = c0, n(δ) = cm, n′(δ) = 0, where δ → 0 and prime

denotes differentiation with respect to space. For the value of K/µ = 3, considered in the
previous section, Rcr

d ≈ 21.5 mm, which is clearly unattainable within the physiologically
justified range of P. For the case of K/µ = 0.3, considered in this section, such estimation
yields Rcr

d ≈ 6.8 mm, which corresponds well to Figure 8a.
Accumulation of fluid within the tumor resulted in slower deceleration of tumor

growth, as Figure 6 shows for the case of P = 64. However, tumor growth eventually
ceased in this case, since the overall rate of tumor cell death (which is approximately the
volume of the region of dying cells, multiplied by the death rate M) grew faster than the
overall rate of tumor cells proliferation. The effectively stationary distribution of the model
variables for the case of P = 64 is illustrated in Figure 8b. Note that the abrupt declines
in normal cells fractions in Figures 7 and 8 indicate the boundaries of the normal tissue,
where it was displaced by tumor from its initial position of RT

0 = 10 mm. At that, the total
volume of normal cells was conserved in every simulation, since they neither proliferated
nor died.

4.3. Low Hydraulic Conductivity: Crucial Condition for Giant Benign Tumors

For the lower value of K/µ = 0.03, the estimated value of the radius of the region of
dying tumor cells, at which the formation of the fluid-filled necrotic core should begin, is
Rcr

d ≈ 2.15 mm. This value was achieved for each of the five used values of P. However, as
Figure 9 shows, in the case of the lowest values of P = 0.25 and P = 1, the presence of the
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fluid-filled core led to quite moderate increases of maximum tumor radii—compared to
the case of K/µ = 0.3, they increased by ≈1.5% and ≈28.5%, correspondingly.

P=64

P=16

P=4

P=1
P=0.25

R, mm

days

Figure 9. Tumor growth curves, produced by numerical simulations of the system of Equation (6)
under different nutrient supply levels P and tissue hydraulic conductivity K/µ = 0.03 (solid lines)
and K/µ = 0.3 (dashed lines). Dotted lines denote the limit values of tumor radii under K/µ = 0.03.

For the three greatest values of P, tumors grew without saturation for much longer
time periods of several years, and maximum tumor volumes in these cases increased 5,
8 and 10 times, in order of increasing values of P. Under the greatest value of P = 64,
the tumor grew almost up to 10 cm in radius. The growth of the three largest tumors
was eventually ceased due to an effect of thinning of the normal tissue region, which
did not affect the growth of the two smallest tumors. Namely, while the overall volume
of proliferating cells increased with the tumor growth, the volume of the normal tissue
remained constant in the simulations, as it was discussed in the previous section. Therefore,
its width gradually decreased, and it eventually could not supply the tumors with a
sufficient amount of glucose for continued growth. For the three largest tumors, the normal
tissue width at the end of the simulations was ≈0.75 mm, ≈0.14 mm and ≈0.04 mm
(in order of increasing P). The maximum glucose concentration, achieved at the right
boundary, was ≈0.58, ≈0.25 and ≈0.17.

4.4. Very Low Hydraulic Conductivity: Stress-Induced Growth Restriction and
Explosive Acceleration

Under even lower tissue hydraulic conductivity, K/µ = 0.003, another effect showed
up in the simulations, i.e., the restriction of tumor growth speed by stress. It happened
when tumor cells fraction reached the critical value of ccr = 0.95, that corresponded to
the critical solid stress, at which cell proliferation ceased. As long as such condition held,
tumor growth curve was independent of the nutrient supply level. Figure 10 illustrates
this via the distributions of model variables for the same moment of time at 2000-th day of
growth under P = 4 and P = 64. The two tumors had equal radii despite the obviously
different total amount of tumor cells, since only a very small number of them in the tumor
rims were actually proliferating.
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Figure 10. Distributions of the variables of the tumor growth model, governed by the system of Equation (6), produced
by numerical simulations under tissue hydraulic conductivity K/µ = 0.003 and nutrient supply levels (a) P = 4 and (b)
P = 64 on the 2000th days of tumor growth. In both cases, the tumor core is filled with fluid. Dotted lines denote the values
of initial fraction of cells c0 and critical fraction of cells ccr, at which cell proliferation ceases.

Tumor growth curves for the case of K/µ = 0.003 are shown in Figure 11. In every
case, the critical value of tumor cells fraction was already achieved on the 4th day of tumor
growth, and the stress-induced growth limitation was held until different moments of time,
at which the nutrient supply became insufficient to maintain the stress-induced speed limit.
In the case of P = 64, the maximum fraction of tumor cells fell below ccr around the 3960th
day, when the tumor radius was ≈63.5 mm.

R, mm

days

P=64

P=16

P=4

P=1

P=0.25

Figure 11. Tumor growth curves, produced by numerical simulations of the system of Equation (6)
under different nutrient supply levels P and tissue hydraulic conductivity K/µ = 0.003 (solid lines)
and K/µ = 0.03 (dashed lines). Dotted lines denote the limit values of tumor radii under K/µ = 0.003
and P = 4, P = 16. The simulation under K/µ = 0.003 and P = 64 was stopped at R = 300 mm,
before approaching stationary state.

The limit value of tumor growth speed, which can be imposed by solid stress for every
value of tumor radius R, can be rather roughly estimated semi-analytically via finding
the stationary solution for the following equation for the normal cells, obtained from
Equation (6) taking into account h ≥ c0:
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1
r2

∂

∂r
(h(r)r2 ∂h(r)

∂r
) = 0, (25)

whose general solution is h(r) = C1
√
[2− C2r]/r, with coefficients C1 and C2 defined by

the boundary conditions h(R) = ccr and h(RT(R)) = c0, where RT(R) is the approximate
position of the right boundary of the normal tissue, which can be found via conservation

of total normal cells volume:
∫ RT

R 4πr2h(r)dr = 4
3 π(RT

0 )
3. Then, the stress-induced limit

value of tumor growth speed can be assessed as −k K
µ

∂h(r)
∂r

∣∣∣
R

.
Figure 12 demonstrates the graph of the stress-induced speed, estimated by this

procedure, along with the dependence of tumor growth speed on its radius, produced by
numerical simulation under P = 64. Starting from R ≈ 3 mm, semi-analytical estimations
resulted in the values of speed, which were by no more than a quarter lower than the
numerically obtained values, both speeds reaching their minimums around R = 6 mm.
At ≈47 mm, the estimated values became greater, and around ≈63.5 mm, they exceeded
the numerically obtained values of tumor front speed by about a third. The further tumor
growth in numerical simulation was limited by glucose diffusion and its speed fell down
due to the ongoing thinning of the normal tissue. Of note, up to this point the thinning of
the normal tissue on the contrary contributed to the increase of the stress-limited growth
speed. This can be understood graphically via the fact that, for sufficiently large tumors, a
thinner region of normal tissue with fixed values on its boundaries should have a steeper
profile, which in turn should yield greater speed of its movement, as it is defined by the
gradient of normal cells fraction (see Figure 10).

V, mm/week 

R, mm
 

semi-analytical

numerical

Figure 12. The speed of tumor growth V by its radius R produced by numerical simulations of the
system of Equation (6) under K/µ = 0.003 and P = 64 (orange line) and semi-analytically estimated
limit values of tumor growth speed, imposed by solid stress under K/µ = 0.003 (blue line).

Therefore, the volume of the normal tissue should have an ambiguous effect on the
pattern of the tumor growth. This is illustrated in Figure 13, which shows tumor growth
curves for K/µ = 0.003 and P = 4 under varied volume of normal tissue. Higher normal
tissue volumes initially restricted tumor growth by solid stress to a greater extent, but
eventually produced longer growing tumors with greater maximum volumes.
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R, mm

days

       
T=10 mmR
0

       
T=12.5 mmR
0

       
T=7.5 mmR
0

       
T=5 mmR
0

       
T=15 mmR
0

, ,

Figure 13. Tumor growth curves, produced by numerical simulations of the system of Equation (6)
under nutrient supply level P = 4, tissue hydraulic conductivity K/µ = 0.003 and different values of
initial radius of region of normal tissue, that surrounds tumor, RT

0 .

5. Discussion

This work introduced a continuous mathematical model of spherically-symmetrical
growth of a benign tumor in normal tissue. The tumor was considered to be non-invasive
and avascular, the latter meaning that there were no capillaries within the tumor and it
obtained nutrients only by diffusion from the surrounding normal tissue. The limitation
of nutrient supply was one of the main factors that influenced tumor growth. Another
factor was the biomechanical interactions of tissue elements. Tumor and normal tissue
were considered as comprised of porous solid matrix and interstitial fluid, which moved
through it in response to the spatial variations of fluid pressure, closely related to the spatial
variations of solid stress. Solid stress was due to the repulsive and adhesive interaction of
cells. Its value was considered to be linked to the local fraction of cells, which changed due
to their proliferation and death.

An important approximation of the model was the limit of infinite tissue hydraulic
conductivity, in which the stress gradients, arising in tissue, equalized instantaneously. It
was shown that in this approximation rather accurate tumor growth curves can be obtained
semi-analytically, without solving the full system numerically. Numerical simulations
allowed studying the influence of variation of hydraulic conductivity K/µ and nutrient
supply level P on tumor growth.

5.1. Biological Relevance of the Results

The first problem that numerical simulations were to solve is indicating the condi-
tions of applicability of the approximate model that assumed infinite tissue hydraulic
conductivity. It turned out that in the semi-analytical solutions and simulations of the
approximate model, tumor radii differed by no more than 0.5% from the ones obtained
in the simulations of the full model with the basic value of K/µ = 10−8 cm2/(mmHg · s)
within the physiologically reasonable range of nutrient supply level. Interestingly, the
simulations supported the analytically obtained hypothesis, that under sufficiently high
value of K/µ and sufficiently large initial radius of normal tissue region RT

0 the variation of
nutrient supply level should have only quite moderate effect on the tumor growth curves
at their first stages. Namely, the explicit analytical formulas, obtained for infinite K/µ and
RT

0 , suggest that at the moment of appearance of the first quiescent tumor cells, tumor
radius can vary by no more than ≈1.7 times for varying nutrient supply level P under the
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basic set of parameters, and at the moment of appearance of first dying tumor cells tumor
radius can vary by no more than ≈1.25 times. Maximum tumor radius, however, can vary
by as much as ≈5.8 times.

The basic value of K/µ was chosen as the approximation of the lowest among the
values, measured experimentally in the work [40] for four tumors of different types, grown
in mice. Notably, in this work hydraulic conductivity was shown to inversely correlate
with the tissue content of collagen, which is one of the main components of extracellular
matrix. The lowest value of hydraulic conductivity corresponded to a certain type of
sarcoma, which is a common name for tumors, that arise from connective tissue, which is
rich in collagen fibers. The other three tumors, derived from epithelial and neural cells,
corresponded to even greater values of K/µ by one to two orders of magnitude.

However, as it was mentioned in Section 2.3, another experimental work [46] showed
that for another type of sarcoma, hydraulic conductivity can be lower than the basic value
by about two orders of magnitude. Therefore, the study of the influence of decrease of
K/µ on the tumor growth represented another problem that was to be solved by numerical
simulations. They demonstrated that the decrease of K/µ led to a slight deceleration of
tumor front propagation during the first days, but eventually produced bigger tumors. At
that, two important qualitative effects were found.

The first effect was the fact that sufficiently low hydraulic conductivity and sufficiently
high nutrient supply level contributed to the emergence of giant long-growing tumors
with necrotic fluid accumulated in their cores. For example, the physiologically reasonable
values of K/µ = 10−10 cm2/(mmHg · s) (0.03 for dimensionless value) and P ≈ 0.018 s−1

(64 for dimensionless value) yielded a tumor with maximum radius of about 10 cm, which
achieved 90% of it in ≈5.2 years. Interestingly, the formation of giant benign tumors in
case of low hydraulic conductivity seems to be a physiologically reasonable result. Such
situations were observed clinically, e.g., in cases of fibroepithelial tumors, which consist
of epithelial and stromal tissues, the latter primarily being made of fibrous extracellular
matrix [49,50], and in cases of fibroids, benign smooth muscle tumors, whose growth is
accompanied by ample production of extracellular matrix [51,52].

The second noticeable qualitative effect that manifested itself under the lowest used
values of tissue hydraulic conductivity was the inhibition of tumor growth by solid stress.
In this case, tumor growth in its beginning was temporarily independent of the nutrient
supply level. However, under its high values, tumor growth accelerated drastically long
before reaching plateau in result of the thinning of the surrounding normal tissue. For
example, under K/µ = 0.003 and P = 64, the speed of tumor front propagation increased
almost 18 times in ≈8.5 years after achieving its minimum around the 850-th day of tumor
growth. This result suggests that significant acceleration of tumor growth may happen
in case of benign tumors with low hydraulic conductivity without their progression to
malignant phenotype—in particular, without alterations in intrinsic proliferation rates
of individual tumor cells and without them becoming motile. Such pattern of growth is
hard to observe clinically, since it requires long-term observation without intervention.
However, at least several cases involving explosive acceleration of growth of benign
tumors were reported for cystosarcoma phyllodes, which is a fluid-filled fibroepithelial
breast tumor [53,54].

5.2. Prospects of the Model Development

The presented model was based on a number of assumptions, made for the sake of the
possibility of analytical estimations and for proving the validity of the numerical approach.
In particular, the dependencies of the proliferation rate of tumor cells on solid stress and
glucose level were taken to be as simple as possible, i.e., close to step-wise functions. Upon
further model development, more realistic functions will be used, based on experimental
data [9,55]. Another assumption to be eliminated is the equality of properties of tumor and
normal tissues, in particular, equal hydraulic conductivity values and equal dependencies
of solid stress on cell fraction.
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The important drawback of the current version of the model is the neglect of circumfer-
ential stress, which is the consequence of consideration of solid tissue phase as a fluid-like
substance. This component of stress arises in the normal tissue and tumor periphery as
proliferating parts of the tumor stretch them during their growth. Circumferential stress
should squeeze the growing tumor, thus enhancing the influence of biomechanical aspects
on its growth. The account for it demands a significantly more complex approach (see,
e.g., [23,24]). Another aspect, consideration of which should increase the physiological
correctness but also the complexity of the model, is the explicit consideration of dynamics
of extracellular matrix, which is constantly produced [56] and destroyed [57] during tumor
growth. It should be noted, however, that physiologically based consideration of extracel-
lular matrix dynamics and its influence on tumor growth is a non-trivial task, that is quite
rarely addressed [58].

The key task that will be focused on with the use of the developed version of the
presented model is the optimization of various types of long-term tumor treatments, asso-
ciated with the delivery of drugs to the tumor via intravenous injections. Consideration
of biphasic tissue and the account for solid stress will not only allow reproducing ade-
quately the dynamics of drugs and tumor during the course of therapy, but also will allow
accounting for the compression of capillaries and lymphatic vessels by solid stress, which
negatively affects the delivery of drugs to the tumor [13].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/math9182213/s1, File S1: Kuznetsov2021-program_code.cpp.

Funding: This work is supported by the Ministry of Science and Higher Education of the Russian
Federation: agreement No. 075-03-2020-223/3 (FSSF-2020-0018).

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Estimations of Glucose Distributions for the Tumor Growth
Curves Approximations

In the infinite hydraulic conductivity limit, in case of ε→ ∞ the equation for glucose
distribution in different regions, obtained from the system of Equation (7), are as follows in
quasistationary approximation:

normal cells region: Pc0[1− g] +
Dg

r2
∂2(gr2)

∂r2 = 0, r > R,

proliferating cells region:
Dg

r2
∂2(gr2)

∂r2 −Qpc0 = 0, R > r > Rp,

quiescent cells region:
Dg

r2
∂2(gr2)

∂r2 −Qqc0 = 0, Rp > r > Rd,

dying cells region:
Dg

r2
∂2(gr2)

∂r2 = 0, Rd > r > 0.

At the moment Tp, corresponding to the transition from the first to the second growth
stage, depicted in Figure 2, Rd(Tp) = Rp(Tp) = 0 and only proliferating cells region and
normal cells region are present. At the left border g(0) = gp. Here and further normal cells
region is infinite and the right boundary condition for glucose is limr→∞ g(r) = 1. The
glucose distribution thus is governed by the following system:

proliferating cells region: gI(r) = gp +
c0Qpr2

6Dg
, R(Tp) > r > 0,

normal cells region: gI I(r) = 1 +
C1

r
exp(

c0P
Dg

r), r > R(Tp),

stitching: gI(R(Tp)) = gI I(R(Tp)), g′I(R(Tp)) = g′I I(R(Tp)).

https://www.mdpi.com/article/10.3390/math9182213/s1
https://www.mdpi.com/article/10.3390/math9182213/s1
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The stitching procedure yields the system of two equations for two variables: R(Tp)
and C1. It has three solutions, in one of which R(Tp) is real and therefore has physical
meaning, its formula is given in Equation (10).

At the moment Td, corresponding to the transition from the second to the third growth
stages, depicted in Figure 3, Rd(Td) = 0 and three regions are present. At the left border
g(0) = gd. Thus:

quiescent cells region: gI(r) = gd +
c0Qqr2

6Dg
, Rp(Td) > r > 0,

proliferating cells region: gI I(r) =
c0Qpr2

6Dg
− C2

r
+ C3, R(Td) > r > Rp(Td),

normal cells region: gI I I(r) = 1 +
C4

r
exp(

c0P
Dg

r), r > R(Td),

stitching: gI(Rp(Td)) = gI I(Rp(Td)) = gp, g′I(Rp(Td)) = g′I I(Rp(Td)),
gI I(R(Td)) = gI I I(R(Td)), g′I I(R(Td)) = g′I I I(R(Td)).

The formula for Rp(Td) (see Equation (16)) is obtained straightforwardly form the
condition gI(Rp(Td)) = gp. The stitching procedure yields four more equations for four
variables: R(Td), C2, C3, C4. The physiologically meaningful solution for R(Td) is given in
Equation (14).

In the limit t→ ∞, corresponding to the stable state, depicted in Figure 4, four regions
are present. At the border between dying and quiescent cells regions g(R̂d) = gd. At the
left border g′(0) = 0. Thus:

dying cells region: gI(r) = gd, R̂d > r > 0,

quiescent cells region: gI I(r) = gd +
c0Qq[r− R̂d]

2[r + 2R̂d]

6Dgr
, R̂p > r > R̂d,

proliferating cells region: gI I I(r) =
c0Qpr2

6Dg
− C5

r
+ C6, R̂ > r > R̂p,

normal cells region: gIV(r) = 1 +
C7

r
exp(

c0P
Dg

r), r > R̂,

stitching: gI I(R̂p) = gI I I(R̂p) = gp, g′I I(R̂p) = g′I I I(R̂p),
gI I I(R̂) = gIV(R̂), g′I I I(R̂) = g′IV(R̂),

where the stitching at r = R̂d is already performed. The remaining stitching procedure
yields five more equations for six variables: R̂d, R̂p, R̂, C5, C6, C7. They result in the
relations, expressed in Equations (20) and (21).
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