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Abstract: The Share-a-Ride Problem with Flexible Compartments (SARPFC) is an extension of the
Share-a-Ride Problem (SARP) where both passenger and freight transport are serviced by a single
taxi network. The aim of SARPFC is to increase profit by introducing flexible compartments into
the SARP model. SARPFC allows taxis to adjust their compartment size within the lower and
upper bounds while maintaining the same total capacity permitting them to service more parcels
while simultaneously serving at most one passenger. The main contribution of this study is that we
formulated a new mathematical model for the problem and proposed a new variant of the Simulated
Annealing (SA) algorithm called Simulated Annealing with Mutation Strategy (SAMS) to solve
SARPFC. The mutation strategy is an intensification approach to improve the solution based on
slack time, which is activated in the later stage of the algorithm. The proposed SAMS was tested on
SARP benchmark instances, and the result shows that it outperforms existing algorithms. Several
computational studies have also been conducted on the SARPFC instances. The analysis of the
effects of compartment size and the portion of package requests to the total profit showed that, on
average, utilizing flexible compartments as in SARPFC brings in more profit than using a fixed-size
compartment as in SARP.

Keywords: share-a-ride; flexible compartment; simulated annealing; mutation strategy

1. Introduction

Transportation in urban areas is often categorized into people’s transportation and
goods transportation. These two categories are most often treated separately due to their
separate transportation needs. The recent trend in urban mobility is to consider more
flexible transportation services that are low cost and convenient. In urban areas, traditional
public transportation has shown its limitation to meet user’s demands, particularly for
adapting to events that have an on-demand specific request, whereas private transportation
services (e.g., taxi) are relatively more expensive. In this study, we considered combining
the means of transporting people and goods in a transportation sharing mechanism, which
offers potential benefits that induce flexible yet low-cost services. An example of this
situation can be found in the ride-hailing taxi services, wherein, the taxi can deliver
passengers and goods simultaneously during its services in a combined route.

The sharing mechanism of serving both people and goods provides more versatility
and robustness of vehicle usage and taxi services. This concept was useful during the
recent COVID-19 pandemic situation where people’s mobility is minimal. Despite the
limitation of their mobility, the demand for goods and parcel delivery requests is increasing.
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In addition, a taxi service can utilize the flexibility of using the unused passenger seat as
extra space for parcels to gain more capacity. This mechanism allows greater flexibility
in routing and order assignment decisions. Thus, we propose a model that studies the
scheduling of on-demand transportation to handle people and goods while considering
also compartment sharing.

The models that consider on-demand people transportation are known as the dial-a-
ride problem (DARP) [1], while the models that consider on-demand goods transportation
are often categorized as variants of the pickup and delivery problem (PDP) [2]. The sharing
mechanism of people and goods transportation was seldom investigated until Li et al. [3]
proposed the share-a-ride problem (SARP). SARP considers schedules for several taxis to
serve passenger transportation requests, and these taxis are permitted to transport parcels
if this does not significantly affect the passengers’ riding time.

In 2016, two variants of the share-a-ride problem were introduced, one considered
stochastic travel time, and the other considered stochastic delivery location [4]. Yu et al. [5]
extended the SARP model to consider the hitchhiking situation where the passenger request
is combined with a parcel request and another passenger request. The proposed model
is denoted as the general share-a-ride problem (G-SARP). Beirigo et al. [6] introduced a
mixed-purpose compartmentalized shared autonomous vehicle and parcel locker to the
group of SARP problems and addressed it as the share a ride with parcel lockers problem
(SARPLP). Likewise, Do et al. [7] considered a time-dependent model with speed windows
where the speed of the vehicle is limited to a specific time and zone in the city. Their
research used Tokyo’s transportation as the case study. Then, the cooperative SARP (coop-
SARP) was presented by Cavagnini and Morandi [8], a SARP variant where a cooperation
mechanism between transportation service providers is studied.

As one of the important future research directions, Yu et al. [5] suggested the con-
sideration of capacity sharing between the passenger seat and luggage compartment.
Multi-compartment is among many extensions of classical vehicle routing problems that
have been studied extensively in recent years [9]. These variants are known as a multi-
compartment vehicle routing problem (MCVRP). In MCVRP, the vehicles under use have
multiple separate compartments that enable the collection of merchandise with different
characteristics or joint delivery. Commonly, during transportation, different product types
cannot be mixed in a single compartment. The application of MCVRP can be found in areas
such as fuel distribution [10], waste collection [11], agricultural transportation [12,13], and
maritime transportation [14,15].

From the perspective of problem complexity, both SARP and MCVRP are known to
be NP-Hard [9,16]. Metaheuristic approaches are shown to be the popular choice to solve a
problem with this type of complexity. Metaheuristics such as tabu search [17], adaptive
large neighborhood search [16], simulated annealing [5,18], genetic algorithms [19], and ant
colony optimization [20] have been shown to be capable of solving SARP, MCVRP, and its
variants. Despite various applications of SARP and MCVRP, to the best of our knowledge,
there is no literature that has previously considered the concept of shared compartments
for the SARP.

This study presents the consideration of fully utilizing the capacity of a vehicle for
running share-a-ride services. In the combined parcel and people transportation, the
luggage compartment, also known as the trunk, is utilized to store the parcel, also named
as a parcel compartment. The front and back seats are used for the passenger and are called
the people compartment. In some situations, the number of parcel requests is more than
the passenger requests. The model considered in this study allows the utilization of the
people compartment to store a parcel, but not the reverse. The objective is to maximize the
expected revenue generated from such a mechanism.

Following a literature survey, we found no previous study has addressed a model
that considers shared compartments for SARP. Therefore, this study proposed a model
that covers this situation and terms it share-a-ride problem with flexible compartments
(SARPFC). Flexible compartments and slack times introduce a lot of infeasible solutions to
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the search space. To mitigate this problem, a modified simulated annealing heuristic was
specially designed. A mutation strategy was employed to reduce search time and improve
solution quality. The numerical experiments involve benchmark instances that have been
presented earlier [5]. Our main contributions are as follows.

• We introduced a new variant of the share-a-ride problem—namely, the share-a-ride
problem with flexible compartments (SARPFC).

• We formulated a mixed-integer linear programming (MILP) model for SARPFC.
• We propose a modified Simulated Annealing (SA) that includes a mutation strategy

that is able to efficiently solve SARPFC.
• We performed comprehensive computational experiments with sensitivity analysis of

the proposed algorithms and problem parameters.

In the remainder of this article, Section 2 presents the mathematical formulation of
the share-a-ride problem with flexible compartments, Section 3 describes the details of the
proposed algorithm, and Section 4 presents the numerical experiments conducted in this
study. Finally, Section 5 presents the concluding remarks for this work.

2. Mathematical Formulation

SARPFC is defined on a complete undirected graph G = (V,A), where V is a vertex
set partitioned into {Vp,Vf,{0, 2σ + 1}}. Vp and Vf correspond to the passenger and parcel
request, respectively, while 0 and 2σ + 1 represent the origin and destination depot for
a vehicle, respectively. More specifically, Vp = Vp,0 ∪ Vp,d, where Vp,0 represents the
passenger origins and Vp,d is the passenger destinations. Similarly, Vf = Vf,0 ∪ Vf,d, where
Vf,0 and Vf,d are the set of parcel origins and destinations, respectively.

Each vertex is associated with service time duration si ≥ 0 with s0 = s2σ+1 = 0 and time
windows [ei,li]. Each arc (i, j) ∈A is associated with travel distance dij and travel time tij. A
set of taxis K is assumed to be ready in the depot at the beginning of the service. The aim is
to maximize the total profit by finding a set of taxi routes that service all requests. Instead
of using an identical fixed size compartment for each demand type c (n passengers and
m parcels) such as in SARP, the proposed model introduces the flexibility of adjusting the
compartment size based on several constraint limitations. The flexibility of adjusting the
compartment is limited by a lower bound Bc and upper bound Ac for each demand type.
Compartment capacity adjustment cannot exceed the original total capacity of the vehicle
Zk. Fc represents the conversion weight of each vehicle capacity for each demand type c to
the sum of vehicle capacity. The maximum capacity of each compartment Qkc

i (c = 1 for
passenger request and c = 2 for parcel request) can be adjusted not only for each vehicle or
route but also for every visited node based on its demand qc

i .
A total number of requests σ (σ = m + n) will be served by k number of vehicles, where

each vehicle has a maximum work duration Tk. For each time vehicle servicing a node,
α initial fare will be charged for a passenger and β initial fare for a parcel. For each km
traveled by the vehicle, an additional fare is charged. The passenger will be charged γ1
fare per km and parcel delivery will be charged γ2 fare per km. It costs a vehicle γ3 per
km to deliver any request. Each passenger request has its own maximum riding time vi.
Because there is a possibility that a passenger ride is more than its direct riding time, a
discount factor γ4 is used to calculate compensation for the passenger. A vehicle also can
only service η number of requests between one passenger pickup and delivery. To track
the number of requests in between, parameter Pi is used to index the position of request i
in a service sequence of the taxi. The formulations of SARPFC are defined as follows.

Decision variables:

xk
ij Binary decision variables are 1 if stop i and j served respectively by vehicle k.

uk
i Arrival time for vehicle k at stop j.

wkc
i Load of vehicle k for demand type c upon leaving stop i.

rk
i Ride duration of request i in vehicle k.

pi Ratio between actual passengers riding time with their direct travel time.
Qkc

i A maximum capacity of vehicle k for demand-type c at node i.
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Objective function:

max( ∑
i∈Vp,0

∑
j∈V

∑
k∈K

(α + γ1di,i+σ)xk
ij + ∑

i∈V f ,0
∑

j∈V
∑

k∈K
(β + γ2di,i+σ)xk

ij − γ3 ∑
i∈V

∑
j∈V

∑
k∈K

dijxk
ij

−γ4 ∑
i∈Vp,0

(pi − 1))

(1)
Constraints:

∑
j∈V

∑
k∈K

xk
ij = 1, ∀i ∈ Vp,0 ∪V f ,0 (2)

∑
i∈V

xk
0i ≤ 1, ∀k ∈ K (3)

∑
i∈V

xk
i,2σ+1 ≤ 1, ∀k ∈ K (4)

∑
i∈V

xk
i0 = ∑

i∈V
xk

2σ+1,i = 0, ∀k ∈ K (5)

∑
i∈V

xk
ij = ∑

i∈V
xk

i,j+σ, ∀j ∈ Vp,0 ∪V f ,0, ∀k ∈ K (6)

∑
j∈V

xk
ij = ∑

j∈V
xk

ji, ∀i ∈ Vp ∪V f , ∀k ∈ K (7)

uk
j − uk

i ≥ si + tij −M(1− xk
ij), ∀k ∈ K, i ∈ V, j ∈

{
Vp ∪V f

}
(8)

wkc
j − wkc

i ≥ qc
j −M(1− xk

ij), ∀k ∈ K, i ∈ V, j ∈
{

Vp ∪V f
}

, c ∈ C (9)

rk
i = uk

i+σ − uk
i , ∀k ∈ K, i ∈ Vp,0 ∪V f ,0 (10)

uk
2σ+1
− uk

0
≤ Tk, ∀k ∈ K (11)

ei ≤ uk
i ≤ li, ∀k ∈ K, i ∈ V (12)

0 ≤ wkc
i ≤ Qkc

i , ∀i ∈ V, k ∈ K, c ∈ C (13)

∑
c∈C

Qkc
i Fc = Zk, ∀k ∈ K, i ∈ V (14)

Bc ≤ Qkc
i ≤ Ac, ∀i ∈ V, k ∈ K, c ∈ C (15)

uk
i+σ ≥ uk

i + (si + ti,i+σ)xk
ij, ∀k ∈ K, i ∈ Vp,0 ∪V f ,0, j ∈ V (16)

pi ≥ 1, ∀i ∈ Vp,0 (17)

pi ≥ ∑
k∈K

rk
i

(ti,i+σ + si)
, ∀i ∈ Vp,0 (18)

ti,σ+i ≤ rk
i ≤ vi, ∀i ∈ Vp,0, k ∈ K (19)

M

(
∑
k∈K

xk
ij − 1

)
+ Pj − 1 ≤ Pi, ∀i, j ∈ Vp ∪V f (20)

M

(
1− ∑

k∈K
xk

ij

)
+ Pj − 1 ≥ Pi, ∀i, j ∈ Vp ∪V f (21)

Pj+σ − Pj − 1 ≤ η, ∀j ∈ Vp,0 (22)

xk
ij ∈ {0, 1}, ∀i, j ∈ V, k ∈ K (23)

The objective function (1) is used to obtain the maximum total profit that consists of
passenger fare, parcel fare, distance cost, and discount cost for a passenger’s extra riding
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time compared to direct driving. All requests are served exactly once by the same vehicle
and enforced by constraint (2). The guarantee that each vehicle starts and ends its route at
the depot is constrained by (3), (4), and (5). Constraint (6) ensures the same vehicle visit
origin and destination nodes for a particular request. Except for the depot, every stop
must have one preceding stop and one succeeding stop, which is defined in constraint
(7). Constraint (8) defines the start of service times, constraint (9) defines vehicle loads,
and constraint (10) defines riding times of passenger requests. Constraint (11) ensures
that the total work duration for each vehicle must not exceed the vehicle operational time.
Constraint (12) defines the time window constraints for the request. Constraint (13) defines
the load of vehicle k after visiting vertex i, where it must not be larger than the maximum
compartment capacity. Total capacity for all compartments must not exceed the total
capacity for vehicle k as defined by constraint (14). Constraint (15) ensures that the capacity
for each compartment lies between its upper and lower bounds. Constraint (16) ensures
that the origin node will be visited before the destination node. The ratio between the
actual riding time of a passenger and the corresponding direct travel time is ≥1 so that the
last term in the objective function having a positive value is ensured by constraints (17)
and (18). Constraint (19) determines that each passenger request has a duration when the
service needs to be completed. Constraints (20) and (21) define the service sequence of the
requests. The maximum inserted request between passenger pickup and drop-off point is
defined by constraint (22). Constraint (23) shows the decision binary variable.

3. Solution Method

This study proposes a Simulated Annealing with Mutation Strategy (SAMS) algorithm
for solving SARPFC. SA has been successfully used with similar problems, obtaining com-
petitive results in various studies [5,21]. The following subsections describe the elements
of the proposed SAMS.

3.1. Solution Representation

Two equal-length arrays are used as the solution representation for SARPFC. The first
array comprises the depot node, n passenger pickup and delivery nodes, m parcel pickup
and delivery nodes, and several dummy zeros as virtual depots. The number of dummy
zeros is the same as the number of available vehicles. The first position and the last position
must be a depot. Nodes are subsequently serviced one by one by a vehicle. If the following
number in the representation is zero, then the route is ended, and the next vehicle will start
a new route.

The second array consists of real numbers between 0 and 1, which are associated
with the node in the first array. The second array is a ratio to determine how much
slack time is assigned for each node from the maximum available slack time. Details
regarding maximum slack time are explained by Yu et al. [5]. Figure 1 illustrates the
solution representation for SARPFC.
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Figure 1. Illustration of solution representation for SARPFC.

3.2. The Initial Solution

The initial solution is created using a deterministic insertion heuristic from Detti et al. [22]
that is adapted to our problem. The mechanism was applied for the two arrays that
represent a SARPFC solution representation. For the first array, we first created a list that
consists of all delivery nodes sorted based on their latest time windows from the earliest to
the latest. Second, we place the first customer node from the sorted list (pickup first, then
followed by a delivery node of this customer) to the first vehicle. Third, we continue to
take the second node in the sorted list and placed it to the second vehicle, and we carry
on the process until all vehicles are assigned to their first customer node. Fourth, after
all the vehicles are assigned the first customer, we take the next customer node in the
sorted list and compare its pickup node distance to the last node in every vehicle. We put
this customer node (pickup first, then followed by delivery node) to the vehicle with the
shortest distance and perform this procedure until all nodes in the sorted list are assigned
to a vehicle. Fifth, we then place a dummy zero at the end of every vehicle route. For the
second array, a real number between 0 and 1 is randomly generated and assigned to each
node, simultaneously assigning 0 for dummy zeros. Figure 2 illustrates the pseudocode of
the initial solution.

3.3. Neighborhood Move

The algorithm performs one of four neighborhood moves at each iteration based on
the neighborhood’s probability after the initial solution is obtained. The neighborhood
moves used in the proposed SAMS are basic movements: insertion, swap, reverse, and
random mutation. First, the swap move is performed by swapping two randomly chosen
node positions. Second, the insertion move is made by inserting randomly chosen node j
in front of randomly chosen node i. Third, the reverse move is done by reversing the order
of all nodes between two randomly chosen nodes. Finally, the random mutation move
replaces the randomly chosen position in the second array with a random number between
0 and 1. Figure 3 illustrates the neighborhood move.
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3.4. Penalty Mechanism and Time Slack Strategy

The proposed algorithm in this research considers an infeasible solution for the evalu-
ation process by adding a penalty for any violation of the constraint that is found while
calculating the objective function value using Equation (24) as:

F(X) = c(X) − (α1T(X) + α2D(X) + α3S(X) + α4V(X) + α5W(X) + α6Z(X) + α7M(X) + α8I(X)) (24)

c(X) represents the original objective value before penalty cost is added. The penalty
considered is that for violating each vehicle maximum travel time T(X), the penalty for
assigning a delivery node before its pickup node D(X), the penalty for serving the same
customer with a different vehicle S(X), the penalty for violating the vehicle capacity V(X),
the penalty for exceeding time windows at each node W(X), the penalty for assigning two
passengers consecutively in the same vehicle Z(X), the penalty for exceeding a passenger’s
maximum riding time M(X), and the penalty for exceeding a maximum number of requests
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between particular passenger pickup and delivery request I(X). Different weights for each
penalty are determined by different α values.

Because riding time is a part of the objective function, the objective value will worsen
the longer the passenger rides in the vehicle. Time slack shifts the vehicle’s arrival time
and may shorten passenger riding time [16]. This study follows the same mechanism used
by Yu et al. [5].

3.5. The Procedure of Simulated Annealing with a Mutation Strategy

In the beginning, current temperature T is set to initial temperature T0; the initial
solution X is then generated. The generated initial solution X is set as the current best
solution Xbest, and its objective function value obj(X) is set as the current best objective
function value Fbest. At each iteration, solution X is processed by neighborhood mechanism
N(X) to produce a neighborhood solution Y, and then its objective function value obj(Y)
is evaluated. To decide which neighborhood move to use, the algorithm first checks if a
slack time search is activated. Initially, the slack time search is not activated. Only swap,
insertion, and reversion are available to be selected using the same probability. If the target
temperature is reached, then a slack time search is activated, and all moves, including
mutation, are available to be selected. This strategy is implemented because the slack time
used in the algorithm introduces a lot of new infeasible solutions in our metaheuristic
search space and affects solution quality. To mitigate this effect, the mechanism delays the
slack time search to a later stage. In the proposed algorithm, a second array is used to store
the slack time ratio in the solution representation. We deactivate slack time in the proposed
algorithm by leaving this second array value to zero and not using mutation neighborhood
moves to make sure the value stays zero.

Let ∆ = obj(Y) − obj(X). If ∆ is greater than zero, solution Y is better compared to
previous solution X, then solution X is replaced by solution Y; otherwise, solution Y can
replace solution X with a probability calculated using exp(∆/T). When a new solution is
accepted, their objective function value will be compared to the best objective function value
Fbest. If the new solution is better, then we replace Fbest with its objective function value and
best solution with the newly accepted solution and set the Non-improve count to 0.

After the number of current iterations reaches maximum iteration (Iiter), current
temperature T is reduced by multiplying it with cooling rate α. We then increase the Non-
improve count by 1. The proposed SAMS algorithm will terminate if current temperature T
reaches final temperature TF or Non-improve count is bigger than Nnon-improve. Finally, the
best solution and its objective function value Fbest are our final solutions. Figure 4 illustrates
the proposed SA heuristics.

The SARP and its variances are difficult to solve due to the nature of the problem.
Slack times used to improve the solution quality introduce a lot of infeasible solutions
in the search space. The previous studies did not address this problem, which is shown
in their computational time. This study employs a mutation strategy to solve SARPFC.
Instead of searching slack times from the beginning of iteration, we postpone the slack time
search and let the algorithm search for a good route first. Then in the middle of the search,
we introduce slack time search. Moreover, we do not use repair as a diversification strategy
as done in previous studies because the repair mechanism is inefficient and requires a lot
of computation time.
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4. The Computational Study

The computational experiment is performed on a computer equipped with an Intel®

Core® i7-7700 CPU running at 3.60 GHz and 8 GB of RAM, under Windows 10 Professional
operating system. The proposed SAMS algorithm is implemented in C++ and compared
to CPLEX. CPLEX is a commercial solver for linear and integer programs. Moreover, the
comparisons between SARP, G-SARP, and SARPFC solutions and between basic SA and
SAMS are done to verify the performance of the proposed SARPFC model and SAMS
algorithm. Sensitivity analyses on the SARPFC parameters are performed to provide a
better understanding of the effect and benefit of flexible compartments.
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4.1. Test Instances

The dataset consists of instances obtained from Yu et al. [5], which are produced using
the steps and parameters provided by Li et al. [3]. Although the datasets are originally
designed for the general share-a-ride problem, they can be directly adopted as SARPFC
instances due to the similarity between the two problems.

4.2. Parameter Settings

Five parameters have to be set in the proposed simulated annealing—namely, α, T0,
TF, Iiter, and Nnon-improve. Parameter α is a coefficient to control the annealing process. T0
and TF denote the initial temperature and final temperature, respectively. Iiter denotes the
maximum number of iterations at a specific temperature. Lastly, Nnon-improve represents
the maximum consecutive non-improving solution in temperature reductions. The value
of each parameter will influence the quality of the result obtained from the proposed
algorithm; therefore, a parameter setting experiment is conducted to get the best parameters.
The following are the parameter values tested in the parameter setting:

• T0 = 8, 12, 15
• TF = 1, 0.1, 0.01
• A = 0.9, 0.99, 0.999
• Iiter = 1,000,000, 2,000,000, 3,000,000
• Nnon-improving = 5, 10, 15

Parameter setting is performed using a one factor at a time (OFAT) experiment. OFAT
is performed by changing one parameter at a time while making the others fixed. The
starting parameter is randomly selected as α = 0.9, T0 = 8, TF = 1, Iiter = 1,000,000, and
Nnon-improve = 5. Twenty percent of the large instances are selected randomly and run four
times each for every setting. The average of runs is then used to compare the result.

The result of the parameter setting experiment is presented in Figure 5. The blue solid
line and red dashed line represent objective value and computational time, respectively.
According to the result, when T0 increases, the objective value increases until T0 = 15 where
it reduces. The same trend happens for computational time. For TF, it has a similar trend
for the objective value to T0, but computational time seems to always increase, although
the increase is not significant from TF = 0.1 to TF = 0.01. When α is increased, the objective
value decreases. However, computational time decreases until α = 0.999. Computational
time always increases if we increase iterations. The objective value also increases at
the beginning, but it starts to decrease around Iiter = 3,000,000. The objective value and
computational time increase if we increase Nnon-improve, although, at Nnon-improve = 15, the
increase in objective value is not as significant as that in computational time. From OFAT,
the final parameter chosen is T0 = 12, TF = 0.1, α = 0.9, Iiter = 2,000,000, and Nnon-improve = 10.

4.3. Parameter Settings on the Mutation Strategy

The proposed algorithm postpones the activation of the mutation neighborhood move
at a later stage of the algorithm. Therefore, we need to find when is the best time to activate
it by using sensitivity analysis. We study six possible times to activate the slack time
search: at the beginning (0% of initial temperature reduction), 15% of initial temperature
reduction, 30% of initial temperature reduction, 45% of initial temperature reduction, 60%
of initial temperature reduction, and 75% of initial temperature reduction. Activation at the
beginning indicates that we activate it directly or at T0, while 15% of initial temperature
reduction means we activate it after current temperature T reaches T0 × (1–15%). Figure 6
shows the parameter setting results for slack time. The results show that the objective value
increases each time the delay on slack time activation increases until we delay it to a 45%
reduction in T0. Objectives start to drop at a 60% reduction. This may be because there is
not enough time to explore slack time in the search space.
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4.4. Comparison between SAMS and CPLEX

To verify the performance of the proposed SAMS, SARPFC instances are solved
using CPLEX and the proposed SAMS algorithm, and then the results are compared.
The algorithm’s performance is measured in terms of the percentage gap between the
SAMS solution value and the optimal solution value obtained by CPLEX. CPLEX and the
proposed algorithm are able to obtain the optimal solution to each instance. The results of
all instances for both approaches appear in Table 1.

Table 1. Comparison between CPLEX and proposed SAMS solution for SARPFC.

Instance
CPLEX SAMS

Gap a (%)
Objective Time (m) Objective Time (m)

instance14 59.24 0.010 59.24 0.005 0.00
instance14n 56.94 0.001 56.94 0.005 0.00
instance24 13.11 0.007 13.11 0.005 0.00

instance24n 13.73 0.004 13.73 0.009 0.00
instance16 85.08 0.102 85.08 0.009 0.00

instance16n 64.77 0.001 64.77 0.006 0.00
instance26 78.39 0.751 78.39 0.008 0.00

instance26n 51.15 0.020 51.15 0.011 0.00
a Gap = (obj of SAMS − obj of CPLEX)/obj of CPLEX × 100%.

The results show that both CPLEX and the proposed SAMS algorithm can solve the
SARPFC instances to optimality. The proposed SAMS finds the optimal solution with a
shorter computational time for some instances. The algorithm is also tested on SARP to see
if it performs better than other algorithms in the literature.

The proposed SAMS is quite robust. With a little bit of modification in the way it
reads the solution representation, it can solve SARP. Table 2 shows the results of solving
small SARP instances using CPLEX and SA reported by Yu et al. [5] and the proposed
SAMS. The results present that both SA and SAMS can obtain the optimal solution, where
the average computational time of SAMS and SA is 0.014 and 0.993 min, respectively.
Gap 1 represents the difference in objective value for the CPLEX result and SAMS result,
while Gap 2 represents the difference in objective value for the results of SA and SAMS.
In summary, SAMS can lead to the optimal solution for both small SARP and SARPFC
instances. This result shows that the proposed SAMS algorithm can solve both models
with good performance and competitive computational time.



Mathematics 2021, 9, 2320 13 of 18

Table 2. Comparison between CPLEX, proposed SAMS, and SA solution for SARP small instance.

Instance
CPLEX SAMS SA

Gap 1 a (%) Gap 2 b (%)
Objective Time (m) Objective Time (m) Objective Time (m)

instance14 58.93 0.010 58.93 0.003 58.93 0.921 0.00 0.00
instance14n 56.94 0.002 56.94 0.003 56.94 0.902 0.00 0.00
instance24 13.11 0.007 13.11 0.020 13.11 1.070 0.00 0.00

instance24n 13.73 0.005 13.73 0.021 13.73 0.063 0.00 0.00
instance16 85.04 0.193 85.04 0.035 85.04 0.066 0.00 0.00

instance16n 64.77 0.003 64.77 0.006 64.77 4.651 0.00 0.00
instance26 78.39 0.167 78.39 0.021 78.39 0.079 0.00 0.00

instance26n 51.15 0.026 51.15 0.005 51.15 0.196 0.00 0.00
a Gap 1 = (obj of SAMS − obj of CPLEX)/obj of CPLEX × 100%. b Gap 2 = (obj of SAMS − obj of SA)/obj of SA × 100%.

For larger instances, the result from SAMS is compared to that of SA because CPLEX is
unable to find a solution within a reasonable time allocation. Table 3 shows the comparison
of results obtained by these two algorithms. According to the results, the proposed SAMS
outperforms the SA result by obtaining 20 new best solutions for all the 20 instances. The
gap ranges from 24.71% to 618.51%. This shows that the proposed SAMS is superior
compared to the SA algorithm in terms of solution quality.

Table 3. Comparison between proposed SAMS and SA solution for SARP large instance.

Instance
SAMS SA

Gap a (%)
Objective Time (m) Objective Time (m)

Pr01 257.012 0.288 35.77 2.193 618.51
Pr02 393.79 1.153 315.753 21.938 24.71
Pr03 868.938 1.520 597.513 74.42 45.43
Pr04 948.741 2.329 667.912 53.344 42.05
Pr05 1144.29 2.951 779.238 102.925 46.85
Pr06 1368.94 3.567 1055.004 120.348 29.76
Pr07 404.266 0.919 246.681 14.625 63.88
Pr08 767.634 1.858 571.333 18.386 34.36
Pr09 1131.71 2.711 865.26 126.892 30.79
Pr10 1570.78 11.733 1065.457 130.936 47.43
Pr11 269.625 0.979 124.321 18.386 116.88
Pr12 409.451 1.689 312.485 35.398 31.03
Pr13 894.306 2.301 591.676 118.113 51.15
Pr14 1014.6 2.936 706.884 44.58 43.53
Pr15 1193.11 3.586 879.228 209.834 35.70
Pr16 1461.89 4.322 1131.676 172.807 29.18
Pr17 422.137 1.324 266.287 13.928 58.53
Pr18 813.039 2.294 553.26 16.904 46.95
Pr19 1187.2 3.435 824.384 68.782 44.01
Pr20 1585.56 4.731 1188.861 244.671 33.37

a Gap = (obj of SAMS − obj of SA)/obj of SA × 100%.

4.5. Comparison between Basic SA and SAMS for SARPFC

This section provides the analysis of results obtained by the basic SA and SAMS for
solving SARPFC. It is performed to identify the benefit of the mutation strategy in the
proposed SAMS for SARPFC. The results in Table 4 show that the basic SA is not able to
find feasible solutions for four instances (namely, instances Pr08, Pr09, Pr10, and Pr20).
The mutation strategy in the proposed algorithms gives an average of 3.65% increase in
solution quality for all feasible solutions found by the basic SA and also improves the
algorithm performance to obtain solutions for all instances.
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Table 4. Comparison between basic SA and proposed SAMS solution for SARPFC large instance.

Instance
SAMS SA

Gap a (%)
Objective Time (m) Objective Time (m)

Pr01 268.776 1.333 246.723 0.893 8.94
Pr02 411.212 2.525 402.192 2.264 2.24
Pr03 896.427 3.602 844.105 3.500 6.20
Pr04 985.085 4.554 954.085 5.298 3.25
Pr05 1170.06 6.045 1159.17 6.317 0.94
Pr06 1396.82 6.762 1363.46 8.171 2.45
Pr07 420.003 1.992 398.368 1.503 5.43
Pr08 803.332 3.611 - - -
Pr09 1098.69 3.046 - - -
Pr10 1539.92 7.276 - - -
Pr11 271.409 1.242 264.599 1.344 2.57
Pr12 426.12 2.701 411.537 2.574 3.54
Pr13 911.628 3.635 883.428 3.704 3.19
Pr14 1037.92 5.081 1007.45 5.627 3.02
Pr15 1210.26 6.245 1160.47 6.421 4.29
Pr16 1483.36 7.636 1412.39 7.988 5.02
Pr17 426.742 2.245 410.325 1.584 4.00
Pr18 861.319 3.957 819.149 3.936 5.15
Pr19 1190.68 5.696 1180.01 5.910 0.90
Pr20 1620.52 7.677 - - -

a Gap = (obj of SAMS − obj of SA)/obj of SA × 100%.

4.6. Comparison between SARP, G-SARP, and SARPFC

This section presents a comparison between SARP, G-SARP, and SARPFC solutions.
All models aim to obtain the highest possible profit from serving all customers. This com-
parative study intends to provide insight to the taxi operators to decide which application
to use to increase their profit from the existing taxi network.

4.6.1. Comparison of Small Instances

SARPFC is a SARP extension that considers flexible compartments in taxi service,
while in G-SARP, a taxi is allowed to carry more than one passenger simultaneously.
Yu et al. [5] solve G-SARP using a modified SA that uses two mechanisms to deal with
infeasible solutions. The first one is the penalty for infeasibility, and the second is the
repair mechanism. They search slack times starting from the beginning of iteration. This
method results in a slower computational time. Table 5 shows a comparison between
SARP, G-SARP, and SARPFC solutions for small instances. Gap 1 represents the difference
between SARPFC and SARP solutions, while Gap 2 represents the difference between
SARPFC and G-SARP solutions. Positive gaps indicate SARPFC is better, while negative
ones indicate it is worse. As mentioned earlier, this result is the optimal solution. The gap
between SARP and SARPFC is minimal due to the very small number of customers. Hence,
only an average of 0.07% improvement is obtained. The gap between SARPFC and G-SARP
shows a negative value. This means that G-SARP produces a better solution (higher profit)
compared to SARPFC. The G-SARP approach shows that allowing multiple passengers
to ride taxis at the same time, and the higher passenger fare than that of the parcel fare,
increase the profit compared to the SARPFC approach. However, the analysis taken from
small-size instances may not represent the general picture of the situation. Therefore, a
comparison on large instances is conducted.
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Table 5. Comparison between SARP, G-SARP, and SARPFC solution for small instance.

Instance
SARP G-SARP SARPFC

Gap 1 a (%) Gap 2 b (%)
Objective Time (m) Objective Time (m) Objective Time (m)

instance14 58.93 0.921 70.413 1.220 59.24 0.005 0.53 −15.87
instance14n 56.94 0.902 56.943 1.554 56.94 0.005 0.00 −0.01
instance24 13.11 1.070 16.673 1.521 13.11 0.005 0.00 −21.37

instance24n 13.73 0.063 16.68 2.623 13.73 0.009 0.00 −17.69
instance16 85.05 0.066 94.589 0.076 85.08 0.009 0.04 −10.05

instance16n 64.77 4.651 73.957 0.108 64.77 0.006 0.00 −12.42
instance26 78.39 0.079 79.861 0.085 78.39 0.008 0.00 −1.84

instance26n 51.15 0.196 58.901 0.194 51.15 0.011 0.00 −13.16
a Gap 1 = (obj of SAMS − obj of SARP)/obj of SARP × 100%. b Gap 2 = (obj of SAMS − obj of G-SARP)/obj of G-SARP × 100%.

4.6.2. A Comparison of Large Instances

Table 6 presents a comparison between SARP, G-SARP, and SARPFC solutions for
large instances. Gap 1 shows that compared to SARP, SARPFC finds better solutions, where
most solutions are larger than those by SARP with an average of 2.27% increase in profit.
The small improvement reflected in gap 1 is affected by the selection of compartment size
in the instances. The large instances are assumed to use a large-size taxi with a six-seat
passenger capacity. Thus, compartment size flexibility in SARPFC is not improved much.
The further analysis of compartment size is discussed in the next section. The result from
gap 2 shows a different finding from the result for the small instances.

Table 6. Comparison between SARP, G-SARP, and SARPFC solution for large instances.

Instance
SARP G-SARP SARPFC

Gap 1 a (%) Gap 2 b (%)
Obj. Time (m) Obj Time (m) Obj Time (m)

Pr01 257.012 0.288 138.667 5.262 268.776 1.333 4.58 93.83
Pr02 393.79 1.153 329.168 20.312 411.212 2.525 4.42 24.92
Pr03 868.938 1.520 584.259 66.739 896.427 3.602 3.16 53.43
Pr04 948.741 2.329 702.299 122.282 985.085 4.554 3.83 40.27
Pr05 1144.29 2.951 812.518 210.991 1170.06 6.045 2.25 44.00
Pr06 1368.94 3.567 1055.004 286.152 1396.82 6.762 2.04 32.40
Pr07 404.266 0.919 243.043 9.495 420.003 1.992 3.89 72.81
Pr08 767.634 1.858 635.713 44.742 803.332 3.611 4.65 26.37
Pr09 1131.71 2.711 899.202 152.515 1098.69 3.046 -2.92 22.19
Pr10 1570.78 11.733 1138.045 269.434 1539.92 7.276 -1.96 35.31
Pr11 269.625 0.979 138.968 7.223 271.409 1.242 0.66 95.30
Pr12 409.451 1.689 329.171 40.768 426.12 2.701 4.07 29.45
Pr13 894.306 2.301 589.101 73.033 911.628 3.635 1.94 54.75
Pr14 1014.6 2.936 761.957 135.608 1037.92 5.081 2.30 36.22
Pr15 1193.11 3.586 879.228 270.463 1210.26 6.245 1.44 37.65
Pr16 1461.89 4.322 1131.676 275.332 1483.36 7.636 1.47 31.08
Pr17 422.137 1.324 277.027 14.955 426.742 2.245 1.09 54.04
Pr18 813.039 2.294 700.252 71.952 861.319 3.957 5.94 23.00
Pr19 1187.2 3.435 824.384 152.859 1190.68 5.696 0.29 44.43
Pr20 1585.56 4.731 1188.861 278.737 1620.52 7.677 2.20 36.31

a Gap 1 = (obj of SARPFC − obj of SARP)/obj of SARP × 100%. b Gap 2 = (obj of SARPFC − obj of G-SARP)/obj of G-SARP × 100%.

Table 6 shows that SARPFC results are better than G-SARP results, with an average
improvement gap of 44.39%. The increasing number of passenger requests and parcel
requests for the large instances contribute to higher profit in SARPFC. Concurrently, the G-
SARP advantage that relies on a distance saving result by shared passenger services is not
effective for this particular dataset since it also increases the penalty cost for a passenger’s
extra riding time compared to that by direct driving.
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4.7. Sensitivity Analysis on the Number of Parcel Requests and Compartment Size

The first sensitivity analysis is on the impact of the percentage of parcel requests
among total requests on the total profit generated by the systems. For this experiment, we
conduct three scenarios where the number of parcel requests is set to 1/4, 2/4, and 3/4 out
of the total requests and set compartment size constant at 6. Figure 7a shows that the profit
generated in both SARP and SARPC decreases with an increase in the number of parcel
requests. This situation appears mainly because the contribution of the passenger fare to
the total profit is higher than the contribution of parcel fare to the total profit. However,
the objective function of the SARPFC model is shown to be consistently better than that
of SARP, which supports the flexibility in which sharing compartments can have a slight
advantage in terms of total generated profit.
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size on solution quality.

The second sensitivity analysis is on the impact of compartment size on the total profit
generated by the systems. To perform this task, we conduct a computational experiment
in which the compartment size is set to be 4, 5, and 6, and 1/3 of the requests are parcel
requests. From the perspective of a practical situation, the instance used in the previous
experiment takes a compartment size of 6, which is comparable to a family taxi that has 6
passenger seats. This kind of taxi is less common compared to taxis with only 4 passenger
seats.

Figure 7b shows the objective value of SARP and SARPFC with the compartment
sizes of 4, 5, and 6, according to which the profit generated for each compartment size in
SARPFC is not much different from the other. At the same time, increasing the compartment
size tends to increase the number of profits generated in SARP. The results show a clear
influence on compartment size. Due to SARPFC’s flexibility in using the passenger seat to
store parcels, the possibility for any compartment size to go over capacity is low. We thus
infer that using a smaller size vehicle (with a smaller compartment) can achieve a similar
benefit to using a larger vehicle. However, this flexibility does not apply in SARP. Thus,
the size of the compartment may need to be increased to gain a similar potential benefit.

5. Conclusions and Future Research

This research introduces the SARPFC and formulates a mathematical model for the
problem. This model introduces the flexibility of adjusting compartments not only for
each vehicle or route, but also for every visited node based on demand. This feature
increases the flexibility of the model to service more parcels and fully utilizes vehicle
compartments. A simulated annealing (SA) algorithm with a mutation strategy is proposed
to solve the problem. The mutation strategy is a mechanism to reduce the number of
infeasible solutions in the search process. The algorithm was tested on small instances
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and compared to solutions obtained from CPLEX and on large instances compared to the
algorithm in the literature.

A thorough computational analysis involved a preliminary experiment, algorithm
verification, comparison with various SARP variants, and sensitivity analysis. In the
preliminary experiment, the best parameter combination for the proposed SAMS algorithm
was obtained using the one factor at a time method. The algorithm verification results show
that the proposed SAMS outperforms the SA result by obtaining 20 new best solutions
from 20 instances. The average gap between the results of the two algorithms is 73.71%,
suggesting that the proposed SAMS is superior compared to the SA algorithm in terms
of solution quality. A comparison with SARP variants provides the insight that SARPFC
can have the advantage in terms of the total profit generated by the system. A sensitivity
analysis was also performed to assess the effects of the portion of parcel requests among
the total requests and the compartment size on the objective function. The profit is reduced
if there are more package requests compared to more passengers due to higher passenger
fares. Flexible compartments in SARPFC allow a taxi to accrue higher profit with only a
small taxi (four-compartment sedan taxi) compared to SARP where a six-compartment size
is used (family MVP taxi).

For future research, an extension that considers both the ride-sharing of passengers
in G-SARP and the flexible compartments of this research can be examined. Considering
passenger comfort while riding in an appropriate route is also an interesting future research
topic. Lastly, because SARPFC has many infeasible solutions in the search space, it is
necessary to develop an algorithm that can more efficiently solve the problem.
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