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Abstract: We investigate a dividend maximization problem under stochastic interest rates with
Ornstein-Uhlenbeck dynamics. This setup also takes negative rates into account. First a deterministic
time is considered, where an explicit separating curve α(t) can be found to determine the optimal
strategy at time t. In a second setting, we introduce a strategy-independent stopping time. The
properties and behavior of these optimal control problems in both settings are analyzed in an
analytical HJB-driven approach, and we also use backward stochastic differential equations.
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1. Introduction

Maximizing expected discounted dividends is a popular and well-investigated topic
in insurance mathematics, with roots going back to the work of Bruno De Finetti in 1957 [1].
The value of the future dividend cash flow discounted to time zero can serve as a risk
measure reflecting the well-being of a company. The higher the present value of the future
dividends, the more stable and profitable the company appears to potential partners,
investors and creditors. The question arises on how to choose a dividend stream for the
proposed risk measure. In this context, it is natural to look at the optimal choice of a
dividend stream, leading to the maximal possible value of expected discounted dividends.
Then, the company is evaluated more objectively, independent of any possibly unlucky
future management decisions. The time horizon can be chosen to be infinite, indicating
that the company intends to stay in the business forever. In addition, one can stop paying
dividends at the time of ruin, and stress, in this way, the importance of a positive surplus for
the company’s rating. Alternatively, the time horizon can be given by a finite deterministic
or random but strategy-independent time. The latter choice targets the company’s short-
term soundness.

Modeling the surplus of a company by a Brownian motion with drift, Cramér-
Lundberg model or a general Lévy process, when putting constraints in the form of values
at risk, time-inconsistent preferences, or incorporating random funding, these problems
have been studied, for instance, in [2–5]. A general overview of the existing literature can
be found in [6–8].

In several cases, e.g., in [2,3,9], the optimal dividend strategy turns out to be a constant
barrier or a band strategy—meaning that the dividends are paid only if the surplus is above
a certain barrier or inside a certain band. However, in some settings, it cannot help but
be shown that the value function is smooth enough, and therefore the optimal strategy
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cannot help but be determined analytically. Then, typically, one applies a viscosity solution
approach, allowing to find the optimal strategy numerically, for instance by using the finite
differences method.

An important feature of almost every setting is that one considers the value of expected
discounted dividends up to some time of ruin due to the chosen dividend strategy. The
dependence of the time horizon on the strategy makes the solution of the problem quite
complicated, particularly in the presence of a stochastic interest rate. Several papers
consider the setting with a stochastic interest rate, e.g., [9–11].

Taking into account the protracted negative interest rate environment (the ECB set the
interest to 0 in March 2016), it seems reasonable to describe interest rates by an Ornstein-
Uhlenbeck process. This class of processes is also widely used beyond the classical problems
in finance and insurance, for instance, in quantitative finance for pairs trading strate-
gies [12], physics [13], and biology [14].

Letting the interest rate be given by a mean-reverting Ornstein-Uhlenbeck (Vasicek
model) process leads to a two dimensional control problem, which cannot be easily solved
via the corresponding Hamilton–Jacobi–Bellman equation.

The optimal solution seems to be of a barrier type where the barrier is given by a
highly non-linear function depending on the interest rate. Therefore, it is hard to explicitly
solve such a problem or even calculate the return function corresponding to a non-linear
barrier. An attempt to tackle this problem was done for instance in [15]. However, the value
function could not be shown to be sufficiently smooth, and a viscosity solution approach
was applied.

In the present paper, we close this gap in the literature by considering the dividend
maximization problem in a different setup. We modify the usual setting and consider
two different model scenarios. Under the assumption of an Ornstein-Uhlenbeck interest
rate and Brownian surplus, the ruin time of an ex-dividend surplus process is neglected.
Instead, we introduce a finite deterministic time horizon in the first model, and a strategy-
independent but surplus-dependent stochastic time horizon in the second model. Thus,
we want to measure the healthiness of the insurance company within a given time period,
as it is usual for such risk measures like value at risk (VaR). However, the determinis-
tic time periods we have in mind should be longer than it is common for the VaR, for
instance, 1–5 years long. In the case of a random time horizon, a “healthy” dividend
rate and the corresponding ruin time serve as a lighthouse helping to safely navigate the
dividend process.

In both models (with a deterministic and a random time horizon), one faces a three-
dimensional control problem. We demonstrate two solution approaches: solving the
corresponding Hamilton–Jacobi–Bellman (HJB) equation and a backward stochastic dif-
ferential equation (BSDE) approach. Whilst in the first model, we are able to calculate the
value function and the optimal strategy explicitly via the HJB approach, in the second
model only the BSDE approach allows us to show that the value function is smooth enough.
Both approaches, applied in a parallel way, demonstrate their advantages and disadvan-
tages. If one is able to calculate a return function that is sufficiently smooth and solves
the HJB equation, the HJB approach leads to stronger results than the BSDE approach.
However, the calculation of a candidate return function can be extremely time- and space-
consuming. Instead, the BSDE approach allows to calculate the value function and the
optimal strategy numerically.

BSDEs were first introduced by Bismut [16] and later extensively studied in non-linear
form by Pardoux and Peng [17]. The concept of BSDEs has proved itself very useful,
especially in the context of finance and stochastic optimal control, see for example [18–22].
Moreover, for high-dimensional problems, there exist numerical algorithms for BSDEs
which do not suffer from a curse of dimensionality (see for example [23] or the survey on
BSDE numerics [24]), whereas classical HJB-related methods like finite differences to solve
the PDE associated to the stochastic control problem may be very inefficient.
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The remainder of the paper is structured as follows. In Section 2, we solve the problem
via a HJB and a BSDE approach in a setting with finite time T > 0. In Section 3, we consider
the same problem with a stochastic surplus-dependent time horizon. We illustrate both
sections with numerical examples.

2. Dividend Maximization with a Deterministic Time Horizon

In the following, we consider an insurance company whose surplus is given by a
Brownian motion with drift Xt = x + µt+ σWt, where {Wt} is a standard Brownian motion
on a probability space (Ω,F ,P). The considered insurance company is allowed to pay out
dividends, where the accumulated dividends until t are given by Ct :=

∫ t
0 cs ds, yielding

for the post-dividend surplus Xc:

Xc
t = x + µt + σWt − Ct .

Let further {Bt} be a standard Brownian motion independent of {Wt}, generating
the filtration {F B

t }, augmented with the P-null sets N . We let the underlying filtration
{Ft} be the filtration generated by {Wt, Bt}, also augmented with the probability space’s
P-null sets N . Moreover, we assume that F is the completed sigma-algebra generated by
{Wt, Bt}. In the following, we will use the common convention Et,y[.] = E[.|Yt = y] for
some process {Yt}.

We let the dividends be discounted by an Ornstein-Uhlenbeck process (a, δ > 0,
b ∈ R):

rt = re−at + b(1− e−at) + δe−at
∫ t

0
eau dBu ,

or as an SDE
drt = a(b− rt)dt + δ dBt .

Further, we let

Us
t :=

∫ s

t
ru du, t ≤ s .

We allow only strategies c = {ct} with ct ∈ [0, ξ] for some given, fixed real number
ξ > 0. Such a strategy is called admissible if moreover c is adapted to {Ft}. The set of
admissible strategies will be denoted by A.

In this section, we consider a deterministic time horizon T ∈ (0, ∞). Differently than
in the classical setting, we do not stop our considerations once the surplus process ruins.
As a risk measure, we consider the value of expected discounted dividends and define the
return function corresponding to some admissible strategy c = {cs} to be

Vc(t, r, x) = Et,r,x

[ ∫ T

t
e−Us

t cs ds + e−UT
t Xc

T

]
,

The value function is then given by

V(t, r, x) = sup
c∈A

Vc(t, r, x), (t, r, x) ∈ [0, T]×R×R ,

V(T, r, x) = x, (r, x) ∈ R×R .

2.1. HJB Approach

The heuristically derived HJB equation corresponding to the problem (for details, see,
for instance, [8]) is

Vt + µVx +
σ2

2
Vxx + a(b− r)Vr +

δ2

2
Vrr − rV + sup

0≤c≤ξ

c{1−Vx} = 0 . (1)
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2.1.1. Payout on the Maximal Rate

In order to get a feeling of how the optimal strategy might look like, we first consider
the return function corresponding to the strategy “always pay out on the maximal rate ξ”,
that is, cs ≡ ξ for all s.

A simple calculation yields

Us
t =

∫ s

t
ru du =

rt − rs

a
+ b(s− t) +

δ

a
(Bs − Bt) .

In order to investigate some further properties of the value function, we consider the
moment generating function of Us

t . Using an elementary change of measure technique
(see, for instance, Schmidli ([8] p. 216)) or using the formula from Brigo and Mercurio ([25]
p. 59), and letting b̃ := b− δ2

2a2 , one obtains

M(s− t, r) := Et,r[e−Us
t ]

= e−b̃(s−t) exp
{ b̃− r

a
(1− e−a(s−t))− δ2

4a3 (1− e−a(s−t))2
}

. (2)

Then, one immediately obtains

Vξ(t, r, x) = ξ
∫ T

t
M(s− t, r)ds + M(T − t, r)Et,x

[
Xξ

T
]

= ξ
∫ T

t
M(s− t, r)ds + M(T − t, r)

{
x + (µ− ξ)(T − t)

}
, (3)

where Xξ
t = x + (µ− ξ)t + σWt.

Remark 1. Note that the exponent of the function M defined in (2) can be split into a linear and
an exponential part. For the exponential part, it obviously holds that

exp
{ b̃− r

a
(1− e−a(s−t))− δ2

4a3 (1− e−a(s−t))2
}
≤
{

1 : b̃ ≤ r

e
b̃−r

a : b̃ > r.

Thus, if b̃ ≤ 0 and T is big enough, the function M will exponentially increase with the growing
time, implying a strong and long-lasting negative interest rate environment.

Assumption 1. In the following, we assume b̃ > 0.

The question arises whether the strategy “pay out on the maximal rate” might be
optimal on some time interval independent of the values (r, x). This question will be
answered in the next section where a candidate for the value function will be inserted into
HJB Equation (1).

2.1.2. Derivation of the Value Function

The form of the return function Vξ corresponding to the strategy “always pay out
on the maximal rate” hints that the value function may also be linear in x. Therefore,
we assume that there is a function G(t, r) such that a candidate for the value function is
given by

v(t, r, x) := G(t, r) + xEt,r[e−UT;t ] = G(t, r) + xM(T − t, r) . (4)

We need then to check whether v solves HJB Equation (1). In representation (4), the factor
determining the optimal strategy, that is, to pay or to wait, is given by M(T − t, r) and
depends just on r and T− t. If M(T− t, r) > 1, it is optimal to wait, and if M(T− t, r) < 1,
then it is optimal to pay on the maximal possible rate ξ.
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For the convenience of explanations, we will use the following notation for sufficiently
smooth functions f (t, r) on [0, T]×R:

L( f )(t, r) := ft(t, r) + a(b− r) fr(t, r) +
δ2

2
frr(t, r)− r f (t, r) .

Lemma 1. M(u, r) solves the following differential equation

−Mu(u, r) + a
(
b− r

)
Mr(u, r) +

δ2

2
Mrr(u, r)− rM(u, r) = 0 . (5)

with the boundary conditions M(0, r) = 1, lim
r→∞

M(u, r) = 0 and lim
r→−∞

M(u, r) = ∞ for u > 0.

Proof. The proof is straightforward.

If v in (4) is indeed the value function, then the function G should fulfil

L(G)(t, r) + µM(T − t, r) + sup
0≤c≤ξ

c{1−M(T − t, r)} = 0 .

Our next step is to find the function G solving the above differential equation. For this
purpose, we have to investigate the properties of the function M in order to get rid of the
supremum expression in the differential equation above.

2.1.3. Properties of the Function M

In this section, we investigate the properties of the function M. Recall from (2) that
it holds

M(T − t, r) = Et,r
[
eUT

t
]

= exp
{
− b̃(T − t) +

b̃− r− δ2

2a2

a
(
1− e−a(T−t))+ δ2

4a3

(
1− e−2a(T−t))} .

It is immediately clear that M is strictly decreasing in r on [0, T)×R.
We are searching for a curve α(t) such that for (t, r) with r > α(t) it holds that

M(T − t, r) < 1 and for r < α(t) it holds that M(T − t, r) > 1. Consider the exponent
of M and let

ln
(

M(T − t, r)
)
= −b̃(T − t) +

b̃− r− δ2

2a2

a
(
1− e−a(T−t))+ δ2

4a3

(
1− e−2a(T−t)) .

Obviously, ln(M(T− t, r)) is strictly decreasing in r for t ∈ [0, T]. Solving the equation
ln(M(T − t, r)) = 0 for r guides us to define

α(t) : = −ab̃
T − t

1− e−a(T−t)
+

δ2

4a2

(
1 + e−a(T−t))+ b̃− δ2

2a2

= b̃
(

1− a
T − t

1− e−a(T−t)

)
− δ2

4a2

(
1− e−a(T−t)) . (6)

The curve α is uniquely defined. Due to Mr < 0 on [0, T)×R, α is separating the sets

S1 := {(t, r) : M(T − t, r) > 1} and S2 := {(t, r) : M(T − t, r) < 1}. (7)

Remark 2. The following properties hold true:

• α(T) = 0, α′(T) = ba/2 > 0.
• T−t

1−e−a(T−t) is decreasing in t.

• If b̃ > 0, then because −a T−t
1−e−a(T−t) + 1 ≤ 0 it holds that α(t) < 0 for all t ∈ [0, T).
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• Since b̃ > 0, the function α is strictly increasing in t with α(t) ∈ [α(0), 0].

Example 1. In Figure 1, we see the function α for different parameters. On the right picture, the
curve is increasing with b̃ > 0. The left picture with b̃ < 0 shows a curve that decreases first and
increases close to the time horizon T = 5.

As we assume b̃ > 0, see Assumption 1, the curve given on the left side of Figure 1 is impossible
in our setting.

Figure 1. The curve α(t) for a = δ = 1, T = 5, b = 0.2 (left picture) and b = 0.51 (right picture).

Now, knowing the function α, we can investigate the properties of the remaining
function G from (4).

2.1.4. Properties of the Function G

In order to find a function G such that v in (4) solves HJB Equation (1), we define an
auxiliary function v(t, r) = xM(T − t, r) + G̃(t, r) with

G̃(t, r) := Et,r

[ ∫ T

t
e−Us

t · ξ1[rs>α(s)] ds + e−UT
t

∫ T

t
µ− ξ1[rs>α(s)] ds

]
, (8)

that is, v is the return function corresponding to the strategy cs = ξ1[rs>α(s)]. Our target is
to show that the function G̃(t, r) solves the differential equation

L(G̃)(t, r) + µM(T − t, r) + ξ1[r>α(t)]
(
1−M(T − t, r)

)
= 0 (9)

with boundary conditions G̃(T, r) = 0, lim
r→∞

G̃(t, r) = 0 and lim
r→−∞

G̃(t, r) = ∞.

Letting

γ(t, r) := Et,r

[ ∫ T

t

{
e−Us

t − e−UT
t
}
· 1[rs>α(s)] ds

]
(10)

we can rewrite the function G̃ as follows:

G̃(t, r) = µ(T − t)M(T − t, r) + ξEt,r

[ ∫ T

t

{
e−Us

t − e−UT
t
}
· 1[rs>α(s)] ds

]
= µ(T − t)M(T − t, r) + ξγ(t, r) .
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Remark 3. Note that M(u, r) solves Differential Equation (5). Therefore, for µ(T− t)M(T− t, r),
one obtains

L
(

µ(T − t)M(T − t, r)
)
= −µM(T − t, r) .

The function µ(T − t)M(T − t, r) attains zero at t = T, lim
r→∞

µ(T − t)M(T − t, r) = 0 and

lim
r→−∞

µ(T − t)M(T − t, r) = ∞. Moreover, it holds µ(T − t)M(T − t, α(t)) = µ(T − t).

Remark 4. Consider the return function Vξ given in (3) corresponding to the strategy “always pay
out on the maximal rate”. In the same way like in Remark 3, one can show that ξ

∫ T
t M(T− s, r)ds

solves L
(

ξ
∫ T

t M(T − s, r)ds
)
= −ξ

(
1−M(T − t, r)

)
. It means that Vξ solves

L(Vξ)(t, r) + µM(T − t, r) + ξ
(
1−M(T − t, r)

)
= 0

on [0, T]×R.
We now see that for r < α(t), the function Vξ does not solve HJB Equation (1).

In the following, we concentrate on the function γ given in (10). Due to Remark 3, we
need to show that γ fulfils

L(γ)(t, r) + 1[r>α(t)]
(
1−M(T − t, r)

)
= 0 . (11)

Lemma 2. The function γ defined in (10) can be written as∫ T−t

0

∫ ∞

α(u+t)
M(u, r) ·

(
1−M(T − u− t, z)

)
· ϕ(z, u, r)dz du,

where M is given in (2) and

ϕ(z, u, r) :=
1√

2π δ2

2a (1− e−2au)

× exp

−
(
z− re−au − b(1− e−au) + δ2

2a2 (1− e−au)2)2

2 δ2

2a (1− e−2au)

 .

(12)

Proof. • Using Tonelli’s theorem and the law of total probability, we get

γ(t, r) = Et,r

[ ∫ T

t

{
e−Us

t − e−UT
t
}
· 1[rs>α(s)] ds

]
=
∫ T

t
Et,r
[{

e−Us
t − e−UT

t
}
· 1[rs>α(s)]

]
ds

=
∫ T

t

∫ ∞

α(s)
Et,r
[{

e−Us
t − e−Us

t−UT
s
}
|rs = z

]
· Pt,r[rs ∈ dz]ds

=
∫ T

t

∫ ∞

α(s)
Et,r
[
e−Us

t |rs = z
]
·
(
1−E

[
e−UT

s |rs = z
])
· Pt,r[rs ∈ dz]ds

=
∫ T

t

∫ ∞

α(s)
Et,r
[
e−Us

t |rs = z
]
·
(
1−M(T − s, z)

)
· Pt,r[rs ∈ dz]ds . (13)

• The term Pt,r[rs ∈ dz], inside the above integrals, is the density of the random variable
rs−t. Since rs−t is normally distributed with mean β(s− t, r) := re−a(s−t) + b(1− e−a(s−t))

and variance δ2

2a (1− e−2a(s−t)), see [26] (p. 522), it holds that

Pt,r[rs ∈ dz] =
1

√
2π δ2

2a (1− e−2a(s−t))
exp

{
−
(
z− β(s− t, r)

)2

2 δ2

2a (1− e−2a(s−t))

}
.
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• Consider now the first factor inside the integrals. Formula 1.8.7(1) in [26] (p. 525) along
with (1− e−2a(s−t)) = (1− e−a(s−t))(1 + e−a(s−t)) yield

Et,r

[
e−Us

t |rs = z
]
= e−b̃(s−t) exp

{
−

z + r− 2b + δ2

a2

a
· 1− e−a(s−t)

1 + e−a(s−t)

}
= M(s− t, r) · exp

{
− 2 · z− β(s− t, r)

2 δ2

2a (1− e−2a(s−t))
· δ2

2a2 (1− e−a(s−t))2
}

× exp
{
−
( δ2

2a2

)2 (1− e−a(s−t))4

2 δ2

2a (1− e−2a(s−t))

}
.

• Then, completing the square gives

Et,r

[
e−Us

t |rs = z
]
· Pt,r[rs ∈ dz] = M(s− t, r) · ϕ(z, s− t, r) .

• Changing the variable u = s− t in (13) yields the desired result.

Lemma 3. The function γ defined in (10) fulfils γ ∈ C1,2([0, T)×R).

Proof. Recall that ϕ is the density of a normal distribution, see (12). Let further

∆(u, r) := r−au + b(1− e−au)− δ2

2a2 (1− e−au)2 .

Then,

lim
u→0

z− ∆(u, r)√
δ2

2a (1− e−2au)
=


∞ : z > r
−∞ : z < r
0 : z = r .

Changing the variable by letting y = z−∆(u,r)√
δ2
2a (1−e−2au)

yields

lim
u→0

∫ ∞

α(t+u)
ϕ(z, u, r) ·

(
1−M(T − t− u, z)

)
dz

= lim
u→0

∫ ∞

α(t+u)−∆(u,r)√
δ2(1−e−2au)/(2a)

e−y2/2
√

2π
·
(

1−M

(
T − t− u, y

√
δ2

2a
(1− e−2au) + ∆(u, r)

))
dy

=

{
1−M(T − t, r) : α(t) > r ,

0 : α(t) ≤ r .

Using similar arguments, the representation of γ given in Lemma 2 and the Leibniz integral
rule yields the claim.

Lemma 4. The function γ defined in (10) solves Differential Equation (11).

Proof. • Recall from Lemma 2 that γ can be written as∫ T−t

0

∫ ∞

α(u+t)
M(u, r) ·

(
1−M(T − u− t, z)

)
· ϕ(z, u, r)dz du

with M given in (2) and ϕ given in (12). Lemma 3 yields γ ∈ C1,2([0, T)×R).
• It is straightforward to build derivatives of ϕ and show that

ϕt(z, t, r)− a
{

b− r− δ2

a2 (1− e−at)
}

ϕr(z, t, r)− δ2

2
ϕrr(z, t, r) = 0 .
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• Recall that M(u, r) solves Differential Equation (5).
• Using M(0, r) = M(T − t, α(t)) = 1 and Mr(u, r) = (1− e−au)/a, we conclude

γt(t, r) =
∫ T−t

0
M(u, r)

∫ ∞

α(u+t)
ϕ(z, u, r) ·Mt(T − u− t, z)dz du ,

γr(t, r) =
∫ T−t

0
Mr(u, r)

∫ ∞

α(u+t)
ϕ(z, u, r) · (1−M(T − u− t, z))dz du

+
∫ T−t

0
M(u, r)

∫ ∞

α(u+t)
ϕr(z, u, r) · (1−M(T − u− t, z))dz du ,

γrr(t, r) =
∫ T−t

0
Mrr(u, r)

∫ ∞

α(u+t)
ϕ(z, u, r) · (1−M(T − u− t, z))dz du

− 2
∫ T−t

0
M(u, r)

∫ ∞

α(u+t)

1− e−au

a
ϕr(z, u, r) · (1−M(T − u− t, z))dz du

+
∫ T−t

0
M(u, r)

∫ ∞

α(u+t)
ϕrr(z, u, r) · (1−M(T − u− t, z))dz du .

• Note that Mt(T − u− t, z) = Mu(T − u− t, z) and L(M)(u, r) = 0. Therefore, we can
conclude that

L(γ)(t, r) =
∫ T−t

0
M(u, r)

∫ ∞

α(u+t)
ϕ(z, u, r) ·Mu(T − u− t, z)dz du

+
∫ T−t

0
L(M)(u, r) + Mu(u, r)

∫ ∞

α(u+t)
ϕ(z, u, r) ·

(
1−M(T − u− t, z)

)
dz du

+
∫ T−t

0
M(u, r)

∫ ∞

α(u+t)

(
a
{

b− r− δ2

a2 (1− e−at)
}

ϕr(z, t, r) +
δ2

2
ϕrr(z, t, r)

)
×
(
1−M(T − u− t, z)

)
dz du

=
∫ T−t

0
∂u

(
M(u, r)

∫ ∞

α(u+t)
ϕ(z, u, r) ·

(
1−M(T − u− t, z)

)
dz
)

du .

Consequently, we can get rid of the du-integral and get

L(γ)(t, r) = M(T − t, r)
∫ ∞

α(T)
ϕ(z, T − t, r) ·

(
1−M(0, z)

)
dz

−M(0, r) lim
u→0

∫ ∞

α(t+u)
ϕ(z, u, r) ·

(
1−M(T − t− u, z)

)
dz .

The proof of Lemma 3 gives

L(γ)(t, r) = −
(

1−M(T − t, r)
)
1[α(t)>r] ,

which corresponds to Differential Equation (11).

Now, we are ready to prove the verification theorem.

Theorem 1 (Verification Theorem). The function v = xM(T − t, r) + G̃(t, r), with M given
in (2) and

G̃(t, r) = µ(T − t)M(T − t, r)

+ ξ
∫ T−t

0

∫ ∞

α(u+t)
M(u, r) ·

(
1−M(T − u− t, z)

)
· ϕ(z, u, r)dz du

with ϕ in (12) and α in (6), is the value function, solves HJB Equation (1). The optimal strategy is
given by c∗ = {c∗s } with c∗s = ξ1[rs>α(s)]
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Proof. Remark 3 and Lemma 4 prove that v solves HJB Equation (1).
Let c be an arbitrary admissible strategy. Then, using Ito’s formula, one has

e−Us
t v(t, rt, Xc

t ) = v(s, r, x) +
∫ t

s
e−Uy

s
{
L(v)(y, ry) + (µ− cy)M(T − y, ry)

}
dy

+ δ
∫ t

s
e−Uy

s vr dBy + σ
∫ t

s
e−Uy

s vx dWy .

Since the stochastic integrals are martingales (due to Itô isometry) with expectation zero,
and v solves HJB Equation (1), we can conclude

Es,r,x
[
e−Ut

s v(t, rt, Xc
t )
]
≤ v(s, r, x)−Es,r,x

[ ∫ t

s
e−Usy

cy dy
]

.

Letting t→ T then yields

Es,r,x
[
e−UT

s Xc
T
]
+Es,r,x

[ ∫ T

s
e−Uy

s cy dy
]
≤ v(s, r, x) ,

which proves our claim.

We conclude that the optimal strategy does not depend on the surplus. This is due
to the fact that we do not stop our considerations at the time of ruin, that is, at the time
when the surplus hits zero. The penalty for having a negative surplus is reflected only in
the expected lump sum payment at T, which is given by x + µT −

∫ T
0 cs ds.

The decision to pay or to wait is a feedback strategy of a current interest rate. Given
the curve α defined in (6), if the interest rate at time t lies above α(t), it is optimal to pay on
the maximal possible rate and not to pay otherwise.

The economic interpretation is as follows. Assumption b̃ > δ2

2a2 implicates that α(t) ≤
0, and the mean-reverting OU process being below zero will be pushed up. If the interest
rate is below α(t), that is, negative, then the expected discounting factor is increasing in
time.

Thus, if the interest rate stays under α(t), the discounting factor attains its maximum
at T. Since µt > µ−

∫ T
0 cs ds for any strategy c = {cs}, it is not surprising that for rs < α(s),

one should not pay dividends until T.
On the other hand, if the interest rate rt lies above the curve α(t), excursions of rt into

the positive half-line will lead to a decreasing discounting factor. Therefore, one would be
rather willing to pay immediately on the maximal rate than to wait until T.

2.2. BSDE Approach

In this section, we will tackle the problem of finding the optimal strategy c for

Vc(t, r, x) = Et,r,x

[∫ T

t
e−Us

t cs ds + e−UT
t Xc

T

]
by an ansatz using a generalized Hamiltonian and resulting coupled forward-backward
SDEs (FBSDEs), elaborated, for example, in [27] (Section 4.2), [21] (Section 6.4.2) and [28]
(Section 10.1.1). Note that the dynamics of the process Xc is

dXc
s = (µ− cs)ds + σ dWs + 0 dBs , for s ≥ t, and Xc

t = x .

Therefore, the generalized Hamiltonian H : Ω× [0, T]×R×R×R1×2 → R takes the form

H(s, x, c, y, z) = (µ− c)y + tr
((

σ 0
)Tz
)
+ e−Us

t c
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and actually does not depend on x. The function g : Ω×R→ R is given by

g(x) = e−
∫ T

t ru dux = e−UT
t x.

Both H and g are affine in (x, c) resp. x, hence they are concave. The maximum can be
achieved by setting c to

ĉ = arg max
c

H(s, x, c, y, z) =

{
ξ, e−Us

t − y > 0,
0, e−Us

t − y ≤ 0.
(14)

With the above expressions, we are able to put up the corresponding BSDE,

Ys = ∂xg(Xĉ
T) +

∫ T

s
∂xH(u, Xĉ

u, ĉu, Yu, Zu)du−
∫ T

s
Zu

(
dWu
dBu

)
, t ≤ s ≤ T,

taking a particularly easy form without a generator here:

Ys = e−UT
t −

∫ T

s
Zu,1 dWu −

∫ T

s
Zu,2 dBu .

As this BSDE’s terminal condition only depends on B, it follows that Zu,1 = 0 and that

the solution Y is given by Ys = Et,r,x

[
e−
∫ T

t ru du
∣∣∣F B

s

]
= Et,r,x

[
e−UT

s

∣∣∣F B
s

]
, which we will

calculate in the following. Note that

Ys = Et,r,x

[
e−
∫ T

t ru du
∣∣∣F B

s

]
= e−

∫ s
t ru duEt,r,x

[
e−
∫ T

s ru du
∣∣∣F B

s

]
= e−Us

t Et,r,x

[
e−UT

s
∣∣∣F B

s

]
.

By the SDE for the r process, we may write∫ T

s
rv dv =

rs − rT
a

+
δ

a
(BT − Bs) + b(T − s) , (15)

and can hence compute

Et,r,x

[
e−UT

s
∣∣∣F B

s

]
= Et,r,x

[
e−
∫ T

s ru du
∣∣∣F B

s

]
= Et,r,x

[
e

rT−rs
a − δ

a (BT−Bs)−b(T−s)
∣∣∣F B

s

]
= e−

rs
a −b(T−s)Et,r,x

[
e

rT
a −

δ
a (BT−Bs)

∣∣∣F B
s

]
= e−

rs
a −b(T−s)Et,r,x

[
e

rT
a −

δ
a (BT−Bs)

∣∣∣F B
s

]
= e−

rs
a −b(T−s)Et,r,x

[
e

1
a

(
rse−a(T−s)+b(1−e−a(T−s))+δe−aT ∫ T

s eau dBu

)
− δ

a (BT−Bs)
∣∣∣∣F B

s

]
= e−

rs
a (1−e−a(T−s))−b(T−s)+ b

a (1−e−a(T−s))Et,r,x

[
e

δ
a
∫ T

s (ea(u−T)−1)dBu
∣∣∣F B

s

]
= e−

rs
a (1−e−a(T−s))−b(T−s)+ b

a (1−e−a(T−s))Et,r,x

[
e

δ
a
∫ T

s (ea(u−T)−1)dBu
]

= e−
rs
a (1−e−a(T−s))−b(T−s)+ b

a (1−e−a(T−s))+ δ2

2a2
∫ T

s (1−ea(u−T))2 du , (16)

where we used the explicit form of rT , independent increments of Wiener integrals and the
expression for the mean of a log-normal distribution. We conclude

Ys = e−
∫ s

t ru due−
rs
a (1−e−a(T−s))−b(T−s)+ b

a (1−e−a(T−s))+ δ2

2a2
∫ T

s (1−ea(u−T))2 du

= e−
∫ s

t ru due−b̃(T−s)+
b̃−rs− δ2

2a2
a

(
1−e−a(T−s)

)
+ δ2

4a3

(
1−e−2a(T−s)

)
= e−Us

t M(T − s, rs) ,
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with M from (2). Using this explicit expression and (14) we obtain an optimal strategy ĉ by
setting for s ≥ t,

ĉs =

{
ξ , e−Us

t −Ys > 0,
0, e−Us

t −Ys ≤ 0 .

Inserting for Ys at the barrier e−Us
t −Ys = 0, we see that it can be reduced to

e−Us
t −Ys = 0 ⇐⇒

e−
∫ s

t rudu − e
∫ s

t ruduEt,r,x

[
e−
∫ T

s rudu
∣∣∣F B

s

]
= 0 ⇐⇒

Et,r,x

[
e−
∫ T

s rudu
∣∣∣F B

s

]
= 1 ⇐⇒

Et,r,x

[
e−UT

s
∣∣∣F B

s

]
= 1 ,

coinciding with the results from Section 2. Using the explicit form of the conditional
expectation and taking logarithms, the above equality yields

0 = −b̃(T − s) +
b̃− rs − δ2

2a2

a
(
1− e−a(T−s))+ δ2

4a3

(
1− e−2a(T−s)).

From there, it is easy to infer the same barrier curve α from (6).
A numerical illustration of the interest rate compared to the curve α, separating the

strategy areas, is provided in Figure 2.

Figure 2. Two paths of rt in view of α(t).

3. Dividend Maximization with an Exogenous Stochastic Time Horizon

In this section, we consider again an insurance company whose surplus is given by
a Brownian motion with drift Xt = x + µt + σWt, where {Wt} is a standard Brownian
motion on a probability space (Ω,F ,P). The insurance company is paying out dividends,
where the accumulated dividends until t are given by Ct =

∫ t
0 cs ds.

The discounting rate is given by an Ornstein-Uhlenbeck process with the dynamics
(a, δ > 0, b ∈ R):

rt = re−at + b(1− e−at) + δe−at
∫ t

0
eau dBu .

The problem considered in Section 2 is now modified by changing the time horizon.
Usually, one assumes that the time horizon depends on the chosen dividend strategy.
However, this approach does not seem to be entirely realistic. The analysts of the insurance
company under consideration may fix the life time of the company as the ruin time
corresponding to the dividend payout strategy with a fixed constant rate, say ζ ≤ µ. We
allow just for the strategies c = {cs} with accumulated dividends given by Ct =

∫ t
0 cs ds
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and cs ∈ [0, ξ] for some given and fixed ξ > 0. Such a strategy is called admissible if
moreover c is adapted to {Ft}. The set of admissible strategies will be denoted by A.

As in Section 2, we will use b̃ = b− δ2

2a2 ,

Us := Us
0 =

∫ s

0
ru du .

and recall

M(s, r) = Er[e−Us ] = e−b̃s exp
{ b̃− r

a
(1− e−as)− δ2

4a3 (1− e−as)2
}

.

In the following, we let dXH,ζ
t := (µ− ζ)dt + σ dWt, where H indicates that a company

whose surplus’ drift exceeds µ− ζ is considered as financially healthy. Further, ζ ∈ [0, µ] is
fixed and:

τζ := inf{t ≥ 0 : XH,ζ
t = 0} .

3.1. HJB Approach

For the dynamic programming principle to work, we need to introduce an auxiliary
process

Lt = −l − ζt and Lc
t = −l − ζt +

∫ t

0
cs ds .

The process L describes the difference of XH,ζ and an ex-dividend process Xc. The initial
value l describes the historical difference existing at time 0, that is, XH,ζ

0 = x− l, X0 = x.
In particular, for an admissible strategy c = {cs}, it holds that

Xc
τζ

= x +
∫ τζ

0
µ− cs ds + σWτζ

=
∫ τζ

0
ζ − cs ds + l = −Lc

τζ
.

And, we define the target functional as

Vc(r, x, l) := Er,x,l

[ ∫ τζ

0
e−Us cs ds + e−Uτζ∧τc Xc

τζ

]
= Er,x,l

[∫ τζ

0
e−Us cs ds + e−Uτζ

(
l +

∫ τζ

0
ζ − cs ds

)]
= Er,x,l

[ ∫ τζ

0
e−Us cs ds− e−Uτζ Lc

τζ

]
.

To ensure that the value function is well-defined, we again require Assumption 1, that is,
b̃ > 0. Otherwise, by using, for instance, the constant strategy cs = ζ ≤ ξ and noting that
Px[τζ = ∞] > 0 as ζ ≤ µ, one would get for x > 0:

Vζ(r, x, l) = Er,x,l

[ ∫ τζ

0
e−Us ζ ds + e−Uτζ Xζ

τζ

]
= Er,x,l

[ ∫ τζ

0
e−b̃s M(s, r)ζ ds

]
= ∞ .

We are searching for the value function

V(r, x, l) := sup
c∈A

Vc(r, x, l) .

Using standard dynamic programming arguments, see, for example, [8] (p. 98), one
can heuristically derive the following HJB equation:

µVx +
σ2

2
Vxx + a(b− r)Vr +

δ2

2
Vrr − rV − ζVl + sup

0≤c≤ξ

c
(
1−Vx + Vl

)
= 0 .
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We conjecture again that the optimal strategy is of a barrier type. In order to get an
idea about the desired barrier, we consider the differential quotient of the value function
with respect to x. For this purpose, let h > 0 be very small and c be an ε admissible
(r, x + h, l + h)-strategy, that is,

Vc(r, x + h, l + h) + ε ≥ V(r, x + h, l + h) .

Then, c is also an admissible strategy for (r, x, l). With a slight abuse of notation, we write
τx−l

ζ to indicate the starting value of the underlying process XH,ζ , one gets τx−l
ζ = τx+h−l−h

ζ
a.s. Therefore, we can conclude

V(r, x + h, l + h)−V(r, x, l) ≤ Vc(r, x + h, l + h) + ε−Vc(r, x, l)

= hEr

[
exp

(
−U

τx−l
ζ

)]
+ ε .

On the other hand, if C̃ is an ε strategy for (r, x, l), then it is also admissible for (r, x + h, l +
h), meaning that

V(r, x + h, l + h)−V(r, x, l) ≥ V c̃(r, x + h, l + h)− ε−V c̃(r, x, l)

= hEr

[
exp

(
−U

τx−l
ζ

)]
− ε .

Since ε was arbitrary, we can conclude that

lim
h→0

V(r, x + h, l − h)−V(r, x, l)
h

= Er

[
exp

(
−U

τx−l
ζ

)]
.

In particular, if the value function V is differentiable with respect to x and l, then one gets

Vx(r, x, l)−Vl(r, x, l) = Er

[
exp

(
−U

τx−l
ζ

)]
.

The stopping time τx−l
ζ is independent of B, and the distribution function of τx−l

ζ is well-

known, see [26] (p. 295). It means the expression Er

[
exp

(
−U

τx−l
ζ

)]
can be explicitly

calculated, at least as a power series.

Remark 5. Following the path of Section 2, one should first consider Er

[
exp

(
−U

τx−l
ζ

)]
and

find, if the case may be, a curve θ(r, l) 6= 0 such that Er

[
exp

(
−U

τ
θ(r,l)−l
ζ

)]
≡ 1 for all (r, l) ∈ R2.

In the second step, one calculates the return function corresponding to the strategy cs = ξ1[x>θ(rs ,Ls)].
Then, if the regularity conditions are fulfilled, one can check whether the function solves the HJB
equation.

3.1.1. Properties of Er

[
exp

(
−Uτx

ζ

)]
Because W and B are independent, we can define

φ(r, z) :=Er

[
exp

(
−Uτx

ζ

)]
= Er[M(τz

ζ , r)]

=E
[
e−b̃s exp

{
b̃−r

a (1− e−aτz
ζ )− δ2

4a3 (1− e−aτz
ζ )2
}]

.
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Note that for r ≥ 0, the function M(t, r) is strictly decreasing in t. Since τz
ζ is strictly

increasing in z, we conclude that φ(r, z) is strictly decreasing in z, yielding

φ(r, z) < φ(r, 0) = 1

for (r, z) ∈ R2.
This means, in particular, that the desired curve lies in {r < 0}. In the next section, we

consider the case r < 0.

3.1.2. The Case R < 0

For the sake of clarity, we itemize the properties of the function φ below if r < 0.
• It is easy to see that

φ(r, 0) = 1 and lim
z→∞

φ(r, z) = 0 .

• It is hard to derive the properties of the function φ from its expectation representation.
To calculate the expectation, one can consider the function M(r, t) first and write it as the
power series

M(s, r) = e−b̃s exp
{ b̃− r

a
(
1− e−as)− δ2

4a3

(
1− e−as)2

}
= e

b̃−r− δ2

4a2
a

∞

∑
n=0

e−(an+b̃)s
[n/2]

∑
k=0

(−1)n−k

k!(n− 2k)!

( b̃− r− δ2

2a2

a

)n−2k( δ2

4a3

)k
.

From [26] (p. 295), we know that the density of τz
ζ is given by

fτζ
(t) := Pz[τζ ∈ dt] =

z√
2πσt3/2

exp{− (z− (µ− ζ)t)2

2σ2t
} . (17)

Moreover,

Pz[τζ = ∞] = 1− exp
(
− (µ− ζ)z + |µ− ζ|z

σ2

)
, z ≥ 0 .

Letting

θn :=
−µ + ζ −

√
(µ− ζ)2 + 2σ2(an + b̃)

σ2 ,

the power series representation of φ becomes

φ(r, z) = e
b̃−r− δ2

4a2
a

∞

∑
n=0

Ex
[
e−anτz

ζ−b̃τz
ζ
] [n/2]

∑
k=0

(−1)n−k

k!(n− 2k)!

( b̃− r− δ2

4a2

a

)n−2k( δ2

4a3

)k

= e
b̃−r− δ2

4a2
a

∞

∑
n=0

eθnz
[n/2]

∑
k=0

(−1)n−k

k!(n− 2k)!

( b̃− r− δ2

2a2

a

)n−2k( δ2

4a3

)k
.

Inserting x− l instead of z in the above expression, we get the condition specifying
the curve θ (if such a curve exists):

φ(r, x− l) = e
b̃−r− δ2

4a2
a

∞

∑
n=0

eθn(x−l)
[n/2]

∑
k=0

(−1)n−k

k!(n− 2k)!

( b̃− r− δ2

2a2

a

)n−2k( δ2

4a3

)k
= 1.

The power series representation does not allow to show the existence and uniqueness
of a curve θ 6= 0 such that φ(r, x− l) > 1 if x > θ(r, l) and φ(r, x− l) < 1 if x < θ(r, l). We
conclude that the approach consisting in finding a candidate return function and showing
that this function solves the corresponding HJB equation cannot be applied here. Although
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we will address this question in future research, in the present paper we will now tackle
the problem using BSDEs.

3.2. BSDE Approach

Similar to the case of a deterministic time horizon, for an arbitrary strategy-independent
{Ft}t≥0-stopping time τ, we define the return function corresponding to some admissible
strategy c = {cs} to be

Vc(t, r, x) =E
[(∫ τ

t∧τ
e−Us

t∧τ cs ds + e−Uτ
t∧τ Xc

τ

)
1{τ<∞}

∣∣∣∣rt∧τ = r, Xc
t∧τ = x.

]
+E

[(∫ ∞

t
e−Us

t cs ds
)
1{τ=∞}

∣∣∣∣rt = r, Xc
t = x

]
,

since in the event of {τ = ∞}, the value Xc
∞ is never reached. This is also consistent with

the condition b̃ > 0 from Assumption 1, because then

lim
T→∞

e−UT
t∧τ Xc

T = 0 .

Note that in the event {τ < t}, any strategy c comes too late, since then Vc(t, r, x) = x
is already determined (and any c is optimal, thus not interesting). As τ does not depend
on the strategy c, the problem above reduces to the case when τ < ∞, as for the event
{τ = ∞} it is clear that c = ξ yields the best strategy. Hence, we have to find a strategy to
optimize only

sup
c∈A

E
[(∫ τ

t∧τ
e−Us

t∧τ cs ds + e−Uτ
t∧τ Xc

τ

)
1{τ<∞}

∣∣∣∣rt∧τ = r, Xc
t∧τ = x

]
, (18)

which we will tackle in the sequel using a BSDE approach.
Within this section, for readability, we will use E[ · ] instead of E[ · |rt∧τ = r, Xc

t∧τ = x].
The arguments of [27] (Section 4.2), [21] (Section 6.4.2) and [28] (Section 10.1.1) may

all be modified in an obvious way to use stopping times instead of deterministic ending
times T. Like in Section 2.2, the solution for the optimal strategy can again be found via
maximizing the generalized Hamiltonian

H(s, x, c, y, z) = (µ− c)y + tr
((

σ 0
)Tz
)
+ e−Us

t c ,

which one achieves by

ĉ = arg max
c

H(s, x, c, y, z) =

{
ξ, e−Us

t∧τ − y > 0 ,
0, e−Us

t∧τ − y ≤ 0 .

We have to solve the corresponding BSDE for Y,

Ys = e−Uτ
t∧τ −

∫ τ

s
Zu,1 dWu −

∫ τ

s
Zu,2 dBu , t ∧ τ ≤ s ≤ τ < ∞ .

For BSDEs with stopping times as time horizon see, for example, [29] (Section 3), [30]
or [31] (Section 5). Again, in this very BSDE, no generator appears, and hence we end
up with the conditional expectation Ys = E

[
exp

(
−
∫ τ

t∧τ ru du
)∣∣Fs

]
= E[exp(−Uτ

t∧τ)|Fs],
here with respect to the filtration {Fs} instead of {F B

s }. The reason is that, because of
the presence of τ, the terminal condition e−Uτ

t∧τ = e−
∫ τ

t∧τ ru du is not necessarily only FB-
measurable. This is in particular the case for the stopping times τζ treated in the next
section.
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With this solution for Y, it follows that if t ∧ τ ≤ s ≤ τ < ∞,

ĉs =

{
ξ , e−Us

t∧τ −Ys > 0,
0 , e−Us

t∧τ −Ys ≤ 0 .

As before, to determine the barrier, we see that for t ∧ τ ≤ s ≤ τ,

Ys = E
[
e−Uτ

t∧τ

∣∣∣Fs

]
= E

[
e−
∫ τ

t∧τ ru du
∣∣∣Fs

]
= e−

∫ s
t∧τ ru duE

[
e−
∫ τ

s ru du
∣∣∣Fs

]
,

and hence the barrier is attained if

e−
∫ s

t∧τ ru du − e−
∫ s

t∧τ ru duE
[
e−
∫ τ

s ru du
∣∣∣Fs

]
= 0

⇔ E
[
e−
∫ τ

s ru du
∣∣∣Fs

]
= 1

⇔ E
[
e−Uτ

s
∣∣∣Fs

]
= 1 .

Evaluating the Strategy for the Stopping Times τζ

In the above subsection, we found that the optimal strategy can be determined calculat-
ing the conditional expectation E[exp(−Uτ

s )|Fs] = E
[
exp

(
−
∫ τ

s ru du
)∣∣Fs

]
on {t ≤ s ≤ τ}.

We will now do this explicitly for the stopping time τζ = inft≥0{XH,ζ
t = 0}.

Note that XH,ζ is independent of B, and therefore r and XH,ζ are independent pro-
cesses, and also τζ is independent of r. We will use this independence to show with fτζ

, the
density from (17), we have

E
[

e−
∫ τζ

s ru du
∣∣∣∣Fs

]
1{τζ>s} =

∫ ∞

s
E
[

e−
∫ t̃

s ru du
∣∣∣∣F B

s

]
fτζ

(t̃)dt̃ 1{τζ>s} . (19)

To that end, first consider that Fs is generated by elements A of the form

A =
(

B−1
·∧s(L1) ∩W−1

·∧s(L2)
)
∪ N ,

where L1, L2 are Borel subsets of C([0, ∞)), the space of continuous functions on [0, ∞)
endowed with the topology of uniform convergence on compacts, and N ∈ N is a null set.
Our first observation is that for such A,

E
[
E
[

e−
∫ τζ

s ru du
∣∣∣∣Fs

]
1{τζ>s}1A

]
= E

[
E
[

e−
∫ τζ

s ru du
∣∣∣∣Fs

]
1{τζ>s}1B−1

·∧s(L1)
1W−1

·∧s(L2)

]
= E

[
e−
∫ τζ

s ru du
1{τζ>s}1B−1

·∧s(L1)
1W−1

·∧s(L2)

]
, (20)

where we used that N is a null set as well as the defining property of conditional expectation.
We continue with

E
[

e−
∫ τζ

s ru du
1{τζ>s}1B−1

·∧s(L1)
1W−1

·∧s(L2)

]
=∫ ∞

s
E
[

e−
∫ t̃

s ru du
1B−1
·∧s(L1)

1W−1
·∧s(L2)

∣∣∣∣τζ = t̃
]

fτζ
(t̃)dt̃ ,
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where we used regular conditional probabilities for the integrand, conditioning on τζ . Now,
using independence of B and r from τζ , we get

∫ ∞

s
E
[

e−
∫ t̃

s ru du
1B−1
·∧s(L1)

1W−1
·∧s(L2)

∣∣∣∣τζ = t̃
]

fτζ
(t̃)dt̃

=
∫ ∞

s
E
[

e−
∫ t̃

s ru du
1B−1
·∧s(L1)

]
E
[
1W−1

·∧s(L2)

∣∣∣τζ = t̃
]

fτζ
(t̃)dt̃ .

By definition of the conditional expectation with respect to FB
s , the last expression

equals ∫ ∞

s
E
[
E
[

e−
∫ t̃

s ru du
∣∣∣∣F B

s

]
1B−1
·∧s(L1)

]
E
[
1W−1

·∧s(L2)

∣∣∣τζ = t̃
]

fτζ
(t̃)dt̃ .

From here, taking the same steps as before, and using that F B
s ⊆ Fs, we find that the

first term of (20) is given by

E
[
E
[

e−
∫ τζ

s ru du
∣∣∣∣F B

s

]
1{τζ>s}1A

]
,

from which we conclude, as A was an arbitrary generator of Fs, that

E
[

e−
∫ τζ

s ru du
∣∣∣∣Fs

]
1{τζ>s} = E

[
e−
∫ τζ

s ru du
∣∣∣∣FB

s

]
1{τζ>s} .

Performing now similar steps for some Borel set L ⊆ C([0, ∞)) with the expectation

E
[
E
[

e−
∫ τζ

s ru du
∣∣∣∣FB

s

]
1{τζ>s}1B−1

·∧s(L)

]
,

we get

E
[
E
[

e−
∫ τζ

s ru du
∣∣∣∣F B

s

]
1{τζ>s}1B−1

·∧s(L)

]
=
∫ ∞

s
E
[
E
[

e−
∫ t̃

s ru du
∣∣∣∣F B

s

]
1B−1
·∧s(L)

]
fτζ

(t̃)dt̃ ,

where we may exchange the integrals to end up with

E
[∫ ∞

s
E
[

e−
∫ t̃

s ru du
∣∣∣∣F B

s

]
fτζ

(t̃)dt̃ 1B−1
·∧s(L)

]
,

from which (19), that is,

E
[

e−
∫ τζ

s ru du
∣∣∣∣Fs

]
1{τζ>s} =

∫ ∞

s
E
[

e−
∫ t̃

s ru du
∣∣∣∣FB

s

]
fτζ

(t̃)dt̃ 1{τζ>s}

follows. Applying (16) to evaluate the conditional expectation in the last term, we get that

E
[

e−
∫ τζ

s ru du
∣∣∣∣Fs

]
1{τζ>s}

=
∫ ∞

s
e−

rs
a (1−e−a(t̃−s))−b(t̃−s)+ b

a (1−e−a(t̃−s))+ δ2

2a2
∫ t̃

s (1−ea(u−t̃))2 du fτζ
(t̃)dt̃ 1{τζ>s}

=
∫ ∞

s
M(t̃− s, rs) fτζ

(t̃)dt̃ 1{τζ>s} . (21)
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This expression (21) again defines the barrier when being equal to 1. In the special
case of s = t, we get∫ ∞

t
e−

r
a (1−e−a(t̃−t))−b(t̃−t)+ b

a (1−e−a(t̃−t))+ δ2

2a2
∫ t̃

t (1−ea(u−t̃))2 du fτζ
(t̃)dt̃ 1{τζ>t}

=
∫ ∞

t
M(t̃− t, r) fτζ

(t̃)dt̃ 1{τζ>t} =
(

M(·, r) ∗ ( fτζ
· 1{[t,∞)})

)
1{τζ>t} .

With the BSDE approach, we were able to find a solution to this control problem in
form of the integral solution above. The exogenous stopping time now enters into the
solution in the form of the convolution M(·, r) ∗

(
fτζ ·1{[t,∞)}

)
. A numerical illustration can

be found in Figures 3 and 4.

Figure 3. Interest rate (left picture) and company wealth (right picture), where the blue path hits the stopping boundary.

Figure 4. The corresponding payout strategy ct for the paths of the surplus process in Figure 3.
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