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Abstract: The network expansion problem is a very important practical optimization problem when
there is a need to increment the flow through an existing network of transportation, electricity, water,
gas, etc. In this problem, the flow augmentation can be achieved either by increasing the capacities
on the existing arcs, or by adding new arcs to the network. Both operations are coming with an
expansion cost. In this paper, the problem of finding the minimum network expansion cost so that
the modified network can transport a given amount of flow from the source node to the sink node is
studied. A strongly polynomial algorithm is deduced to solve the problem.

Keywords: network flow; flow increment; network expansion

1. Introduction

Currently, the networks around us are continuously expanded to enlarge the transport
capacity of electricity, gas, water, data, etc. This can be done either by increasing the
transport capacities of the wires, pipes, or the bandwidth, whenever this is possible, or by
adding new connections. Of course, the increase of the capacities is restricted by an upper
limit and comes with a cost. Adding new connections also has a cost.

There are two network flow optimization problems that are related to this work since
they involve modifications of the capacities on arcs: the inverse and the reverse maximum
flow problems. The inverse maximum flow problem is to transform a given feasible flow
from a given network G into a maximum flow by modifying the capacities of G as little
as possible. The distance between the initial vector of capacities and the modified one
is measured using different norms. The inverse maximum flow problem under L∞ can
be solved in a binary search manner [1]. In the case of Lk norm, a strongly polynomial
algorithm is deduced that mainly involves the computation of a minimum cut in a special
network [2,3]. The more general case when there are losses or gains on arcs is proved to be
NP-Hard [4].

The reverse maximum flow problem was studied by [5]. Here, the goal is to look for
a new capacity vector such that the maximum flow value in the new network is lower
bounded by a given value v0, while minimizing the Chebyshev distance between the initial
and the new capacity vectors. A polynomial algorithm, which works in two phases, was
developed to solve this problem. In the first phase, a binary search is performed to find an
interval containing the optimal value of the flow v0, and, in the second phase, the Newton
method [6] is used to obtain the optimal capacity vector.

In an electrical, pipeline, wireless, or road transportation network, the expansion
becomes indispensable in time to increment the amount of flow that can be transported
through that network [7–11].

The problem of network expansion under budget constraint was studied by [12]. In
this problem, given a budget, a maximum possible edge capacity expansion function and
a cost function for the expansion of the edge capacity, the objective is to efficiently use
the budget, such that the flow in the network is maximized. The problem is known as
the budget-constrained flow expansion problem (BFEP). The main idea for solving this
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problem is to increase the flow in the network, iteratively, by one unit, using the cheapest
path from the source to the sink. At each iteration, the remaining budget is updated,
and the process stops when the whole budget was used. Their solution is based on two
polynomial algorithms. One algorithm returns the edges that need to be expanded in order
to increase the flow by one unit at minimum cost. The second one iteratively calls the first
and checks if the imposed budget limit was reached.

In the present paper, we analyze the Minimum Cost Network Expansion Problem
(MCNEP). Starting with a given network G, the objective is to obtain a new network G′, by
increasing the capacities of the arcs from G within some given limits, or by adding new
arcs, such that the cost of the modification is minimum, and in G′, w units of flow can
be transported from source to sink. The cost function for the capacity augmentation/arc
insertion operations is a linear function with respect to the modification of the respective
capacities. Both problems, MCNEP and BFEP, study the possibility of expansion of an
existing network. In BFEP, there is a budget to be spend for the expansion in order to obtain
a maximum flow from source to sink, and the amount of money to be spend cannot exceed
the given budget. On the other hand, in MCNEP, when the maximum flow that can be
transported in the given network from source to sink becomes insufficient, the network
should be expanded so that a given amount of flow can be transported in the modified
network, and the cost of expansion is minimized.

Our paper is organized as follows. In Section 2, we provide an overview of the network
flow problem. In Section 3, the Minimum Cost Network Expansion Problem (MCNEP)
is formally described and a strongly polynomial algorithm for solving this problem is
presented. Section 4 provides an example and finally, Section 5 concludes our work and
points out future research directions.

2. Network Flow

Let G = (V, A, s, t, u) be an s− t directed network, where V is the set of n > 0 so called
vertices (nodes), and A ⊆ V ×V is the set of m ≥ 0 so-called arcs (directed edges), each arc
a = (i, j) ∈ A connects two nodes i and j from V, s is a special node called source, and t is
a node called sink. In G, we define the capacity function u : A→ R∗+. The value u(a) is the
maximum flow that can be transported from node i to node j on the arc a = (i, j) ∈ A.

If a network has multiple sources and multiple sinks, a super source and a super sink
can be introduced. The super source is linked with the initial sources, and the initial sinks
are linked with the super sink. The resulting s− t network is equivalent with the initial
one [13]. So, without restricting the generality of the problem, we shall consider from now
on that the network has one source and one sink, i.e., it is an s− t network.

A (feasible) flow in an s− t directed network G is a function f : A→ R+ satisfying the
boundary restrictions (1) and the conservation conditions from (2).

0 ≤ f (a) ≤ u(a), ∀a = (i, j) ∈ A (1)

∑
j∈V,

(i,j)∈A

f (i, j)− ∑
j∈V,

(j,i)∈A

f (j, i) =


0, if i ∈ V − {s, t}
v f , if i = s
−v f , if i = t

(2)

where v f = v( f ) ≥ 0 is the so-called value of the flow f .
A feasible flow f ∗ is a maximum flow if it has the maximum value among all the feasible

flows in the network G, i.e.,

v( f ∗) = max{v( f ) | f is a feasible flow in G} (3)

In (3), v( f ∗) represents the maximum amount of flow that can be transported in the network
G, from s to t. Now, we suppose that this value must be increased.
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3. Flow Increment through Network Expansion

Since the increment of the arcs’ capacities comes with a cost, a cost function c : A→ R∗+
is introduced, where c(a) is the per unit cost of modification of the capacity on the arc
a ∈ A. Therefore, if the capacity of the arc a is increased with d units, the cost of changing
the capacity of a is c(a) · d. An upper limit modification function α : A → R∗+ for the
capacities is also introduced so that u(a) + α(a) is the maximum capacity allowed on an
arc a.

Let Q be the set of arcs that can be added to the network. Of course, Q ⊆ V ×V, and
Q ∩ A = φ, i.e., Q ⊆ V ×V − A. A cost function cQ : Q → R∗+ is also introduced, where
cQ(a) is the per unit cost of the capacity if the arc a ∈ Q is added to the network. Therefore,
if the arc a ∈ Q having the capacity uQ(a) > 0 is introduced into the network, then the cost
of adding a to the network is cQ(a) · uQ(a). An upper limit function β : Q → R∗+ for the
capacities of the arcs in Q is also introduced, where β(a) is the maximum allowed capacity
for the arc a ∈ Q if it is introduced into the network, i.e., uQ(a) ≤ β(a), where uQ(a) > 0 is
the capacity of a.

The minimum cost expansion of the network G (by increasing the capacities of the arcs
and by adding new arcs) has to be found so that in the resulting network G′, w units of
flow can be transported from s to t, i.e., there exists a feasible flow of value w in G′. Thus,
the following problem is to be solved:

min{∑
a∈A

(c(a) · (v(a)− u(a)) + ∑
a∈Q

(cQ(a) · uQ(a))}

u(a) ≤ v(a) ≤ u(a) + α(a), ∀a ∈ A

0 ≤ uQ(a) ≤ β(a), ∀a ∈ Q

there exists a feasible flow of value w in G′ = (V, A′, s, t, u′)

A′ = A ∪ {a ∈ Q | uQ(a) > 0}

u′(a) =

{
v(a), a ∈ A
uQ(a), a ∈ A′ − A

, ∀a ∈ A′

(4)

We shall name the problem from Equation (4) as the minimum cost network expansion
problem, and denote it as MCNEP. We have the following result:

Theorem 1. If v( f ∗) ≥ w, where f ∗ is the maximum flow in the network G, then G is the solution
of MCNEP.

Proof. Let f ∗ be the maximum flow in the network G. We suppose that v( f ∗) ≥ w. It
results that there exists a feasible flow f in G so that v( f ) = w. Thus, G is a feasible solution
of MCNEP. Since the cost of the objective function in Equation (4) for G is 0, it is clear that
G is optimum solution for MCNEP.

Now, let us study the feasibility of MCNEP. The maximum value of the flow that can
be transported from s to t is achieved when the capacities of all the arcs from A are all
increased to their maximum and all the arcs from Q are added to the network having the
maximum allowed capacities, i.e., the maximum value of flow that can be transported from
s to t is obtained in the network G′′ = (V, A ∪Q, s, t, u′′), where:

u′′(a) =

{
u(a) + α(a), a ∈ A
β(a), a ∈ Q

(5)

We shall call G′′ as the maximum extended network since all the capacities of the arcs
from A ∪Q are set to their maximum.

We have the following feasibility theorem for MCNEP:
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Theorem 2. MCNEP is feasible if and only if v(g∗) ≥ w, where g∗ is a maximum flow in G′′.

Proof. Let us consider that MCNEP is feasible and v(g∗) < w, where g∗ is a maximum
flow in G′′. Since MCNEP is feasible, it result that there is a network G′ = (V, A′, s, t, u′) so
that u(a) ≤ u′(a) ≤ u(a) + α(a),∀a ∈ A, 0 ≤ u′(a) ≤ β(a), ∀a ∈ Q, and there is a feasible
flow f ′ in G′ so that v( f ′) = w. It is clear from (5) that f ′ is a feasible flow in G′′, and
since f ∗ is a maximum flow in G′′ the results show that v(g∗) ≥ v( f ′) = w, which is a
contradiction with the initial supposition that v(g∗) < w.

Now, for the inverse implication, we suppose that for the maximum flow g∗ in G′′ we
have v(g∗) ≥ w. It results that there is a feasible flow f ′′ in G′′ so that v( f ′′) = w. So, G′′ is
a feasible solution for Equation (4).

If v( f ∗) < w, where f ∗ is the maximum flow in the network G (G is not the solution
of MCNEP, see Theorem 1) and MCNEP passes the feasibility test given by Theorem 2,
a solution for MCNEP exists and has to be found. To do that, a new network denoted
Ge = (Ve, Ae, s, t, ue, ce) is constructed. The set Ve contains the nodes from V, and for each
arc a ∈ A, a new node denoted ia is introduced in Ve, i.e.,

Ve = V ∪VA, VA = {ia | a ∈ A} (6)

The set Ae contains all the arcs from A ∪Q, and for each arc a = (i, j) ∈ A two new arcs
are introduced, (i, ia), and, respectively, (ia, j), i.e.,

Ae = A ∪Q ∪ Ae
1 ∪ Ae

2, (7)

where:
Ae

1 = {(i, ia) | a = (i, j) ∈ A}, Ae
2 = {(ia, j) | a = (i, j) ∈ A} (8)

The capacity function ue is defined as follows:

ue(i, j) =


u(i, j), if (i, j) ∈ A
β(i, j), if (i, j) ∈ Q
α(a), if j = ia or i = ia where ia ∈ VA

(9)

The cost function ce is constructed as follows:

ce(i, j) =


0, if (i, j) ∈ A
cQ(i, j), if (i, j) ∈ Q
c(a)/2, if j = ia or i = ia where ia ∈ VA

(10)

Let f e be a minimum cost flow of value w in Ge, i.e., f e is a feasible flow of value w in
Ge having the minimum cost among all feasible flows of value w in Ge, where the cost of a
feasible flow f in Ge denoted ce( f ) is defined as follows:

ce( f ) = ∑
a∈Ae

ce(a) · f (a) (11)

The following network denoted G∗ = (V, A∗, s, t, u∗) is constructed, where:

A∗ = A ∪ A∗
′
, A∗

′
= {a ∈ Q | f e(a) > 0} (12)

and

u∗(a) =

{
u(a) + f e(i, ia), if a ∈ A
f e(a), if a ∈ A∗ − A

(13)

Theorem 3. The network G∗ = (V, A∗, s, t, u∗) defined using Equations (12) and (13) is the
optimum solution of MCNEP.
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Proof. We recall the fact that G∗ is constructed using a minimum cost flow f e of value w
calculated in the network Ge = (Ve, Ae, s, t, ue, ce), i.e., f e is the solution of the problem:min{ ∑

a∈Ae
ce(a) · f (a)}

f is a feasible flow of value w in Ge
(14)

We have:

∑
a∈Ae

ce(a) f e(a) =

= ∑
a∈A

ce(a) f e(a) + ∑
a∈Q

ce(a) f e(a) + ∑
a∈Ae

1

ce(a) f e(a) + ∑
a∈Ae

2

ce(a) f e(a) =

= ∑
a∈Q

cQ(a) f e(a) + ∑
a=(i,j)∈A

ce(i, ia) f e(i, ia) + ∑
a=(i,j)∈A

ce(ia, j) f e(ia, j) =

= ∑
a∈Q

cQ(a) f e(a) + ∑
a=(i,j)∈A

c(a)/2( f e(i, ia) + f e(ia, j)) =

= ∑
a∈Q

cQ(a) f e(a) + ∑
a=(i,j)∈A

c(a) f e(i, ia) =

= ∑
a∈Q

cQ(a)u∗(a) + ∑
a∈A

c(a)(u∗(a)− u(a)).

(15)

Using Equations (14) and (15), the following optimization problem is obtained:

min{∑
a∈A

c(a) · (u∗(a)− u(a)) + ∑
a∈Q

cQ(a) · u∗(a)} (16)

Using Equation (13), we have:

0 ≤ u∗(a)− u(a) = f e(i, ia) ≤ α(a), ∀a ∈ A (17)

0 < u∗(a) = f e(a) ≤ β(a), ∀a ∈ Q and f e(a) > 0 (18)

0 = u∗(a) ≤ β(a), ∀a ∈ Q, and, by convention, f e(a) = 0. (19)

We construct the following flow denoted f ∗ in G∗:

f ∗(a) =

{
f e(a) + f e(i, ia), if a ∈ A
f e(a), if a ∈ A∗ − A

(20)

Since f e is a feasible flow in Ge, the results show that f ∗ respects the conservation conditions
in G∗, and from Equation (13) the results show that f ∗ satisfies the boundary conditions in
G∗. Thus, f ∗ is a feasible flow in G∗. Using Equation (16)–(19) the results show that u∗ is
optimum solution of Equation (4).

Corollary 1. The cost of network expansion from G to the optimum solution G∗ of MCNEP is
v( f e), where f e is the minimum cost flow in Ge.

Proof. The result is immediate from Equation (15).

Using Theorems 1–3, the following algorithm (Algorithm 1) for solving MCNEP
is developed.
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Algorithm 1: Algorithm for solving MCNEP (AMCNEP)

Input: G = (V, A, s, t, u), c, α, β, Q, cQ, w;
Output: G∗ = (V, A∗, s, t, u∗);
Compute a maximum flow f ∗ in G;
If v( f ∗) ≥ w then

It is no need to modify G. A feasible flow of value w can be computed in G;
Stop.

End if;
Build the network G′′ using Equation (5);
Compute a maximum flow g∗ in G′′;
If v(g∗) < w then

MCNEP is not feasible;
Stop.

End if;
Build the network Ge = (Ve, Ae, s, t, ue, ce) using Equations (6)–(10);
Compute a minimum cost flow f e in Ge;
Build the network G∗ = (V, A∗, s, t, u∗) using f e, Equations (12) and (13);
The network G∗ is the optimum solution for MCNEP.

Theorem 4. The time complexity of Algorithm 1 (AMCNEP) is

O((m + q)2 · log n + (m + q) ·m · log2 n)

where n is the number of vertices in G, m is the number of arcs of the network G, and q the number
of arcs from Q (that can be added to the network G).

Proof. Algorithm 1 needs to calculate two maximum flows, one in G, and the other in G′′.
Today’s best known algorithm for the maximum flow problem is due to Orlin [14]. It has a
time complexity of O(m · n) (when applied in G). In G′′ there are n vertices and m + q arcs.
Thus, the time complexity of finding the maximum flow in G′′ is O((m + q) · n).

A minimum cost flow has to be calculated in Ge. The algorithms for minimum cost
flow are designed to work on integer values [13]. Since in Ge the cost of the arcs from
Ae

1 ∪ Ae
2 are integer values divided by 2 (see Equation (10), before applying the algorithm

for minimum cost flow, all the costs of the arcs from Ae are multiplied by 2, and, in the
end, the cost of the obtained flow f e is divided by 2. Today’s best known algorithm for
the minimum cost flow problem is also due to Orlin [15]. Since Ge has m + n nodes and
3m + q arcs, if applied in Ge, this algorithm for minimum cost flow has a time complexity
of O((m + q)2 · log n + (m + q) ·m · log2 n).

So, the time complexity of the whole algorithm is O((m + q)2 · log n + (m + q) ·m ·
log2 n).

4. Example

We shall take an example to illustrate how AMCNEP works. In Figure 1, a given
network G is presented. The arcs from Q (that can be added to the network) are drawn
using dashed lines. This network is intended to be extended with the minimum cost so
that it can support a flow of value w = 8.
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Figure 1. Initial network G.

In Figure 2, the maximum flow f ∗ calculated in G is presented. Its value is v( f ∗) = 5.
Since v( f ∗) < w, the network G′′ from Figure 3 is built next.

Figure 2. The maximum flow f ∗ in G.

Figure 3. The network G′′ and the maximum flow g∗.

The maximum flow g∗ in G′′ has the value v(g∗) = 14 > w. Thus, MCNEP is feasible.
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In Figure 4, the network Ge is built. Since the capacity of the arc (2, 3) cannot be
increased (α(2, 3) = 0), it is no need to introduce the node i(2,3) and the corresponding arcs
(2, i(2,3)) and (i(2,3), 3). The minimum cost flow f e of value v( f e) = w is computed in Ge.
The cost of f e is v( f e) = 11.

Figure 4. The network Ge and the minimum cost flow f e of value w = 8.

In Figure 5, the solution G∗ of MCNEP is presented.The modified capacities are in
bold. The capacity of the arc (1, 3) was increased from 2 to 5, and the capacity of the arc
(5, 6) was increased from 2 to 4. The arc (3, 4) was added with the capacity 2. The total
cost of network expansion from G to G∗ is 3× 1 + 2× 2 + 2× 2 = 11. This value can be
calculated comparing G∗ with G, or using the value of the minimum cost flow v( f e) from
Figure 4 (see Corollary 1).

Figure 5. The solution G∗ of MCNEP.

5. Conclusions

This paper considered the minimum cost network expansion problem (MCNEP). The
problem arises in cases where a given network must be modified to allow an increase in the
amount of flow going from the source to the sink node. In this study, we considered that
the transport capacities can be increased, and new arcs can be added to the network, and
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the cost of these operations is minimized. A strongly polynomial algorithm (Algorithm 1)
was introduced to solve MCNEP.

A future work could consider a generalization of MCNEP, where the cost of the
modification of arc capacities and the cost of introducing new arcs are not linear.
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