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Abstract: Age estimation is applicable in various fields, and among them, research on age estimation
using human facial images, which are the easiest to acquire, is being actively conducted. Since
the emergence of deep learning, studies on age estimation using various types of convolutional
neural networks (CNN) have been conducted, and they have resulted in good performances, as
clear images with high illumination were typically used in these studies. However, human facial
images are typically captured in low-light environments. Age information can be lost in facial images
captured in low-illumination environments, where noise and blur generated by the camera in the
captured image reduce the age estimation performance. No study has yet been conducted on age
estimation using facial images captured under low light. In order to overcome this problem, this
study proposes a new generative adversarial network for low-light age estimation (LAE-GAN), which
compensates for the brightness of human facial images captured in low-light environments, and a
CNN-based age estimation method in which compensated images are input. When the experiment
was conducted using the MORPH, AFAD, and FG-NET databases—which are open databases—the
proposed method exhibited more accurate age estimation performance and brightness compensation
in low-light images compared to state-of-the-art methods.

Keywords: age estimation; low-illumination image enhancement; LAE-GAN; CNN

1. Introduction

A human face contains biological information showing various attributes, such as
identity, age, gender, emotions, and expressions. Numerous researchers have studied
face recognition [1,2], facial expression recognition [3], gender classification [4], facial
skin assessment [5], and age estimation [6] by analyzing such information. Specifically,
age estimation has a wide range of applications in commercial areas, such as customer
prediction and preference surveys according to age, security for controlling access based on
age and statistical fields such as age surveys of an audience [6]. However, age estimation
using human facial images entails several problems, including the uncontrollable, natural
aging process, individual aging patterns, and large inter-class similarity and intra-class
variation of subjects’ images within age classes [7]. For overcoming these drawbacks,
image representation techniques such as the active appearance model (AAM) [8], the
active shape model (ASM) [9], the aging pattern subspace model (AGES) [10], feature
extraction techniques such as Gabor filters [11], linear discriminant analysis (LDA) [12],
and local binary patterns (LBP) [13] have been used in the past. The representative image
and extracted features are applied with multi-classification, regression, and hierarchical
approaches for age estimation [14]. However, since the emergence of deep learning, where
feature extraction and learning are both involved in the process, using a convolutional
neural network (CNN) has become popular in age estimation.

Previous studies on age estimation used clear facial images taken during the daytime
with high illumination. However, in reality, most of the images are captured in low-light
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environments [15,16]. In general, these low-illumination images have a lesser amount
of light and a longer exposure time of a camera than images taken during the daytime.
Therefore, motion and optical blurs are generated in images, and noise increases in the
images due to the characteristics of camera sensors [17,18]. For resolving the problems
of low-illumination images captured in low-light or nighttime environments, hardware
approaches using a high-performance charge-coupled device (CCD), a complementary
metal-oxide-semiconductor (CMOS), low-light compensation circuits, and filters—or using
software algorithms to provide flexibility in images and improve the quality of low-light
images—can be applied [19]. Hardware approaches, however, increase the cost of the
camera and cannot be applied to general cameras; hence, improving software algorithms
to enhance image quality is a more practical approach. Existing software algorithms
can be classified into: gray transformation methods, histogram equalization, Retinex
filtering, frequency-domain methods, image fusion methods, defogging model methods,
and machine learning-based methods [19]. Excluding machine learning-based methods, a
majority of the methods are conventional image processing-based techniques. In recent
years, studies have been actively conducted using machine learning-based techniques
in which deep learning based enhancements are quickly gaining attention. Low-light
images taken in low-light environments are currently utilized for various purposes, while
research on compensating for the aforementioned problems is also actively being conducted.
However, there has been no study conducted on compensating low light facial images
for age estimation; thus, this study proposes a method for compensating low-light facial
images for realistic age estimation.

Instead of researching age estimation with clear images with high illumination taken
in a high light or daytime environment, this study performs age estimation using low-light
images. A generative adversarial network for low-light age estimation (LAE-GAN) is
proposed for removing blur and noise generated due to low illumination and restoring
the lost age information based on which low-light images are compensated. Age is then
estimated by applying a CNN to the compensated images. Our research is novel in the
following four ways compared to previous works:

• It is the first study on age estimation considering low light;
• Without separately applying pre-processing to low-light facial images, images are

enhanced using LAE-GAN, which is proposed in this study;
• In LAE-GAN, identity information of input data was preserved by removing an input

random noise vector used in a conventional conditional GAN and adding an L2 loss
function in the generator. Furthermore, high frequency information of the input image
delivered through a skip-connection using a leaky rectified linear unit (ReLU) to the
6th and 7th decoder blocks of the generator was reinforced, and the ReLU was used in
the 4th convolution layer of the discriminator;

• Through [20], the trained LAE-GAN and CNN for age estimation are disclosed to be
fairly evaluated by other researchers in terms of performance.

This paper is organized as follows. In Section 2, previous studies on low-light image
enhancement and facial image age estimation are analyzed and compared with the pro-
posed method. In Section 3, the LAE-GAN proposed for low-illumination facial image
enhancement and CNNs for facial image age estimation are explained. In Section 4, the
results of the experiment conducted using the method proposed in Section 3 are compara-
tively analyzed and discussed. Lastly, Section 5 proposes conclusions.

2. Related Works

Age estimation using human facial images is performed by extracting features based
on the length, depth, and number of wrinkles, which change over time due to aging and
skin condition [21]. Therefore, age estimation involves feature extraction and age learning
steps for learning ages based on the extracted represented image. For feature extraction
in previous studies, image representation techniques such as AAM [8], ASM [9], and
AGES [10] as well as Gabor filters [11], LDA [12], and LBP [13] were applied; multi-class
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classification, regression, and hierarchical approaches were taken for age learning. Recently,
however, methods using a CNN where feature extraction and age learning proceed end-to-
end are more commonly used. Table 1 presents previous studies on age estimation in which
deep learning was employed. In previous studies, the mean absolute error (MAE) was
used to evaluate the accuracy of age estimation. MAE is the mean absolute error between
the estimated and ground-truth ages, and a detailed description of MAE can be found in
Equation (14) of Section 4.3.

A study [22] proposed a simple CNN consisting of six layers: three convolutional
layers, two pooling layers, and one fully connected layer. The dimension of these extracted
features was compressed with principal component analysis (PCA), and age learning was
performed using a support vector machine (SVM). A study [23] proposed a CNN consisting
of three convolutional layers, two fully connected layers, and one output layer. Most age
estimation using a CNN involves a shallow CNN; subsequently, a study [24] improved
the performance through fine-tuning deep networks such as a visual geometry group
(VGG)-16 [25] and databases such as IMDB-WIKI and ImageNet. In a study [26], a network
consisting of the following three steps was proposed for mitigating the learning restricted
by a dataset during age estimation: first, data are classified into age groups using an age
group classifier; second, age is estimated using the mean value within the age groups; third,
errors are revised using the predicted age. In one study [27], a method for predicting age
based on rankings between sub-networks was proposed using a network tied with sub-
networks predicting a single age label as binary outputs. Likewise, most previous studies
conducted age estimation based on various types of databases and networks. However, no
study has examined age estimation considering low light, which is more likely to occur.

Table 1. Comparison of previous research on age estimation using deep learning (N.A. means “not available”).

Method Database MAE Accuracy (%)

Wang et al. [22] MORPH
FG-NET

4.77
4.26 N.A.

Levi et al. [23] Adience N.A. 84.7

Huerta et al. [28] MORPH II
FRGC

4.25
4.17

N.A.Liu et al. [29] ICCV2015 3.33

Huo et al. [30] ChaLearn LAP 2016 1.75

Chen et al. [26] ICCV2015
FG-NET

N.A.
3.49

88.45
N.A.

Yang et al. [31] MORPH II 3.23 98.8

Niu et al. [32] MORPH II
AFAD

3.27
3.34 N.A.

Hu et al. [33] FG-NET
MORPH

2.8
2.78 N.A.

Chen et al. [27] MORPH 2.96 92.9

Li et al. [34] MORPH II
WebFace

3.06
6.04 N.A.

Qawaqneh et al. [35] Adience N.A. 62.37

Rodriguez et al. [36] Adience
MORPH II

N.A.
2.56

61.8
N.A.

Duan et al. [37] MORPH II 3.44

N.A.
Wan et al. [38]

CACD
MORPH II

ChaLearn Lap 2016

5.22
2.93
3.30
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Table 1. Cont.

Method Database MAE Accuracy (%)

Zaghbani et al. [39] MORPH II
FG-NET

3.34
3.75

Yoo et al. [40] MORPH II
FG-NET

2.89
3.46

Rattani et al. [41] Adience N.A. 80.96

Taheri et al. [42] MORPH II
FG-NET

3.17
3.29

N.A.
Taheri et al. [7] MORPH II

FG-NET
2.81
3.05

Noise and blur are generated when acquiring low-illumination images in general,
which leads to performance degradation in various computer vision fields that rely on
human facial images. For enhancing these low-illumination images, the methods employed
in previous research can be classified into image processing-based techniques such as his-
togram equalization methods and Retinex filtering, machine learning-based techniques,
and deep learning-based techniques [19]. Well-known cases of image processing-based
techniques for improving low illumination in facial images are as follows. In a study [43],
a method was proposed for enhancing illumination imbalance using discrete cosine trans-
form (DCT) low frequency coefficients after applying histogram equalization to facial
images. In a study [44], adaptive region-based image processing was suggested for com-
pensating low-illumination images that appear differently depending on various lighting
conditions. After partitioning an image into various regions according to lighting con-
ditions, contract and edges were used in adaptive region-based histogram equalization.
In a study [45], a selective illumination enhancement technique (SIET) was proposed for
enhancing low-illumination facial images. SIET was utilized for improving changes in
facial images due to the effects of non-uniform illumination; dark regions were isolated
and compensated with a correction factor that was determined based on an energy func-
tion to enhance illumination. Image processing-based techniques were more commonly
used for conventional low-illumination image enhancement than any other techniques.
Several studies have been conducted in recent years, as interests in machine learning-based
techniques and deep learning-based techniques are on the rise [46–48]. In a study [46],
enhancement networks are proposed for preventing performance degradation of facial
images being used for the mobile face unlock feature in low-light environments. Networks
typically consist of a decomposition part for partitioning input low-illumination facial
images into face normals and face albedos, and a reconstruction part for enhancing and
reconstructing images using spherical harmonic lighting coefficients. In a study [47], a
feature reconstruction network was proposed in which raw face images and illumination-
enhanced face images were all used in deep learning-based techniques for face recognition
in low illumination. A study [48] proposed REGDet, in which a recurrent exposure genera-
tion (REG) module for low-illumination enhancement is combined with a multi exposure
detection (MED) module for face detection in low-light environments. These studies on
improving low-light conditions are utilized in various fields, not only for facial images.
In recent years, a GAN-based method has been actively researched, where data distribu-
tion of low-light input images is converted into the data distribution of high-light target
images [49–51].

However, no study has examined age estimation considering low-light conditions.
This study, therefore, proposes a LAE-GAN-based age estimation method where low-
illuminated face images are enhanced, which are then subsequently used as input for
a CNN.

Table 2 presents the comparison between the proposed method and previous studies
in which low-light facial images were enhanced.
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Table 2. Comparisons between the proposed method and previous studies in which low-light facial images were enhanced.

Categories Method Application Database Strength Weakness

Image
processing

-based
techniques

Vishwakarma et al.
[43]

Face recognition

Yale Face B

Face recognition is
robust to the

low-illumination
problem

When the
environment changes,

parameters for
enhancement of
low-light images

need to be manually
revised.

Does not consider
low-illumination

images for age
estimation.

Du et al. [44]
Yale Face B,

Carnegie Mellon
database

Vidya et al. [45]
ORL, UMIST, Yale

Face B, Extended Yale
B, and color FERET

Maeng et al. [52] LDHF database

Baradarani et al. [53]

Yale Face B, Extended
Yale B, CMU-PIE,

FERET, AT&T, and
Labeled Face in the

Wild (LFW)

Kang et al. [54] LDHF database

Machine
learning
-based

techniques

Liang et al. [48]

Face detection

DARK FACE
database

Face detection robust
to the low

illumination problem

Training data for
restoration of

low-light images,
face detection, and
recognition need to

be trained.
Does not consider
low-illumination

images for age
estimation

Shen et al. [55] Self-constructed
database

Deep
learning
-based

techniques

Cho et al. [56] Self-constructed
database

Le et al. [46] Face recognition
Self-constructed

database
Face recognition
robust to the low

illumination problemHuang et al. [47] SoF database

LAE-GAN
(proposed method) Age estimation MORPH, FG-NET,

and AFAD

Age estimation
robust to the low

illumination problem

Additional procedure
for the training of

LAE-GAN is
necessary

3. Proposed Method
3.1. Overview of the Proposed Method

The age estimation method proposed in this study, which is effective for low-illumination
facial images, proceeds according to the four steps shown in Figure 1. The first and second
steps are pre-processing for age estimation using facial images effective for low light. In
the first step, the face and eye positions are detected in facial images using an adaptive
boosting (Adaboost) algorithm [57]. The detected positions become the reference points for
aligning facial images in the second step in order to compensate through in-plane rotation
and redefine face region of interest (ROI). The pre-processing step is explained in detail in
Section 3.2. The pre-processed facial images are input in the third step to LAE-GAN, which
has been trained with pairs of low- and high-illumination facial image for low-illumination
image enhancement. Finally, the enhanced facial images are used to the trained CNN for
age estimation.

3.2. Pre-Processing

In general, the facial region is not aligned in the captured human facial images,
which contain parts without age information such as the background. Misalignment in
facial images affects the age estimation performance [58]. Therefore, pre-processing, as
shown in Figure 2, was performed in this study. First, the Adaboost algorithm [57] is
used to detect the face region in the image. Within the detected face region, the exact eye
position is detected by designating an exploratory region where eyes may be located. The
explored positions of the face and eyes are as shown in Figure 2b, and they are used for
the redefinition of ROI and in-plane rotation compensation. Here, Equation (1) is used
to proceed with in-plane rotation compensation based on the estimated in-plane rotation
angle and bilinear interpolation; then, ROI of the human facial image is redefined with
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respect to the center of both eyes for removing the background image. In Equation (1), Rx
and Ry are horizontal and vertical positions of the right eye, while Lx and Ly are horizontal
and vertical positions of the left eye. The pre-processed image has the size of 256 × 256 × 3
as shown in Figure 2c.

θ = tan−1
(

Ry − Ly

Rx − Lx

)
(1)Mathematics 2021, 9, x FOR PEER REVIEW 6 of 30 

 

 
Figure 1. Overall procedure of the proposed method. 

3.2. Pre-Processing 
In general, the facial region is not aligned in the captured human facial images, which 

contain parts without age information such as the background. Misalignment in facial im-
ages affects the age estimation performance [58]. Therefore, pre-processing, as shown in 
Figure 2, was performed in this study. First, the Adaboost algorithm [57] is used to detect 
the face region in the image. Within the detected face region, the exact eye position is 
detected by designating an exploratory region where eyes may be located. The explored 
positions of the face and eyes are as shown in Figure 2b, and they are used for the redefini-
tion of ROI and in-plane rotation compensation. Here, Equation (1) is used to proceed 
with in-plane rotation compensation based on the estimated in-plane rotation angle and 
bilinear interpolation; then, ROI of the human facial image is redefined with respect to the 
center of both eyes for removing the background image. In Equation (1), 𝑅𝑅𝑥𝑥 and 𝑅𝑅𝑦𝑦 are 
horizontal and vertical positions of the right eye, while 𝐿𝐿𝑥𝑥 and 𝐿𝐿𝑦𝑦 are horizontal and ver-
tical positions of the left eye. The pre-processed image has the size of 256 × 256 × 3 as 
shown in Figure 2c. 

𝜃𝜃 = 𝑡𝑡𝑡𝑡𝑡𝑡−1 �
𝑅𝑅𝑦𝑦 − 𝐿𝐿𝑦𝑦
𝑅𝑅𝑥𝑥 − 𝐿𝐿𝑥𝑥

� (1) 

 
(a)                 (b)                      (c) 

Figure 2. Procedure of pre-processing of the face region. (a) Original PAL database image. (b) De-
tected face and eye regions using the Adaboost algorithm. (c) In-plane rotation compensation and 
face ROI redefinition. 

 

Figure 1. Overall procedure of the proposed method.

Mathematics 2021, 9, x FOR PEER REVIEW 6 of 30 
 

 
Figure 1. Overall procedure of the proposed method. 

3.2. Pre-Processing 
In general, the facial region is not aligned in the captured human facial images, which 

contain parts without age information such as the background. Misalignment in facial im-
ages affects the age estimation performance [58]. Therefore, pre-processing, as shown in 
Figure 2, was performed in this study. First, the Adaboost algorithm [57] is used to detect 
the face region in the image. Within the detected face region, the exact eye position is 
detected by designating an exploratory region where eyes may be located. The explored 
positions of the face and eyes are as shown in Figure 2b, and they are used for the redefini-
tion of ROI and in-plane rotation compensation. Here, Equation (1) is used to proceed 
with in-plane rotation compensation based on the estimated in-plane rotation angle and 
bilinear interpolation; then, ROI of the human facial image is redefined with respect to the 
center of both eyes for removing the background image. In Equation (1), 𝑅𝑅𝑥𝑥 and 𝑅𝑅𝑦𝑦 are 
horizontal and vertical positions of the right eye, while 𝐿𝐿𝑥𝑥 and 𝐿𝐿𝑦𝑦 are horizontal and ver-
tical positions of the left eye. The pre-processed image has the size of 256 × 256 × 3 as 
shown in Figure 2c. 

𝜃𝜃 = 𝑡𝑡𝑡𝑡𝑡𝑡−1 �
𝑅𝑅𝑦𝑦 − 𝐿𝐿𝑦𝑦
𝑅𝑅𝑥𝑥 − 𝐿𝐿𝑥𝑥

� (1) 

 
(a)                 (b)                      (c) 

Figure 2. Procedure of pre-processing of the face region. (a) Original PAL database image. (b) De-
tected face and eye regions using the Adaboost algorithm. (c) In-plane rotation compensation and 
face ROI redefinition. 

 

Figure 2. Procedure of pre-processing of the face region. (a) Original PAL database image. (b) Detected
face and eye regions using the Adaboost algorithm. (c) In-plane rotation compensation and face
ROI redefinition.

3.3. Enhancement of Low-Illuminated Face Image by LAE-GAN

This study proposes a method for compensating a low-illuminated face image using
LAE-GAN for age estimation, which is effective for low-light conditions. A conventional
conditional GAN [59] performs adversarial learning using paired GAN based on a pair of
input and target images. It consists of a generator, which outputs a generated image IOut

by receiving the random noise vector z and input image I In, and a discriminator, which
distinguishes between real and fake images by receiving I In and IOut or the target image
ITarget as input. In adversarial learning, the generator tries to deceive the discriminator
by generating a realistic image IOut. The discriminator tries to distinguish between the
generated image IOut and the target images ITarget. The generator has an encoder-decoder
structure. The encoder extracts the features of the input image I In, and a decoder maps
the patches corresponding to the extracted features. Such learning requires that the data
distribution of I In is converted to the distribution of ITarget using the loss function shown
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in Equation (2) below, where G is the generator, D is the discriminator, log is the decimal
logarithm, and E is an expected value (mean value).

LcGAN(G, D) = EI In ,ITarget

[
logD

(
I In, ITarget

)]
+EI In ,z

[
log(1− D

(
I In, G

(
I In, z

))
)
]

(2)

This study proposes LAE-GAN for compensating a low-illumination facial image to
a corresponding high-illumination facial image. In a study [59], the random noise vector
z allows image transformation to be easier and more diverse. The random noise vector z
in this study, however, simply acts as noise when compensating from low-illumination
facial image I In to high-illumination facial image IOut. Therefore, the loss function after
removing random noise vector z is as shown in Equation (3) below.

LcGAN(G, D) = EI In ,ITarget

[
logD

(
I In, ITarget

)]
+EI In

[
log(1− D

(
I In, G

(
I In
))

)
]

(3)

Due to the nature of adversarial learning of the generator and discriminator explained
above, the generator aims to deceive the discriminator by generating I In into IOut image
having a similar distribution as ITarget. This tendency can be trained so as to deceive the
discriminator rather than following the data distribution of ITarget. Hence, this study adds
the new L2 loss function, as shown in Equation (4), to the generator for maintaining the
identity of the ITarget image.

LL2(G) = EI In ,ITarget

[(
ITarget − G

(
I In
))2

]
(4)

Ultimately, the final loss function used in this study is as shown in Equation (5) below.
λ is the regularization term. The optimal λ was experimentally determined as 0.9 with
training data, which showed the highest accuracy of age estimation with training data.
arg min

G
max

D
represent the arguments of the generator and discriminator, which minimize

and maximize the loss functions of the generator and discriminator, respectively.

L = arg min
G

max
D
LcGAN(G, D) + λLL2(G) (5)

3.3.1. Generator

The encoder-decoder structure is one of the networks used for generating images [60,61].
U-net [62] is one of the commonly used networks and consists of an encoder for extracting
features and a decoder for mapping a patch corresponding to the extracted features of U-net;
however, it has a skip connection for preserving the high frequency information of the input
image. A skip connection is present between the ith layer and (n− i)th layer of U-net, and
concatenates the features extracted in the ith layer to the (n− i)th layer. Therefore, it preserves
the high frequency information of the input image as well as the original shape and detail.
The U-net generator was used in this study, and its detailed structure is represented in Table 3
below and Figure 3a.

Each encoder consists of blocks comprised of a convolution layer, a batch normaliza-
tion layer, and a leaky ReLU layer excluding the first encoder since the first encoder does
not include a batch normalization layer. Each decoder consists of decoder blocks comprised
of a deconvolution layer, a batch normalization layer, and a ReLU layer excluding the
sixth, seventh, and last decoders. Concatenation occurs from the skip connection after
batch normalization. The sixth and seventh decoder blocks emphasize the features of high
frequency information delivered through skip connection using a leaky ReLU layer. The
deconvolution layer uses transpose convolution, and the last decoder block consists of
tanh function.
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Table 3. Generator structure using U-net in LAE-GAN.

Layer Name Number of
Filters

Size of Feature Map
(Height ×Width ×

Channel)

Filter Size
(Height ×

Width)

Stride
(Height ×

Width)

Padding
(Height ×

Width)

Input image 256 × 256 × 3

Encoder

1st convolutional layer
Leaky ReLU layer 64 128 × 128 × 64 4 × 4 × 3 2 × 2 1 × 1

2nd convolutional layer
Batch normalization
Leaky ReLU layer

128 64 × 64 × 128 4 × 4 × 64 2 × 2 1 × 1

3rd convolutional layer
Batch normalization
Leaky ReLU layer

256 32 × 32 × 256 4 × 4 × 128 2 × 2 1 × 1

4th convolutional layer
Batch normalization
Leaky ReLU layer

512 16 × 16 × 512 4 × 4 × 256 2 × 2 1 × 1

5th convolutional layer
Batch normalization
Leaky ReLU layer

512 8 × 8 × 512 4 × 4 × 512 2 × 2 1 × 1

6th convolutional layer
Batch normalization
Leaky ReLU layer

512 4 × 4 × 512 4 × 4 × 512 2 × 2 1 × 1

7th convolutional layer
Batch normalization
Leaky ReLU layer

512 2 × 2 × 512 4 × 4 × 512 2 × 2 1 × 1

8th convolutional layer
Batch normalization
Leaky ReLU layer

512 1 × 1 × 512 4 × 4 × 512 2 × 2 1 × 1

Decoder

1st deconvolutional layer
Batch normalization

Concatenation
ReLU layer

512 2 × 2 × 512
2 × 2 × 1024 4 × 4 × 512 2 × 2 1 × 1

2nd deconvolutional layer
Batch normalization

Concatenation
ReLU layer

512 4 × 4 × 512
4 × 4 × 1024

4 × 4 ×
1024 2 × 2 1 × 1

3rd deconvolutional layer
Batch normalization

Concatenation
ReLU layer

512 8 × 8 × 512
8 × 8 × 1024

4 × 4 ×
1024 2 × 2 1 × 1

4th deconvolutional layer
Batch normalization

Concatenation
ReLU layer

512 16 × 16 × 512
16 × 16 × 1024

4 × 4 ×
1024 2 × 2 1 × 1

5th deconvolutional layer
Batch normalization

Concatenation
ReLU layer

256 32 × 32 × 256
32 × 32 × 512

4 × 4 ×
1024 2 × 2 1 × 1

6th deconvolutional layer
Batch normalization

Concatenation
Leaky ReLU layer

128 64 × 64 × 128
64 × 64 × 256 4 × 4 × 512 2 × 2 1 × 1

7th deconvolutional layer
Batch normalization

Concatenation
Leaky ReLU layer

64 128 × 128 × 64
128 × 128 × 128 4 × 4 × 256 2 × 2 1 × 1

8th deconvolutional layer
Tanh 3 256 × 256 × 3 4 × 4 × 128 2 × 2 1 × 1

Generated image 256 × 256 × 3
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concatenated image. Detailed explanations are given in Sections 3.3.1 and 3.3.2.

3.3.2. Discriminator

The discriminator in this study concatenates ITarget and IOut that are randomly input
with I In through convolution layers and proceeds with feature extraction to generate a
feature map of 30 × 30 × 1 in the last layer. The generated feature map can be considered
as a set of 1 × 1 × 1 grids. The grids are used to analyze local information of a 70 × 70
receptive field instead of global information in which the local information that may be lost
in the global information is utilized to adequately express detail and shape of the image.
Therefore, such learning can reduce blurry results rather than applying L1 loss or L2 loss
to the entire features; further, the information of the original image can be preserved as
much as possible. For maintaining the disposition of the original image and discerning the
authenticity of the input image, the discriminator consistently receives I In as input. The
features extracted from I In will express the information that the image must consistently
maintain and thus prevent improper learning of the generator between adversarial learning.
The detailed structure of the discriminator is presented in Table 4 and Figure 3b.

3.4. Difference of Conditional GAN

The LAE-GAN proposed in this study has the following differences from the conven-
tional conditional GAN [59]:

• A random noise vector was used in the conventional conditional GAN for inducing
image transformation, but it has been removed in this study as it has a stronger
negative effect than noise in a 1:1 mapping structure between input data and target
data for low-illumination image compensation;

• L2 loss function was used in the generator to preserve the identifiable information of
the input data;
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• Leaky ReLU was used in the 6th and 7th decoder blocks of the generator to strengthen
the high frequency information of the input image delivered through skip connections;

• ReLU was used in the 4th convolution layer of the discriminator.

Table 4. Discriminator structure in LAE-GAN.

Layer Name Number of Filters
Size of Feature Map
(Height ×Width ×

Channel)

Filter Size
(Height ×Width)

Stride
(Height ×Width)

Padding
(Height ×Width)

Input image 256 × 256 × 3

Generated or target
image 256 × 256 × 3

Concatenation 256 × 256 × 6

1st convolutional
layer

Leaky ReLU layers
64 128 × 128 × 64 4 × 4 × 6 2 × 2 1 × 1

2nd convolutional
layer

Batch normalization
Leaky ReLU layers

128 64 × 64 × 128 4 × 4 × 64 2 × 2 1 × 1

3rd convolutional
layer

Batch normalization
Leaky ReLU layers

256 32 × 32 × 256 4 × 4 × 128 2 × 2 1 × 1

4th convolutional
layer

Batch normalization
ReLU layers

512 31 × 31 × 512 4 × 4 × 256 1 × 1 1 × 1

5th convolutional
layer 1 30 × 30 × 1 4 × 4 × 512 1 × 1 1 × 1

Sigmoid layer 30 × 30 × 1

3.5. Age Estimation

In this study, age estimation was performed by training various CNNs using facial
images enhanced by LAE-GAN. Training was performed using VGG [25], which achieved
high accuracy in conventional image classification. The residual network (ResNet) [63],
various networks that produced good accuracy in age estimation [25,29,63,64], and age
estimation performance were compared according to the compensation of low-illumination
facial images.

3.5.1. VGG

VGG [25] is a well-known classification network that has achieved high performance
in ImageNet and is used or applied in various age estimation studies [29,64]. In general,
classification performance tends to improve in deep learning networks as the depth in-
creases. The performance of VGG was compared by implementing CNNs of different
depths. Filters of 5 × 5 size and 7 × 7 size can be replaced with continuous filters of 3 × 3
size while reducing computational complexity; non-linearity of a network was secured by
using a 1 × 1 convolution. In this study, age estimation performance was evaluated using
VGG-16, which is fairly well-known among various VGG networks.

3.5.2. DEX

In a study [64], a VGG-16-based network was used to produce good performance in
the age estimation field in the ChaLearn competition. DEX is an ImageNet database for
which VGG-16 was pre-trained using an extensive number of databases, including IMDB
and Wiki. Moreover, instead of estimating age based on the probability value of a class,
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age was estimated as the sum of the product of a class label and the probability of the
respective label, as shown in Equation (6):

Age(X) =
n

∑
1

ci pi (6)

where X is the input image, while n is the entire class (age range). Accordingly, ci and pi
are the label and probability of the ith class, respectively. As described above, DEX [64] is a
VGG-based network which has 13 convolution layers and 3 fully connected layers. Like
DEX, we used categorical cross entropy loss [65], as shown in Equations (7) and (8).

f (s)i =
esi

Σc
j=1esj

(7)

LCE = −
C

∑
i

tilog( f (s)i) (8)

In Equations (7) and (8), f (·) is a softmax activation function, e represents an expo-
nential function, t is a ground-truth age, and s is an estimated age. In addition, C is the
number of classes, i is the ith class, and log is the decimal logarithm. An adaptive moment
estimation (Adam) optimizer [66] was used in our experiments, whereas DEX adopts a
stochastic gradient descent (SGD) optimizer.

3.5.3. ResNet

ResNet [63] is a prototypical classification network that has achieved high performance
in ImageNet. Furthermore, it has been widely used in various studies that researched age
estimation—particularly in studies that use unique residual blocks and skip connections.
It consists of continuous filters having 1 × 1, 3 × 3, and 1 × 1 sizes, and has a bottleneck
structure for giving reduction and expansion effects on the dimension of a feature map. A
weights sum is applied to the feature maps before and after the residual block to resolve
the vanishing gradient problem. A skip connection is also present for maintaining the
identity of the input image. ResNet is a network which has various depths depending on
the number of residual blocks; in this study, ResNet-50 and ResNet-152 pre-trained with
the ImageNet database are used in the experiment.

3.5.4. Age-Net

In a study [29], VGG and Age-Net were used for age estimation, which resulted in
excellent age estimation performance in the ChaLearn competition. Training included
the first step involving VGG and the second step involving Age-Net in which VGG—pre-
trained with ImageNet—is fine-tuned using the MORPH database [67]. Then, various open
databases are mixed and classified into two types to be trained using the KL divergence
loss and softmax loss function. This process creates four fine-tuning models where a
concatenated feature map is generated in the last layer of each model using a distance-
based voting ensemble method. Secondly, Age-Net is trained with various open databases
for which Kullback–Leibler (KL) divergence loss function is used. VGG and Age-Net
have the same output dimension where the average of the two networks was estimated as
the predicted age if the difference between the two networks was 11 or below; or, if the
difference was greater than 11, the result of the first network (VGG) was then estimated as
the predicted age.

3.5.5. Inception with Random Forest

In a study [68], the Inception v2 network [69] was applied with the random forest (RF)
for age estimation. Inception v2 is a network that extracts features using convolution filters
of various sizes and concatenates the extracted features to ensure the balance between
a sparse nature and a dense nature of network training. Features are extracted using
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Inception v2 pre-trained with various databases as a feature extractor, and RF is used to
perform age learning.

4. Experimental Results
4.1. Experimental Data and Environment

In this study, the experiment was conducted using the MORPH [67], FG-NET [70],
and AFAD [71] databases, which are open databases, as shown in Figure 4. The MORPH
database has 55,134 facial images of 13,617 individuals aged between 16 and 77. In addition,
the FG-NET database contains 1002 images of 82 individuals aged between 0 and 69. The
AFAD database contains 164,432 facial images of individuals aged between 15 and 40.
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databases, respectively.

Since open facial databases acquired in low-light environments and containing age
information do not exist, the aforementioned open databases were transformed to low-
illumination images to proceed with training and testing in this study. The same pre-
processing explained in Section 3.2 was applied to the training images to redefine the ROI
of facial images. The pre-processed low-light image and the original image are used as
input images and target images for training. When illumination decreases in the actual
environment, pixels with a large brightness value experience significant changes, while
pixels with a small brightness value experience relatively smaller changes. For representing
such a non-linear nature, a gamma correction [72] technique was applied in this study to
generate low-illumination facial images. Original RGB images were converted to HSV
images, which consist of hue, saturation, and value channels, expressed as H, S, and V
channels, respectively. Gamma correction was applied to the V channel to decrease the
non-linear brightness value. Blurry images are generated due to the exposure time of a
camera in low-light environments in which noise due to a camera sensor is also generated.
For applying these elements, a Gaussian blur was applied to generate a blurry image,
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while Gaussian and Poisson noises were applied to generate noise in this experiment.
Equation (9) below shows the effects used for generating low-illumination facial images.

Io = BG
(
S · (Iv)

γ)+ NG + NP (9)

In Equation (9), Iv is the V channel value of the HSV image, while Io is the V channel
value of the low-illumination image generated as above. S and γ are gamma correction
parameters for which S is 0.06 and γ is 2.5. BG is the Gaussian blur kernel, for which
the standard deviation σ was randomly applied between 1.5 and 2. We selected these
values based on previous studies [73,74]. Lastly, NG and NP are Gaussian and Poisson
noise, respectively. Figure 5 shows the examples of the original facial images and low-
illumination facial images generated for the experiment. Figure 5c shows the corresponding
histogram-equalized images of low-illumination facial images of Figure 5b. Although the
low-illumination images of Figure 5b are difficult to discriminate via the human eye, we can
confirm that they have rough information of face images as shown in Figure 5c. Therefore,
the algorithm does not estimate age from non-usable/non-visible images.
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For the experiment, we used a desktop computer, which was equipped with a 3.5 GHz
CPU (Intel Core™ i7-3770K) and 24 GB RAM. Windows TensorFlow (version 2.2.0) [75] was
utilized for the training and testing procedure. We used an NVIDIA graphics processing
unit (GPU) card including 1920 compute unified device architecture (CUDA) cores and
8 GB memory (Nvidia GeForce GTX 1070 [76]). To extract the face ROI, we used the Python
program (version 3.5.2) [77] and the OpenCV (version 4.2.0) library [78].

4.2. Training of LAE-GAN for Image Enhancement of Low Illumination and CNN for
Age Estimation

LAE-GAN, explained in Section 3.3, was used to enhance low-illumination images into
high-illumination images, and various age estimation networks explained in Section 3.4 were
used to estimate ages. LAE-GAN was trained with low-illumination images as input images
and high-illumination images as target images. As explained in Section 4.1, pre-processed
training data were resized into 286 × 286 × 3 and then randomly cropped to 256 × 256 × 3
through online augmentation for training. An Adam optimizer [66] was used during training.
Learning rate, beta_1, and beta_2 were set to 0.0002, 0.5, and 0.999, respectively, for training,
which was conducted over 100 epochs. The optimal parameters of learning rate, beta_1,
beta_2, and the number of epoch were experimentally determined with training data, which
showed the highest accuracy of age estimation with the training data.

Figure 6 shows the training loss graphs of the generator and discriminator when
LAE-GAN was trained using the MORPH database. Figure 6a shows the loss graph of
the generator, and Figure 6b shows the loss graph of the discriminator. In general, when
the loss function converges to 0, the training can be regarded as progressing well. The
discriminator has a binary classification problem that discriminates real and fake images,
and the network is simple. On the other hand, the generator that enhances the image has
a deep network. Therefore, the discriminator has a lower learning complexity than the
generator. Consequently, the discriminator loss converges relatively quickly compared to
the generator loss, and the converged loss value of discriminator is usually lower than that
of generator. In this study, by adding the L2 loss, the loss of the discriminator temporarily
increases. However, the discriminator loss converges at a similar time to the generator
loss. As shown in Figure 6a,b, both generator and discriminator loss converged, which
indicates that LAE-GAN was properly trained. Subsequently, the CNN was trained for
age estimation using the facial images enhanced with trained LAE-GAN. Various age
estimation networks explained in Section 3.4 were used for training. Previously trained
networks were fine-tuned, in which the training was conducted for 200 epochs. Figure 7
shows the training loss and accuracy graphs of DEX [64], which exhibited the highest
age estimation performance. The convergence of the loss function means that the error is
reduced, so the accuracy should be improved. In Figure 7, as training loss stably converged
and accuracy stably increased, the network could be considered adequately trained.
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Io is an original image of high illumination and Ie is the generated image. m and n 
show the width and height of the image, respectively. 
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4.3. Testing with the MORPH Database

In the first experiment, the image enhancement performances of the LAE-GAN pro-
posed in this study and other state-of-the-art networks were compared. CycleGAN [79],
Attention GAN [80], Attention cGAN [81], and conditional GAN [59] were used to com-
pare the illumination enhancement performance with LAE-GAN; the signal-to-noise ratio
(SNR) [82], peak signal-to-noise ratio (PSNR) [83], and structural similarity (SSIM) [84]
were used for comparing the similarity between the original image and the generated
enhanced image. Equations (10)–(13) represent the equations for MSE, SNR, PSNR, and
SSIM, respectively. SNR, PSNR, and SSIM values tend to be higher if the similarity between
two images is higher.

MSE =
1

mn

m−1

∑
i=0

n−1

∑
j=0

[Io(i, j)− Ie(i, j)]2 (10)

SNR = 10log10

 ∑m−1
i=0 ∑n−1

j=0 [Io(i, j)]2

mn
MSE
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(
2552

MSE

)
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Io is an original image of high illumination and Ie is the generated image. m and n
show the width and height of the image, respectively.

SSIM =
(2µeµo + C1)(2σeo + C2)

(µe2 + µo2 + C1)(σe2 + σo2 + C2)
(13)

µo and σo show the mean and standard deviation of the pixel values of an original
image of high illumination, respectively. µe and σe show the mean and standard deviation
of the pixel values of a generated image, respectively; σeo is the covariance of the two images.
C1 and C2 are the positive constant values, which make the denominator non-zero.

As shown in Table 5, there exist other methods that exhibited better performance
than LAE-GAN in SNR and PSNR, whereas LAE-GAN resulted in the best performance in
SSIM. However, PSNR and SNR cannot accurately evaluate the similarity and difference
in the visual definitions of humans [85,86]. SSIM, on the other hand, is more suitable for
evaluating similarities in definitions since it is a measurement designed for improving
PSNR and SNR [84]. Accordingly, it can be confirmed that the proposed method resulted
in the highest accuracy.
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Table 5. Comparative accuracies of enhancement by our network and the state-of-the-art methods.

Methods SNR PSNR SSIM

CycleGAN [79] 1.2971 19.0120 0.5024

Attention GAN [80] 1.1808 16.3112 0.5011

Attention cGAN [81] 1.2734 18.5221 0.5631

Conditional GAN [59] 1.4802 19.8352 0.6207

LAE-GAN 1.3924 18.9404 0.6223

Figure 8 illustrates the images enhanced by various networks presented in Table 5.
Figure 8c shows the corresponding histogram-equalized images of the low-illumination
facial images of Figure 8b. Although the low-illumination images of Figure 8b are difficult
to discriminate by the human eye, we can confirm that they have rough information of face
images as shown in Figure 8c. Therefore, the algorithms are not getting better images from
completely random/black images. In addition, as shown in Figure 8h, the proposed LAE-
GAN successfully transforms the low-illumination facial images for Figure 8b. The LAE-
GAN proposed in this study has more outstanding image enhancement effects compared
to other networks, as shown in Figure 8.

For the next experiment, age estimation accuracy was compared using various networks
explained in Section 3.4 for the images enhanced by LAE-GAN, as shown in Table 6. For
evaluating the age estimation accuracy, MAE, which is the most often-used measure, is used
as shown in Equation (14). A lower MAE value indicates higher age estimation accuracy.

MAE =
1
n

n

∑
i=1
|pi − yi| (14)

Table 6. Comparisons of age estimation accuracies by various methods on the MORPH database
(unit: years).

Method MAE

Age estimation using various age estimators with
LAE-GAN

VGG-16 [25] 13.99

ResNet-50 [63] 12.83

ResNet-152 [63] 12.76

DEX [64] 12.46

AgeNet [29] 15.33

Inception with RF [68] 15.01

Age estimation using original facial images or low
-illuminated facial images without or with LAE-GAN

Original 5.8

Low illumination
(without LAE-GAN) 19.02

Enhanced by
LAE-GAN
(proposed)

12.46

Age estimation by our network or the state-of-the-art
methods

CycleGAN [79] 16.97

Attention GAN [80] 19.00

Attention cGAN [81] 18.60

Conditional GAN [59] 13.01

LAE-GAN 12.46

In the equation, n is the number of images, pi is the estimated age, and yi is the
ground-truth age.
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The experiment results showed that DEX had the best performance in age estimation.
The age estimation performance of other networks were better than the age estimation
performance based on low-illumination facial images, as shown in Table 6. Therefore, it
can be concluded that the LAE-GAN used in this study performed better in enhancing
low-illumination facial images for age estimation.

In Table 6, age estimation performance, or baseline performance, was measured in
original images of high-illumination and low-illuminated images with or without LAE-
GAN using DEX—-which had the best performance in Table 6. In each case, DEX was
fine-tuned using the training data, and accuracy was evaluated using the testing data.
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As shown in Table 6, a MAE of 5.8 years was found in the original images of high
illumination, whereas a MAE of 19.02 years was found in the low-illuminated images
without LAE-GAN. However, the MAE was significantly reduced to 12.46 years when LAE-
GAN was used. In Table 6, in the case of “Original” images, we trained and tested with the
original dataset. In the case of “Low illumination (without LAE-GAN)”, we trained and
tested with the low-illumination dataset. In case of “Enhanced by LAE-GAN (proposed)”,
we trained and tested with the image dataset enhanced by LAE-GAN. Therefore, they were
fair comparisons, since the model was trained on one set of images and its performance
was also evaluated on the same set.

For the next experiment, the age estimation performance of the LAE-GAN and other
state-of-the-art networks were compared. For a fair evaluation, DEX was used as an
age estimator for all cases. As shown in Table 6, LAE-GAN had the greatest effect on
low-illumination facial image enhancement and age estimation performance improvement.

Figures 9 and 10 show good cases and bad cases, respectively, of age estimation
performance when age is estimated using DEX and LAE-GAN. The first and second rows
of Figures 9 and 10 are original images and low-illumination images, respectively. The
third rows of Figures 9 and 10 are facial images enhanced using LAE-GAN. In Figure 9, the
images were enhanced to be very similar to the original images, unlike Figure 10, where
high frequency information such as wrinkles or detailed information such as the skin
texture of the original images were not adequately restored in the enhancement images.
Consequently, a higher portion of bad cases was found when low-illumination images
of older individuals were enhanced to appear as images of younger individuals—which
resulted in less accurate age estimation.

4.4. Testing with the AFAD Database

For verifying the generality of the proposed method, an experiment was conducted
using a different open database—the AFAD database. For the first experiment, age estima-
tion accuracy was compared using the various networks explained in Section 3.4 for the
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images enhanced by LAE-GAN, as shown in Table 7. The experiment results showed that
the best performance was exhibited by Inception with RF, unlike the MORPH database.

Table 7. Comparisons of age estimation accuracies by various methods on the AFAD database
(unit: years).

Method MAE

Age estimation using various age estimators with LAE-GAN

VGG-16 [25] 14.10

ResNet-50 [63] 16.31

ResNet-152 [63] 14.35

DEX [64] 14.12

AgeNet [29] 15.17

Inception with RF [68] 13.81

Age estimation using original facial images or
low-illuminated facial images without or with LAE-GAN

Original 7.08

Low illumination
(without LAE-GAN) 16.10

Enhanced by LAE-GAN
(proposed) 13.81Mathematics 2021, 9, x FOR PEER REVIEW 20 of 30 
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Figure 9. Good cases of age estimation by proposed method. The 1st, 2nd and 3rd rows show the
original, low-illuminated images, and the enhanced one by LAE-GAN, respectively.

In Table 7, age estimation performance, or baseline performance, was measured in
original images of high illumination and low-illuminated images with or without LAE-
GAN using Inception with RF, which had the best performance in Table 7. In each case,
Inception with RF was fine-tuned using the training data, and accuracy was evaluated
using the testing data.

As shown in Table 7, a MAE of 7.08 years was found in the original images of high
illumination, where a MAE of 16.10 years was found in the low illuminated images without
LAE-GAN. However, MAE was reduced to 13.81 when LAE-GAN was used.
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Figures 11 and 12 show good cases and bad cases, respectively, of age estimation perfor-
mance when age is estimated using Inception with RF with LAE-GAN. The first and second
rows of Figures 11 and 12 are original images and low-illumination images, respectively. The
third rows of Figures 11 and 12 are facial images enhanced using LAE-GAN.
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Figures 11 and 12 show blurs in the enhanced facial images. However, blur is more severe
in bad cases compared to good cases in Figure 11, and many enhanced images with severe
noise were observed, which ultimately led to degradation in age estimation performance.

4.5. Testing with the FG-NET Database

For verifying the generality of the proposed method, an experiment was conducted
using another open database—-the FG-NET database. For the first experiment, age esti-
mation accuracy was compared using various networks explained in Section 3.4 for the
images enhanced by LAE-GAN, as shown in Table 8. The experiment results showed that
the best performance was exhibited by DEX, similar to the MORPH database.

Table 8. Comparisons of age estimation accuracies by various methods on the FG-NET database
(unit: years).

Method MAE

Age estimation using various age estimators with LAE-GAN

VGG-16 [25] 10.22

ResNet-50 [63] 11.00

ResNet-152 [63] 9.74

DEX [64] 9.55

AgeNet [29] 10.40

Inception with RF [68] 10.14

Age estimation using original facial images or
low-illuminated facial images without or with LAE-GAN

Original 6.42

Low illumination
(without LAE-GAN) 11.31

Enhanced by LAE-GAN
(proposed) 9.55
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In Table 8, age estimation performance, or baseline performance, was measured in
original images of high illumination and low-illuminated images with or without LAE-
GAN using DEX, which had the best performance in Table 8. In each case, DEX was
fine-tuned using the training data, and accuracy was evaluated using the testing data.

As shown in Table 8, a MAE of 6.42 years was found in the original images of high
illumination, whereas a MAE of 11.31 years was found in the low-illuminated images
without LAE-GAN. However, MAE was reduced to 9.55 when LAE-GAN was used.

Figures 13 and 14 show good cases and bad cases, respectively, of age estimation
performance when age is estimated using DEX and LAE-GAN. The first and second rows
of Figures 13 and 14 are original images and low-illumination images, respectively. The
third rows of Figures 13 and 14 are facial images enhanced using LAE-GAN.

As shown in Figures 13 and 14, when LAE-GAN was trained using the FG-NET
database, the overall color of the images changed, but detailed information and overall
shape were expressed adequately in good cases compared to the bad cases. An enhanced
image different from the original image was generated in some bad cases, which increased
errors in age estimation.
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4.6. Discusion and Analysis of Grad CAM

In our experiments, we used the AFAD database, which already includes images with
severe slant angles (in-plane and out-plane rotations) and illumination variations as shown
in Figure 15a. The number of images of these severe slant angles and illumination variations
are almost 20% of the total number of images of the AFAD database. However, our LAE-
GAN successfully transformed the low-illumination images (Figure 15b) of these severe
slant angles and illumination variations into enhanced ones as shown in Figure 15c, and
our method shows a higher accuracy of age estimation than the state-of-the-art methods,
as shown in Table 7.
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In addition, gradient-weighted class activation mapping (Grad-CAM) [87] images
extracted from each layer of DEX, with the images enhanced using LAE-GAN as input,
were analyzed. Figure 16a is the original facial image, while the pictures on the left and
right sides in Figure 16b are low-illumination images and the images enhanced by LAE-
GAN, respectively. Figure 16c through Figure 16g are Grad-CAM images extracted from
the first, fourth, eighth, and eleventh convolutional layers and the last max pooling layers.
The pictures on the left in Figure 16c–g are Grad-CAM images, while the pictures on the
right are the LAE-GAN-enhanced images overlapped with the Grad-CAM images.
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Figure 16. Examples of Grad-CAM images extracted from DEX where LAE-GAN enhanced images
are used as input. (a) Original images, (b) low-illumination images (left) and LAE-GAN enhanced
images (right). (c–g) are Grad-CAM images extracted from the first, fourth, eighth, and eleventh
convolutional layers and the last max pooling layers of DEX. The left pictures in Figure 16c–g are
Grad-CAM images, while the right pictures are the LAE-GAN-enhanced images overlapped with the
Grad-CAM images.
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As shown in Figure 16c,d, high activation areas, mostly in the high frequency areas
such as the eyes, nose, mouth, and lines, in the Grad-CAM images are extracted from
the front convolutional layers of DEX. As convolution proceeds, it can be observed in
Figure 16e–g that activation areas are found in more global areas of the face, including
the eyes, nose, and mouth. As shown in Figure 16g, the features effective for age estima-
tion are adequately extracted through the eye, nose, and mouth areas of the face using
the proposed method.

5. Conclusions

Human facial images acquired in low-illumination environments lose the information
required for age estimation because various kinds of noise and blur are generated. There-
fore, to overcome the problem of degradation in age estimation performance of human
facial images captured in low-light environments, this study proposed a new LAE-GAN
for enhancing low-illumination images and performed a CNN-based age estimation on
the enhanced images. The results of the experiments conducted using open databases—
including the MORPH database, FG-NET database, and AFAD database—showed that
low-illumination images enhanced with the LAE-GAN proposed in this study produced
better age estimation performance compared to state-of-the-art enhancement networks.
However, in the case of enhancement by LAE-GAN, high-frequency information such as
wrinkles and detailed information such as the skin texture of the original image were not
fully restored in the enhanced image, or different images from the original image were
generated. In addition, the restored images are a little blurred and include additional noise
through the transformation by LAE-GAN.

For solving these issues in the future, adding a loss function to fully restore skin
texture or strengthening an identity loss to prevent different enhanced images from being
generated will be investigated further. Moreover, more research will be conducted on age
estimation and image enhancement using images of various illumination and angles in
addition to facial image compensation that is more effective against various environments
that are found in the real world. Although the proposed method shows high performance,
the processing time is increased by operating two models of LAE-GAN and an age estimator.
In future work, we intend to investigate a method to combine these two models into one,
which can enhance the processing speed without reducing the accuracy of age estimation.
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