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Abstract: The search for powerful optimizers has led to the development of a multitude of meta-
heuristic algorithms inspired from all areas. This work focuses on the animal kingdom as a source
of inspiration and performs an extensive, yet not exhaustive, review of the animal inspired meta-
heuristics proposed in the 2006–2021 period. The review is organized considering the biological
classification of living things, with a breakdown of the simulated behavior mechanisms. The cen-
tralized data indicated that 61.6% of the animal-based algorithms are inspired from vertebrates and
38.4% from invertebrates. In addition, an analysis of the mechanisms used to ensure diversity was
performed. The results obtained showed that the most frequently used mechanisms belong to the
niching category.

Keywords: metaheuristics; optimization; animal-inspired; exploration; exploitation

1. Introduction

A metaheuristic is a high level, problem-independent framework that provides a series
of steps and guidelines used to develop heuristic optimizers [1]. Nowadays, the tendency
is to use the term for both the general framework and for the algorithms built based on its
rules [1]. In the latest years, the literature has shown an increase in the number of proposals
of new optimization metaheuristics and their improvements through step alterations,
local search procedures or hybridizations [2]. For a few well-known metaheuristics, the
numerical evolution of the number of papers (journal and conferences) from the IEEE
library is provided in [3]. The work of Hussain et al. in [2] presents a detailed distribution
of types of research (basic, improvement, applications) focusing on all metaheuristics and,
in [4], a timeline of the history of a set of representative techniques is provided.

This increase has been fueled by the need to efficiently find good solutions for difficult
problems, especially for those where classical techniques fail to provide acceptable results
within a reasonable amount of time and resources consumed.

All of these new optimizers (as well as the existing ones) follow the principles of the
No Free Lunch Theorem (NFL), which states that if “an algorithm gains in performance on
one class of problems it necessarily pays for on the remaining problems” [5]. In a simplistic
view, this can be interpreted as meaning that one specific algorithm cannot outperform
its counterparts on all problems but only on specific types or classes of problems, and it
was shown that it is theoretically impossible to have a best general-purpose optimization
strategy [6] (more details about NFL and its detailed analysis can be found in [7]). Conse-
quently, researchers will probably never be satisfied with the existing metaheuristics [6],
and this gives room for the development of new algorithms, improvements and strategies.
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The oldest type of metaheuristic optimizers (from the 60s and 70s) is represented by
genetic algorithms, based on the evolutionary processes; however, in their quest for better
optimization of metaheuristics, researchers have turned to new sources of inspiration.
Nowadays, the world of metaheuristics is large and covers ideas varying from the behavior
of the very small, e.g., viruses and bacteria, to the mechanisms of galaxies. This multitude
of algorithms can be somewhat overwhelming and, therefore, the objective of this paper is
to identify the main directions of research, in terms of sources of inspiration, and to shed
some light on the mechanisms used to generate powerful optimizers.

2. Classification and Categorization

When trying to identify the main classes of metaheuristics, various criteria can be
applied. Examples include: search path, memory use, neighborhood exploration, number
of solutions transferred from one iteration to the next and parallelization ability [8,9]. An ex-
tensive discussion related to the issue of classification and categorization for metaheuristics
and the different schemes used can be found in [10].

In terms of categorizations, different aspects can be considered. For example, the type
of candidate solutions is one of the most used criteria, and it splits the metaheuristic into:
(i) individual-based, also known as single solutions, trajectory methods [1] or individualist
algorithm [11] and (ii) population-based or collective algorithms [11]. In the individual-
based group, a single solution is evolved. The main advantages of these methods consist
in simplicity, lower computational costs and a lower number of function evaluation [11].
However, in their basic form, they can become trapped in the local optima and, since there
is no information sharing, as there is just one solution, issues such as isolation of optima, de-
ceptiveness and bias of the search space need to be dealt with [12]. Examples of algorithms
that belong to this class are: Simulated Annealing (SA) [13]; Tabu Search (TS) [14]; Variable
Neighborhood Search (VNH) [15]; Iterated Local Search (ILS) [16], proposed before 2006;
Vortex Search (VS) [9], proposed after 2006. In the case of the population-based algorithms,
multiple solutions are generated and improved. Distinctive from the individual-based
algorithms, the population-based approaches allow some information exchange between
the candidate solutions and thus can handle aspects that the individual-based approaches
struggle with [12]. However, the cost of the improved performance is higher complexity
and a larger number of function evaluations. The majority of metaheuristics are population-
based and can themselves be classified into approaches that [17]: (i) increase the population
diversity through the variation of control parameters; (ii) maintain population diversity
through the replacement of individuals in the current population; (iii) include memory
to store promising solutions; (iv) divide the population into subpopulations; (v) combine
multiple methods, i.e., hybrid approaches.

When type of search is considered, metaheuristics can be local or global. The local
search approaches tend to be more exploitative while the global algorithms are more
explorative in nature [2]. On the other hand, in the latest years, the trend is to create
hybrids that combine the two types of searches. The best-known examples of local search
algorithms are TS, ILS and Greedy Randomized Adaptive Search Procedure (GRASP).
Differential Evolution (DE), Particle Swarm Optimization (PSO) and Genetic Algorithms
(GA) are examples of global search algorithms. Although the global search approaches
can be hybridized to also include local procedures as a means to improve a previously
proposed version, the literature presents algorithms that include this global–local search
combination from the first version, e.g., the Bat Algorithm (BA) [18], the Shuffle Frog Leap
Algorithm (SFL) [19] or Water Wave Optimization (WWO) [20].
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When considering the source of inspiration, the majority of authors identify the
metaheuristics as evolutionary and swarm intelligence techniques [11]. An extended
categorization can be considered, such as the one in [21], where two more groups are
included: stochastic and physical. In the latest years, various sources of inspiration have
been used for metaheuristics. Therefore, this categorization must be extended to include
all of the new methods. As a result, this work performs an extensive literature review of
the proposed approaches covering the years 2006–2021. The review is organized around
the biological classification of living things (kingdom-phylum-class), and its aim is to
determine the main directions of research followed in the last 15 years and to identify new
potential directions. The work [22] has a similar aim but focuses on all types of sources
of inspirations for metaheuristics. Taking into account the variety of aspects that can be
analyzed and the number of algorithms, this work only considers the metaheuristics with
a biological base.

Regarding classification of metaheuristics, the work of Stegherr et al. [10] presents
a seven-layer classification system. It focuses on structure (with criteria that include
discontinuances, population, local search and memory), behavior (with criteria that include
the strategy to create new solutions, groups and sub-populations), search (with criteria
dealing with the intensification and diversification capabilities), algorithm (with criteria
including the basic components incorporated), specific features (dealing with capabilities,
i.e., use of adaptive parameters), evaluation (concerning the efficiency on various types
of problems) and metaheuristics (which contains the specific algorithm that corresponds
to the characteristics form the previous levels). If the first six levels are viewed from a
framework perspective, the metaheuristic level deals with algorithms.

3. Source of Inspiration

In order to perform the current review, the main databases searched were: ScienceDirect
(https://www.sciencedirect.com/, accessed on 6 August 2021), Web of Science (https:
//apps.webofknowledge.com/, accessed on 6 August 2021), Google Scholar (https://
scholar.google.ro/, accessed on 6 August 2021), Springer Link (https://link.springer.com/,
accessed on 6 August 2021) and IEEE Xplore Digital Library (https://ieeexplore.ieee.org/
Xplore/home.jsp, accessed on 6 August 2021). The terms used in the search process were
“metaheuristics”, “nature-inspired optimizers” and “bio-inspired algorithms”. The strategy
to use both nature-inspired and bio-inspired terms is related to the fact that, in many works,
there is not a clear distinction between the two and they are used to describe a variety of
metaheuristics. Based on the identified sources, a drill down (study of the references used)
and drill up approach (study of the papers citing a specific work) were applied in order to
determine additional appropriate manuscripts. For the covered period, 283 algorithms were
identified. Their distribution, based on the inspiration source, is presented in Figure 1.

By analyzing the identified categories, two main groups can be distinguished: biologi-
cal and non-biological sources. The biological sources include animals, plants and humans,
while the non-biological sources are represented by the chemical and physical laws of
nature. Therefore, broadly speaking, the optimization metaheuristics can be grouped into:
(i) biologically-inspired and (ii) nature-inspired.

https://www.sciencedirect.com/
https://apps.webofknowledge.com/
https://apps.webofknowledge.com/
https://scholar.google.ro/
https://scholar.google.ro/
https://link.springer.com/
https://ieeexplore.ieee.org/Xplore/home.jsp
https://ieeexplore.ieee.org/Xplore/home.jsp
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Figure 1. Distribution of newly proposed algorithms in the period 2006–2021, based on their inspira-
tion source.

As it can be observed from Figure 1, the largest group of newly proposed metaheuris-
tics in the considered period have animals as a source of inspiration, and this group is the
main focus of the current work. Although humans, from a biological point of view, belong
to the animal group, Chordata (vertebrates) phylum, in this work they were not included
because they deserve a separate discussion, considering the unique ways of thinking,
behaving and interacting with the environment.

In the latest years, various reviews have tried to shed light on the novel approaches
that are constantly developed. Examples include: (i) a comprehensive list of algorithms
and the steps of a few selected approaches [23]; (ii) a detailed discussion about the main
research aspects specific to the field of nature-inspired metaheuristic optimizers [2]. In most
works, researchers present the names of the best-known metaheuristics and a few details
about the general ideas. This work aims to provide a series of details (such as: source
code availability, improvement, applications, mechanisms for controlling the exploration-
exploitation balance) in a systematic manner, for each algorithm considered.

3.1. Vertebrates

Most algorithms inspired by animals simulate two main general behaviors: (i) food
search (foraging) and (ii) mating. For foraging, there are a number of theoretical models
developed to predict the behavior of living things: the optimal foraging theory, the ideal
free distribution, game theory and predator-prey models [24]. The theory of optimal
foraging was developed to explain the dietary patterns and the resource use, and it states
that the individuals using their energy more efficiently for finding food are favored by
natural selection [25]. Foraging for food can be an individual activity (solitary foraging—
where each individual searches for its food) or can be a social activity (social foraging—
where foraging is a group behavior) [26]. The topics of social foraging include: (i) the
mechanisms used by the members to find food; (ii) the manner in which the food locations
are communicated to other members; (iii) the division of food between group members. The
majority of foraging inspired optimization algorithms focus on the first two topics [26]. A
taxonomy of foraging inspired algorithms is proposed in [27], where three main categories
are identified: vertebrates (with backbone), invertebrates (without backbone) and non-
neuronal (organisms that do not possess a central nervous system or brain).
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Concerning the mating behavior, different theoretical models that simulate the mating
mechanisms of specific species exist. For example, in birds, different strategies are used to
display the quality of genes to the potential mates by showing the main physical features:
color, shape of specific body parts, etc. In terms of partner combinations, five strategies
are encountered: monogamy, polygyny, polyandry, parthenogenesis and promiscuity [28].
These mechanisms are included, in different forms, in the metaheuristic optimizers with
the objective of improving diversity and thus increasing performance.

From the total of algorithms inspired from animals, the ones based on vertebrates
represent 61.6%, with the most represented sub-groups being birds (Section 3.1.1) and
mammals (Section 3.1.2).

3.1.1. Birds
Mating Behavior

One of the best-known algorithms inspired from bird behavior is Cuckoo Search
(CS) [29]. It simulates the brood parasitic behavior of some species of cuckoo and, in
order to search for new solutions, it uses Levy flight random walk (mutation based on
the best solution found so far) and biases/selective random walk (crossover between a
current solution and its mutation) [30]. The Levy flight is a random process from the
non-Gaussian class, a step which is based on the Levy distribution [31]. The steps of the
CS algorithm express three idealized rules: (i) each cuckoo lays an egg and places it into
a randomly chosen nest; (ii) the nests with high-quality eggs will be further used in the
next generations; (iii) there is a fixed number of nests and there is a probability that the
host will discover the foreign egg [32]. The main disadvantage of this algorithm is the
fixed value of the scaling factor (that controls the step size) [30] and, in order to improve its
performance, various strategies have been applied. A list of different modifications of CS
and its applications can be found in [32,33]. Inspired by the same cuckoo breeding behavior,
the Cuckoo Optimization Algorithm (COA) was proposed in [34]. When comparing COA
and CS, it can be observed that COA is more complex, in the sense that it contains an
additional behavioral aspect represented by the immigration process. Also, it uses the
k-means clustering algorithm to identify the group that a cuckoo belongs to.

Bird Mating Optimizer (BMO) [28] uses the birds mating process as a framework.
Throughout generations, the birds (the population of solutions) apply a probabilistic
method to improve the quality of their offspring. The population is divided into males and
females. The males can be monogamous, polygamous or promiscuous. On the other hand,
the females can be parthenogenetic and polyandrous. In BMO, five species are simulated,
and each one has its specific updating pattern.

Developed to adjust the parameters of adaptive neuro-fuzzy inference systems, the
Satin Bowerbird Optimizer (SBO) [35] simulates the mating behavior of bowerbirds (a close
relative species of the birds-of-paradise). In each iteration, a target individual is determined
through roulette wheel selection. The other individuals try to follow it, i.e., they change
their position accordingly, and try to improve their strategies by mutation.

Food Search

The flight of eagles (as does, in fact, the flight behavior of many animals and insects)
has the typical characteristics of the Levy flight [36]. Based on this idea, the Eagle Strategy
(ES) was proposed in [36]. It simulates an idealized two stage strategy (find and chase) [37].
The find step represents the exploration phase realized by the Levy walk and the chase
step is an exploitation phase where an intensive local search is performed by the Firefly
Algorithm (FA). ES represents a strategy and not an algorithm, and its authors indicate
that different algorithms can be used at different stages of the iterations [38]. For example,
in [38–40], Differential Evolution (DE) [41] performs the local search procedure that was
initially solved by FA.

Chicken Swarm Optimization (CSO) is inspired by swarm behavior [42]. It mimics
the flock and foraging behavior of chickens and is based on four simplified rules: (i) the
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swarm is comprised of several groups and each group has a dominant rooster, some hens
and chicks; (ii) the selection of individuals representing each type of bird is based on
the fitness value; (iii) the dominance and hen–chick relationship remains unchanged for
several iterations; (iv) the search for food is performed around the dominant entity. CSO
is a multi-swarm algorithm and its performance analysis showed that it can be efficiently
applied to solve benchmarks and real-world problems.

The Crow Search Algorithm (CSA) [43] simulates the behavior of crows when it comes
to food, i.e., storing excess food and thievery. Its main principles are: (i) crows live in flocks;
(ii) each crow memorizes their hiding places; (iii) crows follow each other to steal food;
(iv) crows try to protect their stashes. The algorithm includes a memory of good solutions
and, since the movement of crows is performed regardless of whether a newly generated
position is worse than the current one, distinctively from many metaheuristics, CSA is not
a greedy algorithm.

Simulating the auditory-based hunting mechanism employed by owls, the Owl Search
Algorithm (OSA) [44] assumes that the fitness value of each individual is correlated to the
intensity of the received sound and that the search space has one global optimum.

The hummingbird’s optimization algorithm (HOA) [45] focuses on the foraging pro-
cesses of hummingbirds. It includes a self-searching phase, based on the individual
accumulated experience (using a Levy flight mechanism), and a guide-searching phase
that includes information from dominant individuals.

Simulating the social roosting and foraging behavior of ravens, in [26], the Raven
Roosting Optimization (RRO) is proposed. The algorithm includes four main components:
(i) the perception capability of each individual to find food; (ii) a memory related to the
position of previous foraging locations; (iii) transmitting and receiving information about
food locations; (iv) probabilistic movement when searching for new resources.

Based on the cooperative hunting behavior of Harris hawks, the Harris Hawks
Optimization (HHO) [46] algorithm simulates a series of aspects such as prey explo-
ration, surprise pounce, and attack strategies. The algorithm complexity is O(population_
size × (iterations + iterations × dimensionality + 1)) and, in exploring or exploiting the
search space, a series of strategies such as diversification mechanism, progressive selection
scheme and adaptive and time-varying parameters were used.

Aquila is a very successful bird of prey located in the Northern hemisphere that
represents the source of inspiration for the Aquila Optimizer (AO) [47]. The model that
the AO is based on simulates four hunting methods: (i) high soar with a vertical stoop
(corresponding to an expanded exploration step); (ii) contour flight with glide attack
(narrowed exploration step); (iii) low flight and slow descent (expanded exploitation step);
(iv) walking and prey grabbing (narrowed exploitation). The AO computational complexity
is O(solution_number × (iterations x dimensionality + 1)).

The hunting mechanisms of golden eagles (spiral trajectory for searching food and
straight path when attacking, a tendency of cruising at the beginning of the search and at-
tacking at the end, capability to easily change between cruising and attaching) is simulated
in the Golden Eagle Optimizer (GEO) [48]. The attack phase corresponds to exploitation
and cruising to exploration. To extend applicability, two variants were proposed: the
GEO version (single objective) and the MOGEO (multi-objective) version. The GEO com-
putational complexity is O(population_size × dimensionality × iterations) and that for
MOGEO is O(population_size × dimensionality × iterations × objectives × archive).

Movement

Based on the characteristics of geese’s flight and the general PSO model, a geese-
inspired hybrid PSO (Geese-PSO) was proposed in [49]. Although it does not use a
completely novel metaphor and the algorithm is a hybridization, it is considered in this
work because, to the authors’ knowledge, the principle of following the particle ahead
and the application of a unidirectional flow of information was not used prior to the
proposal of the Geese-PSO approach. In the same direction of research, Migrating Bird
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Optimization (MBO) [50] is inspired by the “V” flight formation of migrating birds. MBO is
a neighborhood search approach where each solution is improved based on its neighbors.

The swarming behavior of passenger pigeons (the common name given to Blue
Pigeons, Merne Rouck Pigeons, wandering long tailed Doves and Wood pigeons) represents
the inspiration of the Pigeon Optimization Algorithm (POA) [51]. Pigeons have a specific
behavior that can be simplified into a series of rules: (i) in order to enhance the search
and reduce the probability of being prey for other animals, flight is performed in flocks;
(ii) different flocks have their own solution for movement, which influences the shape of
the group; (iii) there is communication between birds through “keck” and “tweet” calls;
(iv) the behavior of other pigeons can be imitated; (v) the pigeons responding to the calls are
the closest to the source of the call; (vi) in order to have a better probability of survival, each
pigeon must lead. Another algorithm inspired by pigeons is Pigeon Inspired Optimization
(PIO) [52]. However, in PIO the main idea is to simulate the homing behavior and the
mechanisms used by a pigeon to move from a point A to a point B, i.e., orientation through
magnetoreception and the sun, and recall of known landmarks close to the destination.

The migratory and attack behavior of seagulls is imitated in the Seagull Optimiza-
tion Algorithm (SeOA) [53]. Several simplified rules are considered: (i) the migration
is performed in groups; (ii) all the individuals travel towards the one with the best fit-
ness; (iii) the attack follows a spiral-like movement. In addition, during the migration
process, a mechanism for collision avoidance is included. The Sooty Tern Optimiza-
tion Algorithm (STOA) [54] has a similar source of inspiration as the SeOA, but based
on Sooty Tern seabirds. In this case, the migration behavior represents the exploration
phase and the attacking behavior the exploitation one. The complexity of the STOA
is O(problem_dimension × iteration × objective_number × population_size × objec-
tive_function) and the space complexity is O(objective_number × population_size).

In their fight to survive the harsh conditions of the polar regions, the emperor penguins
use a specific strategy of huddling. This represents the main source of inspiration for
the Emperor Penguin Optimizer (EPO) [55], where operations such as huddle boundary
determination, temperature computation, distance determination and identification of
the effective move are mathematically modeled and simulated in order to perform the
optimization. The time complexity of EPO is O(k × individual_length × iterations ×
dimensionality × population_size), where the algorithm termination criteria requires O(k)
time. The same mechanisms are also simulated in Emperor Penguins Colony (EPC) [56].
The main difference between the EPO and EPC consists in the manner in which the
movement is realized, i.e., in EPC the individuals perform a spiral-like movement.

The foraging and navigation behaviors of African vultures is modeled in the
African Vultures Optimization Algorithm (AVOA) [57], where multiple mechanisms to
improve the exploration–exploitation balance were proposed: the use of a coefficient
vector to change between these phases, use of phase-shift to precent premature conver-
gence and local optimum escape and inclusion of Levy Flight. The AVOA computa-
tional complexity is based on initialization, fitness evaluation and vulture update and is
O(iteration × population_size) + O(iteration × population_size × dimensionality).

Table 1 summarizes the algorithms briefly presented in this section and shows a series
of examples for improvements and applications. In Table 1, where a link to the source
code exists, if not specifically indicated, the implementation is provided by a third party.
In the application column, due to the fact that it is common to test the performance of a
newly proposed algorithm on a set of problems with known characteristics, the standard
benchmarks were not specified.



Mathematics 2021, 9, 2335 8 of 52

Table 1. Improvements and applications for bird-inspired metaheuristics (alphabetically sorted).

Algorithm Source Code Modifications and Improvements Applications

Bird Mating Optimizer (BMO) [28]
− adaptive population size [58]
− hybridization with Differential Evolution [59,60],

Teaching Learning-based Optimization [61]

− image segmentation [59]
− optimal expansion planning [58]
− structural damage [62]
− structural design [62]
− engineering design [60]
− electrochemical discharging machining [63]
− photovoltaic modules [64]

Chicken Swarm Optimization (CSO) [42]

(MATLAB—author source)
https://www.mathworks.com/
matlabcentral/fileexchange/48204-cso,
accessed on 7 January 2020

− multi-objective mechanism [65]
− inclusion of penalty [66]
− learning mechanism [67]

− crude oil price prediction (in combination with ANNs)
[68]

− projection pursuit evaluation [69]
− error control [70]

Crow Search Algorithm (CSA) [43]

(MATLAB–author source)
https:
//www.mathworks.com/matlabcentral/
fileexchange/57867-crow-search-
algorithm-for-constrained-optimization,
accessed on 19 June 2021

− constraint handling [71]
− inclusion of Levy flight [72]
− multi-objective adaptation [73]
− chaotic systems [73,74]
− parameter control through diversity population

information [75]

− structural design [71]
− Parkinson diagnosis [76]
− energy problems [72]
− image processing [77]

Cuckoo Search (CS) [29]

(MATLAB—author source)
https://www.mathworks.com/
matlabcentral/fileexchange/29809-
cuckoo-search-cs-algorithm, accessed on 4
February 2019

− hybridization with PSO [78]
− Shuffle Frog Optimization Algorithm [79]
− improvement of specific steps [32]
− varying the control parameters [30,80]

− linear antenna array optimization [81]
− operating schedule of battery, thermal energy storage,

and heat source in a building energy system [82]
− power load dispatch [83]
− synchronization of bilateral teleoperation systems [84]
− 0–1 knapsack problem [79]

Cuckoo Optimization Algorithm (COA) [34]

(MATLAB—author source)
https://www.mathworks.com/
matlabcentral/fileexchange/35635-
cuckoo-optimization-algorithm, accessed
on 4 February 2019

− hybridization with HS [85]
− adaptation to discrete spaces [86]

− water allocation and crop planning [87]
− load frequency control [85]
− bilateral teleoperation system [84]
− inverse kinematic problem [88]
− PID design [34]

Emperor Penguin Optimizer (EPO) [55]

− binary version [89]
− multi-objective variant [90,91]
− hybridization with Salp Swarm algorithm [92], Social

Engineering Optimization [93]

− ranking of cloud service providers [90]
− color image segmentation [94]
− medical data classification (in combination with

Support Vector Machines) [93]

Emperor Penguins Colony (EPC) [56] − introduction of mutation and crossover operators [95]
− inventory control problem [96]
− neuro-fuzzy system [97]

https://www.mathworks.com/matlabcentral/fileexchange/48204-cso
https://www.mathworks.com/matlabcentral/fileexchange/48204-cso
https://www.mathworks.com/matlabcentral/fileexchange/57867-crow-search-algorithm-for-constrained-optimization
https://www.mathworks.com/matlabcentral/fileexchange/57867-crow-search-algorithm-for-constrained-optimization
https://www.mathworks.com/matlabcentral/fileexchange/57867-crow-search-algorithm-for-constrained-optimization
https://www.mathworks.com/matlabcentral/fileexchange/57867-crow-search-algorithm-for-constrained-optimization
https://www.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/35635-cuckoo-optimization-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/35635-cuckoo-optimization-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/35635-cuckoo-optimization-algorithm
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Table 1. Cont.

Algorithm Source Code Modifications and Improvements Applications

Harris Hawks Optimization (HHO) [46]

(MATLAB—author source)
https://github.com/aliasgharheidaricom/
Harris-Hawks-Optimization-Algorithm-
and-Applications, accessed on 10 December
2020

− use of chaos [98]
− binary version [99]
− hybridization with Differential Evolution [100], Salp

Swarm Algorithm [99]

− parameter identification photovoltaic cells [98]
− productivity prediction of solar still (in combination

with Artificial Neural Networks) [101]

Migrating Bird Optimization (MBO)[50]
(Java)
http://mbo.dogus.edu.tr, accessed on 15
November 2020

− hybridization with Harmony Search [102], Differential
Evolution [103]

− new mechanism for leader selection [104],
neighborhood search strategy [105], age mechanism
[106], crossover mechanism [107], Glover generator in
the initialization phase [108]

− use of parallel micro-swarms [106]

− scheduling [102,104–106,108]
− manufacturing [107]

Owl Search Algorithm (OSA) [109]
− inclusion of opposition-based learning [110], chaos

[111]
− binary version [112]

− image segmentation [110]
− bilateral negotiations [111]
− feature selection [112]

Pigeon Inspired Optimization (PIO) [52]

(MATLAB)
http://read.pudn.com/downloads713
/sourcecode/math/2859919/Code%20of%
20Basic%20PIO/Code%20of%20Basic%20
PIO.txt__htm, accessed on 15 December
2020

− discretization [113]
− inclusion of the heterogeneity principle [114]
− use of Cauchy distribution [115], probability factors to

adapt the velocity [116]
− multi-objective [117]
− predator-prey concept [118]

− travelling salesman problem [113]
− prediction of bulk commodity futures prices (in

combination with extreme learning machine) [119]
− automatic carrier landing [115,116]
− current motor parameter design [117]

Raven Roosting Optimization (RRO) [26]
− subpopulations with different behavior [120]
− hybridization with CSO [121] − task scheduling [121]

Satin Bowerbird Optimizer (SBO) [35] − encoding based on complex values [122]
− solid oxide fuel cells [123]
− neuro-fuzzy inference systems [35]

Seagull Optimization Algorithm (SeOA) [53]

(Matlab—author code)
https://www.mathworks.com/
matlabcentral/fileexchange/75180-
seagull-optimization-algorithm-soa,
accessed on 12 February 2021

− multi-objective [124]
− hybridization with Whale Optimization [125], Cuckoo

Search [126], Thermal Exchange Optimization [127]
− feature selection [127]

Sooty Tern Optimization Algorithm (STOA) [54]

(Matlab—author code)
https://jp.mathworks.com/
matlabcentral/fileexchange/76667-sooty-
tern-optimization-algorithm-stoa,
accessed on 20 June 2021

− model predictive control [128]
− industrial engineering problems [54]

https://github.com/aliasgharheidaricom/Harris-Hawks-Optimization-Algorithm-and-Applications
https://github.com/aliasgharheidaricom/Harris-Hawks-Optimization-Algorithm-and-Applications
https://github.com/aliasgharheidaricom/Harris-Hawks-Optimization-Algorithm-and-Applications
http://mbo.dogus.edu.tr
http://read.pudn.com/downloads713/sourcecode/math/2859919/Code%20of%20Basic%20PIO/Code%20of%20Basic%20PIO.txt__htm
http://read.pudn.com/downloads713/sourcecode/math/2859919/Code%20of%20Basic%20PIO/Code%20of%20Basic%20PIO.txt__htm
http://read.pudn.com/downloads713/sourcecode/math/2859919/Code%20of%20Basic%20PIO/Code%20of%20Basic%20PIO.txt__htm
http://read.pudn.com/downloads713/sourcecode/math/2859919/Code%20of%20Basic%20PIO/Code%20of%20Basic%20PIO.txt__htm
https://www.mathworks.com/matlabcentral/fileexchange/75180-seagull-optimization-algorithm-soa
https://www.mathworks.com/matlabcentral/fileexchange/75180-seagull-optimization-algorithm-soa
https://www.mathworks.com/matlabcentral/fileexchange/75180-seagull-optimization-algorithm-soa
https://jp.mathworks.com/matlabcentral/fileexchange/76667-sooty-tern-optimization-algorithm-stoa
https://jp.mathworks.com/matlabcentral/fileexchange/76667-sooty-tern-optimization-algorithm-stoa
https://jp.mathworks.com/matlabcentral/fileexchange/76667-sooty-tern-optimization-algorithm-stoa
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3.1.2. Mammals
Food search

Based on the principles of echolocation used by bats to find food, the Bat Algorithm
(BA) [18] employs several idealized rules: (i) echolocation is used for distance sensing
and prey identification; (ii) the flying pattern is random, with characteristics such as
velocity, pulse rate and loudness; (iii) the variation of loudness is assumed to move from
a large value to a minimum (constant). The role of the pulse rate and loudness is to
balance exploration and exploitation [129]. Another algorithm simulating bats is the
Directed Artificial Bat Algorithm (DABA) [130]. DABA considers the individual flight of
bats with no interaction between individuals, while in BA, the bat behavior is similar to
the PSO particles. Although, compared to BA, the DABA model is closer to the natural
behavior, in terms of optimization performance, BA is better [131]. On the other hand, the
Dynamic Virtual Bats Algorithm (DVBA) [131] has a population comprised of only two
individuals, i.e., explorer and exploiter bats, that dynamically exchange their roles based
on their locations.

The echolocation mechanism is not specific to bats; other animals also using it to
navigate and to find food, e.g., Dolphin Echolocation [132]. The abbreviation given by
its authors is DE; however, so as not to confuse it with Differential Evolution, Dolphin
Echolocation will be denoted by DEO in this work. It mimics the manner in which sound,
in the form of clicks, is used to track and aim objects. Distinctively from the bat sonar
system, which has a short range of 3–4 m, the range of the dolphin sonar varies from
a few tens of meters to over a hundred meters. This aspect and the differences in the
environmental characteristics lead to the development of totally different sonar systems,
and a direct comparison between the two may be difficult.

In their search for food, sperm whales go as deep as 2000–3000 m and can stay
underwater without breathing for about 90 min [133]. They are social animals, travel
in groups and only the weaker specimens are attacked by predators such as orcas. This
behavior was modeled in the Sperm Whale Algorithm (SWA) [133], where the population is
divided into subgroups. In each cycle of breathing and feeding, the individual experiences
two opposite poles (surface and bottom of the sea); however, because computing the mirror
place is expensive and its influence on the search process is limited, it is applied only to the
worst solutions. In order to simulate the hunting behavior of humpback whales, i.e., the
bubble net feeding method, the Whale Optimization Algorithm (WOA) [134] searches for
prey (the exploration phase) and then uses the shrinking encircling mechanism and the
spiral updating position (the exploitation phase). A detailed review covering the multiple
aspects of WOA is presented in [135].

The Grey Wolf Optimizer (GWO) [136] models a strict social dominant hierarchy
and the group hunting mechanisms—tracking, chasing, approaching and attacking the
prey–of grey wolfs (Canis lupus). The complexity of GWO is O(problem_dimension
× iteration × objective_number × population_size × objective_function) [54]. Similar
to other bio-inspired approaches, the GWO suffers from premature convergence. The
prey weight and astrophysics concepts were applied in the Astrophysics Inspired Grey
Wolf Optimizer (AGWO) [137] to simultaneously improve exploration and exploitation.
Although wolves live in packs and communicate over long distances by howling, they have
developed unique semi-cooperative characteristics [138]. By focusing on the independent
hunting ability, as opposed to the GWO, which uses a single leader to direct the search
in a cooperative manner, the Wolf Search Algorithm (WSA) [138] functions with multiple
leaders swarming from multiple directions towards the optimal solution.

Spider monkeys are specific to South America and their behavior falls in the category
of fission–fusion social structure [139], i.e., based on the scarcity or availability of food,
they split from large to smaller groups and vice versa. The algorithm that simulates this
structure is called Spider Monkey Optimization (SMO) [139]. It consists of six phases and,
unlike the natural system, the position of leader (local or global) is not fixed, depending
instead on its ability to search for food. In addition, the optimization procedure does not
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include the communication tactics specific to spider monkeys. Distinctively, the individual
intelligence of chimps used for group hunting is modelled into the Chimp Optimization
Algorithm (ChOA), where four types of hunting are included: driving, chasing, blocking
and attacking [140]. Another type of ape is represented by gorillas and, in the Artificial
Gorilla Troops Optimizer (GTO), their collective life is mathematically modeled to include
exploration–exploitation mechanisms [141].

Spotted hyenas have a behavior similar to that of wolves and whales, which uses col-
lective behavior to encircle the prey and attack. Their model is used in the Spotted Hyena
Optimizer (SHO) [142], which saves the best-so-far solution, simulates the encircling prey
through a circle-shaped neighborhood that can be extended to higher dimensions and con-
trols the exploration–exploitation balance through control parameters. The time complexiy
of SHO is O(problem_dimension × G × iteration × objective_number × population_size
× objective_function), where the time to define the groups of individuals is O(G).

In the Squirrel Search Algorithm (SSA) [109], the gliding behavior of flying squirrels
when exploring different areas of a forest in search for food is simulated by considering
some simplifications of the natural mechanisms: (i) a squirrel is assumed to be on one
tree; (ii) in the forest there are only three types of trees: normal, oak and hickory; (iii)
the region under consideration contains three oaks and one hickory tree. It is considered
that the squirrel with the best fitness is positioned on a hickory tree and the next three
individuals with the best fitness are on oak trees. The other individuals in the population
move towards the oak or the hickory, depending on their daily energy requirements. In
SSA, the seasonal changes are modeled through control parameters and influence the
behavior of the individuals in the population.

Social Behavior

The Lion’s Algorithm (LA) [143] is based on the social behavior of lions. It simulates
the process of pride forming through mating, removing weak cubs, territorial defense
and takeover. The population is formed of males and females and the cub population is
subjected to gender grouping (through the application of k-means clustering). LA is not
the only approach inspired by lions; the Lion Optimization Algorithm (LOA) [144] is also
an example. Distinctively from LA, LOA includes the hunting and migration mechanisms
and the mating process is based on differentiation rather than on crossover and mutation.
Another lion-inspired approach is the Lion Pride Optimization (LPOA) [145].

Similar to honey bees or ant colonies, blind naked mole rats (a species specific to
Africa) have a complex social behavior: (i) they live in large colonies; (ii) a queen and a
reduced number of males are responsible for offspring generation; (iii) there are individuals
specialized in food search and domestic activities, i.e., taking care of the nest and of the
young and in protection against invaders [146]. These mechanisms, in a simplified form,
are simulated in the Blind Naked Mole Rats (BNMR) algorithm [146].

Elephants are the largest walking mammals and their successful survival is influenced,
among other things, by their social and behavioral structures. The adult males solitarily
roam into the wild, they do not commit to any family and can potentially mate over
thirty times a year, while the female elephants form matriarchal societies that allow better
protection and safe rearing of young calves. The Elephant Search Algorithm (ESA) [147]
and Elephant Herding Optimization [148,149] simulate these mechanisms and perform
the search.

Table 2 summarizes the algorithms briefly presented in this section and shows a series
of examples for improvements and applications. The same structure and idea as in Table 1
are applied.
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Table 2. Improvements and applications for some mammal-inspired metaheuristics (alphabetically sorted).

Algorithm Source Code Modifications and Improvements Applications

Bat Algorithm (BA) [18]
(Python)
https://github.com/buma/BatAlgorithm,
accessed on 20 December 2019

− discrete version [150]
− introducing directional echolocation [151]
− multi-population, chaotic sequences [129]
− inclusion of Doppler effect [152]
− hybridization with Invasive Weed Optimization

[153], Differential Evolution [154],
− binary version [155]

− drugs distribution problem [150]
− forecasting motion of floating platforms (in

combination with Support Vector Machines -SVM-)
[156]

− flood susceptibility assessment (in combination with
adaptive network-based fuzzy inference system)
[157]

− job shop scheduling [158]
− travelling salesman problem [159]
− battery energy storage [160]
− constraint [161] and structural optimization [162]

Blind Naked Mole Rats (BNMR) [146] − data clustering [163]

Chimp optimization algorithm (ChOA), [140]
(MATLAB—author source)
https://www.mathworks.com/matlabcentral/
fileexchange/76763, accessed on 20 August 2021

− use of sine-cosine functions to update the search
process of ChOA [164]

− combination with ANNs for underwater acoustical
classification [165]

− high level synthesis of data paths in digital filters
[164]

Directed Artificial Bat Algorithm (DABA) [130] − travelling salesman problem [130]

Dolphin Echolocation (DEO) [132] − exploration improvement [166]
− plastic analysis of moment frames [167]
− design of steel frame structure [168]
− reactive power dispatch [169]

Dynamic Virtual Bats Algorithm (DVBA) [131] − parameter setting [170]

Elephant Herding Optimization (EHO) [148,149]

(MATLAB—author source)
http://www.mathworks.com/matlabcentral/
fileexchange/53486, accessed on 17 January
2020

− alpha tuning, cultural-based algorithm, biased
initialization [171]

− hybridization with Cultural Algorithm [172]
− multi-objective and discrete [173]
− introduction of chaotic maps [174]

− structural design [171]
− batch fermented for penicillin production [171]
− network detection intrusion (in combination with

SVM) [175]
− image processing [176]
− SVM parameter tuning [177]

Elephant Search Algorithm (ESA) [147] − chromosome representation, elephant deep
search, and baby elephant birth [178]

− data clustering [179,180]
− snack food distribution [178]
− travelling salesman problem [181]

Grey Wolf Optimizer (GWO) [136]
(MATLAB—author source)
http://www.alimirjalili.com/Projects.html,
accessed on 6 June 2021

− two phase mutation [182]
− introduction of random walk [183]
− introduction of cellular topological structure

[184]
− modification of parameter behavior [185]
− binary [186]
− multi-objective [187]

− fluid dynamic problems [188]
− power systems [185,189]
− combination with ANNs [190]
− structural engineering [137]
− maximum power tracking [191]

https://github.com/buma/BatAlgorithm
https://www.mathworks.com/matlabcentral/fileexchange/76763
https://www.mathworks.com/matlabcentral/fileexchange/76763
http://www.mathworks.com/matlabcentral/fileexchange/53486
http://www.mathworks.com/matlabcentral/fileexchange/53486
http://www.alimirjalili.com/Projects.html
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Table 2. Cont.

Algorithm Source Code Modifications and Improvements Applications

Lion’s Algorithm (LA) [143]

− fertility evaluation, a modified crossover
operator and gender clustering [192]

− hybridization with a heuristic specific to job
shop scheduling [193]

− system identification [192]
− rescheduling based congestion management [194]
− job shop scheduling [193]

Lion Optimization Algorithm (LOA) [144] − clustering mixed data [195]

Lion Pride Optimization Algorithm (LPOA) [145]
− double layer barrel vault structures [196]
− structural design [145]

Sperm Whale Algorithm (SWA) [133]
− natural gas production optimization [133]
− ANN parameter identification [197]

Spider Monkey Optimization (SMO) [139] (MATLAB, C++, Python–author sources)
http://smo.scrs.in, accessed on 10 January 2021

− inclusion of chaos [198], levy flight [199],
quadratic approximation [200], age principle for
population [201]

− hybridization with Limacon curve [202],
Nelder-Mead [203]

− binary [204]

− load frequency control [205]
− irrigation [206]
− diabetes classification [207]
− capacitor optimal placement [202]
− antenna array [204]

Spotted Hyena Optimizer (SHO) [142] − multi-objective [208]
− structural design [209]
− neural network training [210]
− airfoil design [211]

Squirrel Search Algorithm (SSA) [109] − heat flow [109]

Whale Optimization Algorithm (WOA) [134]
(MATLAB—author source)
http://www.alimirjalili.com/Projects.html,
accessed on 6 June 2021

− hybridization with Nawaz–Enscore–Ham [212],
Simulated Annealing [213], Differential
Evolution [214]

− mechanism of exploration phase [215]
− introduction of chaotic maps [216]

− power system [217]
− optimal control [218]
− structural engineering [215]
− drug toxicity [219]
− parameter optimization for Elman Networks applied

to polymerization process [216]
− robot path planning [220]
− handwritten binarization [221]

http://smo.scrs.in
http://www.alimirjalili.com/Projects.html
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3.1.3. Other Vertebrates

This category includes other sources of inspiration from the vertebrate group that do
not belong to the bird and mammal classes.

The SailFish Optimizer (SFO) [222] is inspired by the group hunting of sailfish (Is-
tiophorus platypterus), one of the fastest fish in the ocean. This mechanism of alternating
attacks on schools of sardines is modeled through the use of energy-based approaches,
where, at the beginning of the hunt, both the predator and the prey are energetic and not
injured; however, as the hunt continues, the power of the sailfish will decrease and the
sardines will become tired and have reduced awareness.

The food catching behavior of Agama lizards is modelled in the Artificial Lizard
Search Optimization (ALSO) [223]. The algorithm focuses on new discoveries regarding
the mechanisms for movement control through the tail during prey hunting.

The manner in which chameleons catch prey using their long and sticky tongue rep-
resents the basis for the Chameleon Swarm Algorithm [224]. The notation given by the
authors of this algorithm is CSA, however, since the same notation is used to represent the
Crow Search Algorithm, in this work, the Chameleon Swarm Algorithm will be indicated
by the ChSA notation. The ChSA follows three main strategies for catching prey: tracking
(modelled as a position update step), eye pursuing (modeled as position update in accor-
dance with the position of the prey) and attacking (based on tongue velocity). Distinctively
from the majority of metaheuristics, which tend to have less than three parameters, ChSA
has five parameters that help in controlling the exploration–exploitation balance.

3.1.4. General

Unlike the other algorithms mentioned in this work that have a source of inspiration
represented by a single animal, in the case of the general class, the metaheuristics are based
on a general aspect that can be specific to multiple animals or types of animals. Examples
proposed prior to 2008 include algorithms such as Genetic Algorithms (where the genetic
principles of mutation and crossover are applicable to all species) and Extremal Opti-
mization [225], based on the Bak–Sneppen mechanism, a model of co-evolution between
interacting species which reproduces nontrivial features of paleontological data.

Inspired from the encircling mechanisms used by group hunters such as lions, wolves
and dolphins, the Hunting Search (HuS) [226] simulates the cooperation of members to
catch food. As a perfect correlation between nature and an optimization process cannot
be achieved, a set of differences from the real world are taken into account: (i) in the
majority of cases, the location of the optimum of a problem is not known, while, in the
real world, the hunters can see the prey or sense its presence; (ii) the optimum is set,
however, in the real world, the prey dynamically changes its position. Unlike the DEO
and GWO, which emulate the specific hunting approaches used by dolphins and wolves,
HuS is focused on the cooperation aspect and the repositioning during the hunt. Other
approaches which simulate the food searching mechanisms include: the Backtracking
Search Algorithm Optimization (BSA) [227], Optimal Foraging Algorithm (OFA) [25], Fish
Electrolocation Optimization (FEO) [228] and Marine Predators Algorithm (MPA) [229].
BSA is based on the return of a living creature to previously found fruitful areas. At its
core, it is an evolutionary approach that, although it has a very similar structure to the
other EAs, differs as follows: (i) mutation is applied to a single individual; (ii) there is a
more complex crossover strategy compared with DE; (iii) it is a dual population algorithm;
(iv) it has boundary control mechanisms. Distinctively from the BSA, the OFA algorithm
is based on the Optimal Foraging Theory developed to explain the dietary patterns of
animals. In the OFA, the animal foraging is an individual and its position represents
a solution. Its time complexity is O(group_size × dimensionality × iterations) and its
space complexity is O(group_size × dimensionality × (iterations + 1)). The FEO simulates
the active and passive electrolocation mechanisms used by sharks and “elephant nose
fishes” to find prey. A series of electric waves are generated and reflected back to the
fish after hitting the surrounding objects, which creates an electric image that is then
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analyzed. In the case of the MPA, the different strategies used for finding food and the
interaction between predator and prey are modeled in different scenarios through Brownian
and Levy strategies. The MPA algorithm complexity is O(iterations × (agent_number ×
dimensionality + Cost_function_evaluation × agent_number)).

Another aspect specific to all species in their quest to survive is represented by the
competition for food, resources or mates. Two metaheuristic optimizers based on com-
petition were identified: Competition over Resources (COR) [230] and the Competitive
Optimization Algorithm (COOA) [231]. The COR algorithm mimics the competition for
food of wild animals. The groups with the best approach to storing food have improved
scores while the worst performance groups are starving and, after a few generations, die
and are removed from the population. In the COOA approach, the competition is simulated
by the Imperialist Competitive Algorithm [232] and the groups are represented by the
populations of various metaheuristics.

Migration behavior is encountered in all major animal groups. Among the first
bio-inspired metaheuristics that contain elements specific to migration is the Biogeography-
based Optimization (BBO) [233]. However, the BBO imitates a much larger phenomenon—
island biogeography—that includes both migration and mutation [234]. Another algorithm
that has the migration principle at its core is the Migrating Birds Optimization [50]. As it
simulates the features of the “V” flight of birds, the MBO was included in the bird inspired
metaheuristic section. The Animals Migration Optimization (AMO) [235] simulates the
animal migration model proposed by ecologists and uses two idealized assumptions: (i)
the leader animal will survive to the next generation; (ii) the number of animals in the
population is fixed. The algorithm has two phases: the migration process (where the
individuals respect three rules: move in the same direction as the neighbors, remain close
to the neighbors and avoid collision with neighbors) and population update (where some
individuals leave the group and others join it).

Table 3 summarizes the algorithms briefly presented in this section and shows a
series of examples for improvements and applications. The same structure and idea as in
Tables 1 and 2 are applied.
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Table 3. Improvements and applications for metaheuristics inspired from general behavior (alphabetically sorted).

Algorithm Source Code Modifications and Improvements Applications

Animals Migration Optimization (AMO) [235]

− inclusion of an interactive learning behavior
[236];

− use of Opposition Based Learning [237]
− hybridization with Association Rule Mining

[238]
− population updating step [239]

− bridge reinforcement [240]
− multilevel image thresholding [241]
− data mining [238]
− data clustering analysis [239]

Backtracking Search Algorithm Optimization
(BSA) [227]

(MATLAB—author source)
https://www.mathworks.com/matlabcentral/
fileexchange/44842, accessed on 10 December 2019

− multiple mutation strategies [242]
− discrete variant [243]
− use of Opposition Based Learning [244]
− hybrid mutation and crossover strategy [243]
− hybridization with TLBO [245]
− constraint handling mechanisms [246]

− casting heat treatment charge plan problem [243]
− electricity price forecasting (in combination with

adaptive network-based fuzzy inference system)
[247]

− parameter estimation for frequency-modulated
sound waves [227]

− engineering design problems [227,246]

Biogeography based Optimization (BBO) [233]
− inclusion of re-sampling [248]
− inclusion of mutation strategy [234]
− inclusion of chaos maps [249]

− flood susceptibility assessment (in combination
with adaptive network-based fuzzy inference
system) [157]

− soil consolidation (in combination with artificial
neural networks) [250]

− power fuel cells [234]

Competition over Resources (COR) [230]

(MATLAB—author source)
http://freesourcecode.net/matlabprojects/71991/
competition-over-resources--a-new-optimization-
algorithm-based-on-animals-behavioral-ecology-in-
matlab, accessed on 25 June 2020

− building lighting system [251]
− magnetic actuators [252]

Hunting Search (HuS) [226] − hybridization with Harmony Search [253]
− artificial neural network training [253]
− steel cellular beams [254]

Marine Predators Algorithm [229]
(MATLAB–author source)
au.mathworks.com/matlabcentral/fileexchange/74578,
accessed on 08 August 2021

− hybridization with Moth Flame Optimization
[255], Teaching-learning based optimization
[256]

− binary version with V-shaped and S-shaped
transfer functions [257]

− parameter extraction of photovoltaic models
[258]

− multi-level thresholding for image segmentation
[255]

Optimal Foraging Algorithm (OFA) [25]
(MATLAB-author source)
https://www.mathworks.com/matlabcentral/
fileexchange/62593, accessed on 24 April 2020

− chaos [259]
− constraint handling mechanisms [259]

− drilling path optimization [260]
− SVM Parameter optimization [261]
− white blood cell segmentation [259]

https://www.mathworks.com/matlabcentral/fileexchange/44842
https://www.mathworks.com/matlabcentral/fileexchange/44842
http://freesourcecode.net/matlabprojects/71991/competition-over-resources--a-new-optimization-algorithm-based-on-animals-behavioral-ecology-in-matlab
http://freesourcecode.net/matlabprojects/71991/competition-over-resources--a-new-optimization-algorithm-based-on-animals-behavioral-ecology-in-matlab
http://freesourcecode.net/matlabprojects/71991/competition-over-resources--a-new-optimization-algorithm-based-on-animals-behavioral-ecology-in-matlab
http://freesourcecode.net/matlabprojects/71991/competition-over-resources--a-new-optimization-algorithm-based-on-animals-behavioral-ecology-in-matlab
https://www.mathworks.com/matlabcentral/fileexchange/62593
https://www.mathworks.com/matlabcentral/fileexchange/62593
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3.2. Invertebrates

From the total of algorithms inspired from animals, the ones based on invertebrates
represent 38.4%, with the main sub-group indicated by insects (Section 3.2.1). As the
number of algorithms inspired from other invertebrate sub-groups were small, the ones
not belonging to insects were included in a separate section (Section 3.2.2).

3.2.1. Insects

Although the majority of insects are solitary, several types of insects are organized in
colonies or swarms [262]. As insect swarms have several desirable attributes, a high per-
centage of insect-inspired metaheuristic optimizers belong to the swarm intelligence class.

Swarm intelligence has two main key components: self-organization (global response
through interactions among low level components that do not have a central authority) and
division of labor (the tasks are performed by specialized individuals) [139,263]. It follows
three basic principles: (i) separation (static collision avoidance); (ii) alignment (velocity
matching); (iii) cohesion (the tendency of individuals to go towards the center of the mass
of the swarm) [264].

While, in the classic swarm approaches, the individuals considered are unisex and
perform virtually the same behavior, thus wasting the possibility of adding new oper-
ators [265], in the newer bio-inspired metaheuristics researchers began to incorporate
different types of individuals in the population(s), and the results obtained show an
improvement of several characteristics, such as search ability and population diversity.
However, the use of different operators leads to an increase in complexity and, until now,
theoretical studies that can explain the influence of these operators and the context in which
they are recommended have been very scarce.

Hymenoptera

This order includes some of the best-known social insects: wasps, bees and ants. The
main characteristics of these insects are: (i) the presence of a pair of membranous wings;
(ii) antennae longer than the head; (iii) complete metamorphosis.

• Bees

The social bees show all the characteristics of eusociality: generation overlapping,
separation into fertile and infertile groups, labor division and brood care. In addition, the
beehive can be considered as a self-organizing system with multiple agents [266].

In a comprehensive review regarding the algorithms inspired by honey bees, the
authors identified five main characteristics that were modeled: (i) mating; (ii) foraging
and communication; (iii) swarming; (iv) spatial memory and navigation; (v) division of
labor [267]. However, [268] considers that, alongside mating and foraging, the third class
is represented by nest-site selection process, and thus proposed the Bee Nest-Site Selection
Scheme (BNSS)—a framework for designing optimization algorithms.

In addition to the algorithms presented in [267], other approaches that simulate bee
behavior are: Bumblebees (B) [269], Bee Colony Inspired Algorithm (BCiA) [266] and
Bumble Bee Mating Optimization (BBMO) [270]. The B algorithm is based on a simplified
model of the evolution of bumblebees and can be regarded as a loose implementation of
the concepts of the evolutionary model proposed by [271]. On the other hand, the BCiA
focuses on the foraging behavior and the BBMO simulates the mating process.
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• Ants

Among the first algorithms that simulate ant behavior is the Ant System [272]. How-
ever, the best-known approach is the Ant Colony Optimization (ACO), used to find the
path of minimum length in a graph. To the authors’ knowledge, the only other approach
simulating ant behavior, which is not based on the ACO, is Termite-hill [273]. It is a swarm-
based algorithm designed for wireless sensor networks, i.e., an on-demand and multipath
routing algorithm.

Diptera

• Flies

Due to their short life-span and easiness of breeding and of providing an adequate
living environment, the fruit fly is widely studied in laboratory conditions. Consequently,
their behavior is known in detail and specific mechanisms for finding food are sources of
inspiration for new algorithms. To the authors’ knowledge, there are two metaheuristics
that simulate the fruit fly: the Fruit Fly Optimization (FOA) and the Drosophila Food Search
Optimization (DFO) [274]. Similar to the DFO, the FOA is also based on the Drosophila fly
and the literature shows that there are at least two different implementations, proposed
by [275] and [276].

• Mosquitoes

The host seeking behavior of female mosquitos is mimicked by the Mosquito host
seeking algorithm (MHSA) [277]. The general idea is simple and it is based on the following
idealized rules: (i) the mosquito looks for carbon dioxide or some other scent; (ii) if found,
the mosquito moves toward the location with the highest concentration; (iii) it descends
when the heat radiating from the host is felt. The algorithm was developed specifically
to solve the travelling salesman problem and it has several advantages that include: (i)
the ability to perform large-scale distributed parallel optimization; (ii) it can describe
complex dynamics; (iii) it can perform multi-objective optimization; (iv) it is claimed to be
independent of the initial conditions and problem size [278]

Lepidoptera

The insects that belong to this class have wings covered with overlapping small scales.
The best-known examples include butterflies and moths.

• Butterflies

The Monarch Butterfly Optimization (MBO) [279] simulates the migration behavior of
monarch butterflies through the use of a set of idealized rules: (i) the entire population of
butterflies is located in two areas, i.e., Land1 and Land2; (ii) each offspring is generated by
the migration operator applied to individuals from Land1 or Land2; (iii) once an offspring
is generated, the parent butterfly dies if its fitness is worse than that of the offspring;
(iv) the butterflies with the best fitness survive to the next generation. Similar to the
MBO, the Monarch Migration Algorithm (MMA) [280] models the migration behavior
of monarch butterflies. The main differences between the MBO and the MMA consist
in the mechanisms used for movement, for new individual creation and for population
size control.

If the MBO and the MMA focus on migration aspects, the Butterfly Optimizer (BO)
simulates the mate-location, behavior–perching and patrolling of male butterflies [281]. The
initial BO version is developed for unconstrained optimization and is a dual population
algorithm that includes male butterflies and auxiliary butterflies. The Artificial Butterfly
Optimization (ABO) [282] is inspired from the same mating strategy as BO. However,
the ABO is a single-population optimizer that contains two types of butterflies: sunspot
and canopy, and the rules that it follows are different. In the BO, the following rules
are considered: (i) the male butterflies are attracted to the highest UV/radiation object;
(ii) the best perching position and the flying direction is memorized; (iii) the flying velocity



Mathematics 2021, 9, 2335 19 of 52

is constant; (iii) the flying direction is changed if necessary [281]. On the other hand, the
ABO considers the following generalized rules: (i) all male butterflies attempt to fly towards
a better location (sunspot); (ii) in order to occupy a better position, the sunspot butterflies
try to fly to the neighbor’s sunspot; (iii) the canopy butterflies continually fly towards the
sunspot butterflies to contend for the sunspot [282]. In ABO, three flight strategies are
considered and their combination leads to two other variants of the algorithm.

The Butterfly Optimization Algorithm (BOA) [283] considers the foraging behavior
and focuses on the smell of butterflies as the strategy used for determining the location
of food or of a mating partner. In order to model this behavior, a set of idealized rules
are used: (i) all butterflies emit fragrances that attract each other; (ii) the movement of the
butterfly is random or towards the most fragrant butterfly; (iii) the stimulus intensity is
influenced by the landscape of the objective function.

• Moths

The transverse orientation navigation mechanism of moths represents the source
of inspiration for the Moth Flame Optimization (MFO) [284]. The population of moths
updates their position in accordance with a flame. The group of flames represents the
best solutions and serves as guidance for the moths [285]. The complexity of the MFO
is O(problem_dimension × iteration × objective_number × population_size × objec-
tive_function) [54]. While the MFO contains a population of moths and flames, in the
case of the Moth Swarm Algorithm (MSA) [286], which is also inspired by the navigation
behavior of moths, the population is formed of three groups of moths: pathfinders (with
the ability to discover new areas of the search space), prospectors (that tend to wander
in spiral) and onlookers (that drift directly to the solutions obtained by the prospectors).
Distinctively from MFO and MSA, the Moth Search (MS) algorithm [287] considers the
phototaxis and the Levy flight of the moths as a source of inspiration. In this case, the
population is formed of two subpopulations. One follows the Levy movement and the
other simulates the straight flight.

Ortoptera

This order includes, among others, insects such as grasshoppers, crickets and locusts.
They are insects that move with great agility and have many shapes and characteristics.

The first metaheuristic optimizer that used the locust swarm metaphor is the Locust
Swarm [288], a multi-optima search technique developed for non-globally convex search
spaces. However, in order to identify the starting points for the search, it uses the PSO
as part of its search [288], and one may argue that it is not a new metaheuristic, but a
hybridization of the PSO. On the other hand, the Locust Swarm proposed in [289] emulates
the interaction of a locust cooperative swarm. Since the two algorithms have the same
name, in this work they are referred to as LS1 for the version proposed in [288] and LS2 for
the [289] version. LS2 considers both solitary and social behavior, and consists of three parts:
initialization, solitary operation and social processes [289]. The solitary phase performs the
exploration of the search space, while the social phase is dedicated to exploitation.

The grasshoppers’ social interactions represent the basis for the Grasshopper Opti-
mization Algorithm (GOA) [290]. Both larvae, which corresponds to the feeding stage, and
the adult form, which corresponds to the exploration stage, are considered. While in nature,
the individual evolves from larvae to adult (local, then global), and due to the nature of the
search space, the optimization algorithm first needs to find a promising region and, after
that, exploit it (global, then local).
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Other Insects

• Hunting

The mechanisms used by antlions to hunt ants is simulated in the Ant Lion Optimizer
(ALO) [291]. Antlions have two phases: larvae, focused on feeding, and adults, focused on
mating. The ALO is based on the larvae form and, in order to perform the optimization, a
series of conditions are considered: (i) a random walk imitates the movement of an ant;
(ii) the random walks are affected by the traps of the antlions; (iii) the pits built by antlions
(and the probability of catching ants) are proportional with the antlion fitness; (iv) the
random walk range decreases adaptively; (v) the ant is caught when its fitness is worse than
that of an antlion; (vi) after catching a prey, the antlion repositions and builds another pit.

• Mixed behavior

Inspiration for metaheuristics comes not only from insects that are generally consid-
ered useful, e.g., bees, but also from insects that are considered pests, such as cockroaches.
Among the first approaches that included the social behavior of cockroaches is the Roach
Infestation Optimization (RIO) [292]. It is an adaptation of the PSO that implements
three elements: finding the darkness, finding friends and finding food. Other algorithms
simulating cockroach behavior are: the Cockroach Swarm Optimization (CSO) [293] and
the Cockroach-inspired Swarm Evolution (CSE) [294]. The paper containing the initial
CSO version was retracted from the IEEE database due to violations of publication princi-
ples, however, this did not stop other researchers from using and improving CSO; Google
Scholar indicates that, as of the end of February 2019, there are 32 articles citing the retracted
paper. Unlike the RIO, the CSE considers competition, space endurance and migration of
cockroaches, beside cooperative behavior [294].

The Dragonfly Algorithm (DA) [264] is inspired from the static (feeding) and dynamic
(migratory) swarming behavior of dragonflies. In the feeding stage, the dragonflies are
organized into small groups that cover a small area to hunt, through back-and-forth
movement with abrupt changes in the flying path. In the dynamic stage, a large group of
individuals form a swarm and migrate in one direction over long distances.

The Pity Beetle Algorithm (PBA) [295] is based on the aggregation behavior and search
mechanisms used for nesting and food finding of Pityogenesis chalcographus, a beetle
also known under the name of “six toothed spruce bark beetle”. The PBA follows three
stages: searching (where the chemicals emitted by the weakened trees are used to identify
a suitable host), aggregation (were multiple individuals feed on the host and attract more
individuals—both male and female) and anti-aggregation (that is specific to the situation
when the population size surpasses a specific threshold).

Table 4 summarizes the algorithms inspired from inspects and presents a series of
examples for improvements and applications. The same structure and idea as in the
previous tables are applied.
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Table 4. Improvements and applications for insect-inspired metaheuristics (alphabetically sorted).

Algorithm Source Code Modifications and Improvements Applications

Ant Lion Optimizer (ALO) [291]
(MATLAB-author source)
http://www.alimirjalili.com/ALO.html,
accessed on 6 June 2021

− multi-objective optimization [296]
− binary [297]
− inclusion of chaos [298]

− Artificial Neural Network training [299]
− multi-objective engineering design problems

[296]
− automatic generation control [300]
− feature selection [297]

Bee Colony Inspired Algorithm (BCiA) [266]
− vehicle routing problem with time windows

[266]

Bumble Bee Mating Optimization (BBMO) [270]
− inclusion of combinatorial neighborhood

topology [301]
− parameter adaptation [302]

− multicast routing, traveling salesman problem
[302]

− feature selection [303]
− vehicle routing problem with stochastic

demands [301]

Butterfly Optimizer (BO) [281]
− inclusion of constraints [304]
− inclusion of covariance matrix [305]

Butterfly Optimization Algorithm (BOA) [283]

(MATLAB-author source)
https://www.mathworks.com/matlabcentral/
fileexchange/68209-butterfly-optimization-
algorithm-boa/, accessed on 12 December 2019

− inclusion of mutualism principle [306],
cross-entropy [307], learning automata [308]

− binary approach [309]
− the search is modified to use a normal

distribution

− maximum power point tracking in photovoltaic
systems [310]

− feature selection [309]

Pity Beetle Algorithm (PBA) [295]
− new search and population reproduction

mechanism, parameter adaptation [311]
− inclusion of the opposition-based principle [312]

− wireless multimedia sensors [311]
− lung cancer classification [312]

Dragonfly Algorithm (DA) [264]
(MATLAB-author source)
http://www.alimirjalili.com/DA.html,
accessed on 6 June 2021

− binary [264]
− multi-objective [264]
− inclusion of memory mechanisms specific to

PSO [313], chaos theory [314]

− feature selection [314–316]
− proton exchange fuel cells [317]
− engineering design [313]
− submarine propeller optimization [264]

Drosophila Food Search Optimization (DFO) [274] − winner takes all circuit [318]

Firefly algorithm (FF) [37]

(MATLAB)
http:
//yarpiz.com/259/ypea112-firefly-algorithm,
accessed on 12 December 2019

− chaotic maps [319]
− hybridization with Patter Search [320], Harmony

Search [321], Group Search Optimizer [322]

− load frequency controller design [323]
− ophthalmology [324]
− discrete optimization [325]

http://www.alimirjalili.com/ALO.html
https://www.mathworks.com/matlabcentral/fileexchange/68209-butterfly-optimization-algorithm-boa/
https://www.mathworks.com/matlabcentral/fileexchange/68209-butterfly-optimization-algorithm-boa/
https://www.mathworks.com/matlabcentral/fileexchange/68209-butterfly-optimization-algorithm-boa/
http://www.alimirjalili.com/DA.html
http://yarpiz.com/259/ypea112-firefly-algorithm
http://yarpiz.com/259/ypea112-firefly-algorithm
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Table 4. Cont.

Algorithm Source Code Modifications and Improvements Applications

Fruit Fly Optimization (FOA) [276]
(MATLAB—author source)
http://www.oitecshop.byethost16.com/FOA.
html?i=1, accessed on 15 June 2020

− multi-swarm [326,327]
− adaptive cooperative learning [328]
− introduction of random perturbation [329]
− use of a cloud-based model [330]

− shortest path in mobile ad-hoc networks [331]
− image processing [328]
− joint replenishment problems [329]
− parameter identification of synchronous

generator [327]

Grasshopper Optimization Algorithm (GOA) [290]
(MATLAB-author source)
http://www.alimirjalili.com/GOA.html,
accessed on 6 June 2021

− binary [332]
− multi-objective [333]
− inclusion of chaos [334]
− inclusion of levy flight mechanism [335]

− feature selection [336]
− Support Vector Machine optimization [336]
− financial stress prediction (in combination with

extreme learning machine) [335]
− Artificial Neural Network training [332]
− decision making for self-driving vehicles [337]

Locust Swarm (LS1) [288] − joint replenishment problems [338]

Locust Swarm (LS2) [289]

(MATLAB-author source)
https://www.mathworks.com/matlabcentral/
fileexchange/53271-locust-search-ls-
algorithm, accesed on: 20 December 2019

− image segmentation [339,340]

Mayfly optimization algorithm (MA) [341]

(MATLAB-author source)
https://in.mathworks.com/matlabcentral/
fileexchange/76902-a-mayfly-optimization-
algorithm, accessed on 15 August 2021

− hybridization with Harmony Search [342]

− feature selection [342]
− optimal design of energy renewable sources (in

combination with radial basis neural networks)
[343]

Monarch Butterfly Optimization (MBO) [279]

(C++, MATLAB)
https://github.com/ggw0122/Monarch-
Butterfly-Optimization, accessed on 12
December 2019

− binary adaptation [309]
− hybridization with Differential Evolution [344]
− inclusion of crossover operator [345]
− self-adaptive strategies [346]

− 0–1 knapsack problem [347]
− osteoporosis classification (in combination with

Artificial Neural Networks) [348]
− vehicle routing problem [349]

Mosquito host-seeking algorithm
(MHSA) [277] − inclusion of random walk and game of life [350] − travelling salesman problem [278]

Moth Flame Optimization (MFO) [284]
(MATLAB-author source)
http://www.alimirjalili.com/MFO.html,
accessed on 6 June 2021

− inclusion of Gaussian mutation [351]
− multi-objective optimization [352]
− inclusion of chaos [298,353]
− inclusion of levy flight mechanism [354,355]

− non-linear feedback control design [356]
− medical diagnosis (in combination with extreme

learning machine) [353]
− reactor power dispatch [285]
− engineering design problems [355]

http://www.oitecshop.byethost16.com/FOA.html?i=1
http://www.oitecshop.byethost16.com/FOA.html?i=1
http://www.alimirjalili.com/GOA.html
https://www.mathworks.com/matlabcentral/fileexchange/53271-locust-search-ls-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/53271-locust-search-ls-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/53271-locust-search-ls-algorithm
https://in.mathworks.com/matlabcentral/fileexchange/76902-a-mayfly-optimization-algorithm
https://in.mathworks.com/matlabcentral/fileexchange/76902-a-mayfly-optimization-algorithm
https://in.mathworks.com/matlabcentral/fileexchange/76902-a-mayfly-optimization-algorithm
https://github.com/ggw0122/Monarch-Butterfly-Optimization
https://github.com/ggw0122/Monarch-Butterfly-Optimization
http://www.alimirjalili.com/MFO.html
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Table 4. Cont.

Algorithm Source Code Modifications and Improvements Applications

Moth Swarm Algorithm (MSA) [286]

(MATLAB-author source)
https://www.mathworks.com/matlabcentral/
fileexchange/57822-moth-swarm-algorithm-
msa, accessed on 8 February 2020

− inclusion of Opposition Based Learning [357]
− hybridization with Gravitational Search

Algorithm [358]
− inclusion of arithmetic crossover [359]
− inclusion of chaos [360]

− power flow [359]
− threshold image segmentation [361]

Moth Search (MS) algorithm [287]

(MATLAB-author source)
https://in.mathworks.com/matlabcentral/
fileexchange/59010-moth-search-ms-
algorithm, accessed on 8 February 2020

− inclusion of disruptor operator [362]
− binary optimization [363]
− alteration at step level [364]
− hybridization with Ant Colony Optimization

[365]

− photovoltaic parameter identification [362]
− knapsack problem [363]
− drone placement [366]

Roach Infestation Optimization (RIO) [292]

(C#, VB)
https://msdn.microsoft.com/en-us/
magazine/mt632275.aspx, accessed on 6
February 2020

− introduction of the center agent concept [367]
− addition of cannibalism components [368]
− dynamic step size adaptation [369]

− Artificial Neural Networks training [367]
− engineering design [367]

Water strider algorithm (WfSA) [370]
− inclusion of chaos [371], of quasi-opposition and

elite-guide evolution mechanism [372],
adaptable parameters [373]

− optimal design of renewable energy systems
[372]

https://www.mathworks.com/matlabcentral/fileexchange/57822-moth-swarm-algorithm-msa
https://www.mathworks.com/matlabcentral/fileexchange/57822-moth-swarm-algorithm-msa
https://www.mathworks.com/matlabcentral/fileexchange/57822-moth-swarm-algorithm-msa
https://in.mathworks.com/matlabcentral/fileexchange/59010-moth-search-ms-algorithm
https://in.mathworks.com/matlabcentral/fileexchange/59010-moth-search-ms-algorithm
https://in.mathworks.com/matlabcentral/fileexchange/59010-moth-search-ms-algorithm
https://msdn.microsoft.com/en-us/magazine/mt632275.aspx
https://msdn.microsoft.com/en-us/magazine/mt632275.aspx
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3.2.2. Other Invertebrates

This group includes algorithms inspired from different invertebrates that do not
belong to the insect class.

• Arachnids

The social behavior of spiders, i.e., communication using vibrations throughout the
web, represents the source of inspiration for the Social Spider Optimization (SSO) [265].
It emulates a group of spiders that contains both males and females and applies different
evolutionary operators to mimic the distinct behaviors typically found in the colony. In
addition to the cooperation behavior, a mating operator, applicable only to the strongest
individuals, is introduced to increase diversity. A comprehensive review of the SSO, which
covers its main variants and applications, is the work of Luque–Chang et al. [374].

Distinctively from the SSO, which models the cooperative behavior and exchange
of information through the web, the Social Spider Algorithm (SSA) [375] simulates the
foraging behavior of social spiders. The SSA does not distinguish the individuals by sex;
all the spiders share the same search operations. Compared to the SSO, the SSA is simpler,
it uses a single random move operator and depends on the parameter settings to control
the search [375]. A parameter sensitivity analysis (through advanced non-parametric
statistical tests) indicated that medium population, small to medium attenuation rate,
medium crossover probability and small mutation probability lead to good results for the
majority of the problem being tested [376].

• Crustacea

The Krill Herd Algorithm (KHA) [377] is inspired from the herding behavior of
krill individuals and was developed to solve non-complex optimization problems. It is
a population-based approach that uses three main ways to explore the search space: (i)
movement, induced by other individuals; (ii) foraging; (iii) random diffusion. A review
that covers the main improvements and applications of the KHA is [378]. Newer studies
(after 2017) that use the KHA to solve specific problems are presented in Table 5.

• Annelid worms

The reproduction mechanisms used by earthworms are the source of inspiration for the
Earthwork Optimization Algorithm (EWA) [379]. The idealized rules that the EWA follows
are: (i) all the earthworms can produce offspring using only two types of reproduction; (ii)
the number of genes of the offspring is the same as the parent’s; (iii) the best individuals go
directly, without change, to the next generation so as to ensure that the population cannot
deteriorate throughout generations.

• Tunicata

Tunicates are marine, small bio-luminescent invertebrates with a unique mode of jet
propulsion. The movement strategy and the swarming behavior of tunicates was modelled
in the Tunicate Swarm Algorithm (TSA) [380], its performance for a set of benchmarking
problems being similar with state-of-the-art approaches. The time complexity of the TSA is
O(iterations × population_size × dimensionality × N) where N indicates the jet propulsion
and swarm behaviors.
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Table 5. Improvements and applications for other invertebrates-based metaheuristics (alphabetically sorted).

Algorithm Source Code Modifications and Improvements Applications

Earthwork Optimization Algorithm (EWA)
[379]

(MATLAB—author source)
https://in.mathworks.com/matlabcentral/
fileexchange/53479-earthworm-
optimization-algorithm-ewa?s_tid=FX_rc3
_behav, accessed on 15 March 2021

− hybridization with Differential Evolution
[381]

− home energy management system
[381–383]

Krill Herd Algorithm (KHA) [377]

(MATLAB—author source)
https:
//www.mathworks.com/matlabcentral/
fileexchange/55486-krill-herd-algorithm,
accessed on 9 February 2020

− hybridization with Ant Colony
Optimization [384], Bat Algorithm [385],
Clonal Selection [386]

− modification at inner lever [387]

− Artificial Neural Network training [388]
− planning and scheduling [385]
− feature reduction [389]
− text clustering [387]

Social Spider Optimization (SSO) [265]

(MATLAB—author source)
https://www.mathworks.com/
matlabcentral/fileexchange/46942-a-swarm-
optimization-algorithm-inspired-in-the-
behavior-of-the-social-spider, accessed on 26
April 2020

− modification of the solution generation
mechanism [390]

− inclusion of rough sets [391]
− constraint handling [392]

− reactive power dispatch [390]
− minimum number attributes reduction

problem [391]
− Artificial Neural Network training [393]

Social Spider Algorithm (SSA) [375]

(MATLAB, C++, Python—author source)
https://github.com/James-Yu/
SocialSpiderAlgorithm, accessed on 18
January 2020

− inclusion of differential mutation [394],
chaos [395]

− new mutation strategy [396]

− train energy optimization [397]
− scheduling [394,395]
− load dispatch problem [398]

Tunicate Swarm Algorithm (TSA) [380]

(MATLAB—author source)
https://www.mathworks.com/
matlabcentral/fileexchange/75182-tunicate-
swarm-algorithm-tsa, accessed on 17 July
2021

− inclusion of local escaping operator [399],
Levi Flight distribution [400]

− hybridization with Salp Swarm Optimizer
[401]

− control and operation of automated
distribution networks [400]

− connectivity and coverage optimization in
wireless sensor networks [401]

https://in.mathworks.com/matlabcentral/fileexchange/53479-earthworm-optimization-algorithm-ewa?s_tid=FX_rc3_behav
https://in.mathworks.com/matlabcentral/fileexchange/53479-earthworm-optimization-algorithm-ewa?s_tid=FX_rc3_behav
https://in.mathworks.com/matlabcentral/fileexchange/53479-earthworm-optimization-algorithm-ewa?s_tid=FX_rc3_behav
https://in.mathworks.com/matlabcentral/fileexchange/53479-earthworm-optimization-algorithm-ewa?s_tid=FX_rc3_behav
https://www.mathworks.com/matlabcentral/fileexchange/55486-krill-herd-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/55486-krill-herd-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/55486-krill-herd-algorithm
https://www.mathworks.com/matlabcentral/fileexchange/46942-a-swarm-optimization-algorithm-inspired-in-the-behavior-of-the-social-spider
https://www.mathworks.com/matlabcentral/fileexchange/46942-a-swarm-optimization-algorithm-inspired-in-the-behavior-of-the-social-spider
https://www.mathworks.com/matlabcentral/fileexchange/46942-a-swarm-optimization-algorithm-inspired-in-the-behavior-of-the-social-spider
https://www.mathworks.com/matlabcentral/fileexchange/46942-a-swarm-optimization-algorithm-inspired-in-the-behavior-of-the-social-spider
https://github.com/James-Yu/SocialSpiderAlgorithm
https://github.com/James-Yu/SocialSpiderAlgorithm
https://www.mathworks.com/matlabcentral/fileexchange/75182-tunicate-swarm-algorithm-tsa
https://www.mathworks.com/matlabcentral/fileexchange/75182-tunicate-swarm-algorithm-tsa
https://www.mathworks.com/matlabcentral/fileexchange/75182-tunicate-swarm-algorithm-tsa
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4. The Exploration–Exploitation Balance

Although based on different ideas, for all metaheuristic optimizers, the mechanisms
used to simulate the optimization behaviors are similar. Generally speaking, all the algo-
rithms in this class start with an initial population of potential solutions, usually randomly
generated, which is evolved, i.e., modified by a series of mechanisms that can include—
among others—selection, crossover and mutation, until a stopping criterion is satisfied.
The actual strategies used to perform these steps and the mechanisms used to control the
exploration–exploitation balance (EEB) influence the performance behavior and represent
the main elements that make the distinction between algorithms.

The research in the area of metaheuristics often mentions the exploration and exploita-
tion aspects of the algorithms; however, these terms have never been formally defined [402].
Informally, exploration is defined as the process of visiting entirely new regions of the
search space, also known as the global search ability of the algorithm, while exploration is
the process of visiting those regions of the search space within the neighborhood of previ-
ously visited points, which represents the local search ability [402]. Pure exploration leads
to a decrease in precision but increases the ability of finding new, good solutions, while pure
exploitation refines the existing solution and drives the search to a local optimum [403].
Because it indicates how the resources are allocated, knowing the EEB information can
be useful to determine the impact of specific aspects of the algorithm [404]. The EEB
can be seen from two points of view: (i) exploration and exploitation as opposing forces;
(ii) exploration and exploitation as orthogonal forces [404]. However, it was shown that the
opposing forces view is a special case of the orthogonal view and, thus, EEB monitoring
must involve a metric for the exploration axis and one for the exploitation axis [404].

For evolutionary algorithms, it was shown that different operators, depending on
the algorithm, are acting as exploitation or exploration procedures [1]. In population-
based algorithms, the EEB is connected to the population diversity: when this is high, the
algorithm is explorative and when it is low, the behavior is exploitative [1]. Although a
diverse population is a prerequisite rather than a guarantee for the EEB and a good EEB
can be reached through other means, e.g., fitness, using diversity is one of the simplest
methods for achieving it [402]. Due to the fact that the problems to be solved must be
encoded into a binary or real-valued vector, a clear distinction between the genotype
(the encoded structure) and the phenotype (the actual problem) must be done. In this
context, the diversity can be measured at the genotype level, at the phenotype level or
using complex or composite measures that combine the genotype and the phenotype.

In [402], the diversity-based approaches applied to the EEB are classified as: (i) diver-
sity maintenance—in this case it is assumed that the techniques will maintain diversity per
se; (ii) diversity control, where feedback from measured individual fitness and or/fitness
improvement is used to direct the evolution towards exploration or exploitation; (iii) diver-
sity learning—a long-term history in combination with machine learning approaches is
used to learn unexplored search areas; iv) other direct approaches (Figure 2). In the case of
diversity maintenance, two categories can be indicated: niching and non-niching. The nich-
ing techniques represent extensions of the algorithms to multi-modal domains [405]. One
of the most comprehensive definitions for niching is given in [406]: ”Niching is a two-step
procedure that (a) concurrently or subsequently distributes individuals into distinct basins
of attraction and (b) facilitates approximation of the corresponding (local) optimizers”.
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Figure 2. Mechanisms used to control the exploration–exploitation balance through diversity.

Table 6 shows the different mechanisms for the EEB used by the initial versions of the
algorithms presented in Section 3. The subsequent modifications performed to the base
versions are not considered in this table. The following notations are used: C indicates the
controlling mechanisms, L the learning approaches, OD are the other direct approaches
and H. represents the hybrid techniques. Pop. represents the population-based techniques,
Sel. the selection based, Crs. the crossover/mutation based, Fit. the fitness based, Rep. the
replacement based and Pres. the preservation-based approaches. In Table 6, in each case a
specific approach is encountered in the algorithm, an x is set in the corresponding column.
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Table 6. The diversity-based approaches used for EEB by the bio-inspired metaheuristic optimizers (alphabetically sorted).

Algorithm C L

Maintaining OD Description of the Mechanisms

Niching Non-Niching

Pop. Sel. Crs. H. Fit. Rep. Pres. H.

Backtracking Search Algorithm
Optimization (BSA) x x x − dual-population with a complex crossover approach

Bat Algorithm (BA) x x
− a local search is performed to randomly selected best solutions; -new

solutions are generated by flying randomly and added to the population if
their fitness is good

Bee Colony Inspired Algorithm (BCiA) x x − 2 populations with individuals that migrate between them

Bird Mating Optimizer (BMO) x x
− new individuals are randomly inserted after a certain number of generations
− the mating behavior of male and female is different

Blind Naked Mole Rats (BNMR) x − a new solution is generated and added to the population its fitness is good

Bumblebees (B) x − infusion of new individuals in the population and elimination of the worst

Bumble Bee Mating Optimization (BBMO) x
− there are mating restrictions with division of roles within individuals in the

population

Chicken Swarm Optimization (CSO) x − different subpopulations are considered

Competition over Resources (COR) x x − 2 subgroups performing a separate search

Cuckoo Search (CS) x − worst individuals are removed and new ones are added

Cuckoo Optimization Algorithm (COA) x − k-means is used to cluster the cuckoos into groups

Drosophila Food Search Optimization
(DFO) x − Redundant Search algorithm is used to perform a neighborhood search

Elephant Herding Optimization (EHO) x
− each iteration, the males- i.e., the worst individuals from each clan are

replaced by new individuals (separating operator)

Elephant Search Algorithm (ESA) x
− the population is formed by two groups: male (that performs exploration)

and females (that performs exploitation)

Grey Wolf Optimizer (GWO)
− the balance between exploration and exploitation is performed through

control parameters

Hunting Search (HuS) x
− when the individuals in the population are close together, a reset procedure

is applied

Krill Herd Algorithm (KHA) x
− the fitness function is used to simulate the motion induced by other krill

individuals
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Table 6. Cont.

Algorithm C L

Maintaining OD Description of the Mechanisms

Niching Non-Niching

Pop. Sel. Crs. H. Fit. Rep. Pres. H.

Locust Swarm (LS2) x − the exploration and exploitation steps are one after the other

Lion’s Algorithm (LA) x x
− k-means is used to perform gender grouping
− at pride update, sick/weak cubs are killed/eliminated

Lion Optimization Algorithm (LOA) x x
− the behavior of males and females in the pride is different; -there are

different populations (nomad and pride); -restricted mating between males
and females

Lion Pride Optimization Algorithm
(LPOA) x − multiple subpopulations (prides) are considered

Monarch Butterfly Optimization (MBO) x x − 2 subpopulations with individuals that migrate between them

Moth Swarm Algorithm (MSA) x − uses an adaptive crossover based on diversity

Moth Search (MS) algorithm x x
− at each generation the population recombines all the individuals and splits

them into 2 groups based on fitness

Pigeon Inspired Optimization (PIO) x − the landmark operation implies reducing the number of individuals to half

Satin Bowerbird Optimizer (SBO) x − the probability of finding a mate is based on the fitness function

Sperm Whale Algorithm (SWA) x − restricted mating (strongest male mates with several females)

Social Spider Optimization (SSO) x x
− the individuals are gender oriented, with different behavior; the offspring

generation is restricted to the classical male-female mating

Spider Monkey Optimization (SMO) x − multiple sub-populations

Spotted Hyena Optimizer (SHO) x
− the parameters controlling the prey encircling are changed as the search

progresses

Squirrel Search Algorithm (SSA) x − when seasonal conditions are satisfied, the squirrels are randomly relocated
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As it can be observed from Table 6, some strategies are more popular than others; the
non-niching techniques based on population are the most used approaches for diversity
maintenance. This can be explained by the fact that the bio-inspired metaheuristics are
population-based and, therefore, the most intuitive methods consist in modifying the
characteristics of the population as a means of improving performance.

5. Algorithm Selection

As it can be observed, the list of algorithms, even when the source of inspiration is
restrung to a single category, is extensive. In practice, the most common question is what is
the best suited algorithm and how can it can be successfully applied for a specific problem?
Unfortunately, answering this question is not an easy task, as by their definition, heuristics
can provide sufficiently good solutions to an optimization problem. Thus, depending on
the accepted level of precision, there can be more than one heuristic that can generate
acceptable solutions in terms of quality. However, performance is not the only aspect that
can be taken into account [407]. The issue of algorithm selection was formalized by Rice
in [408], and involves: (i) a problem space P; (ii) an algorithm space A; (iii) a mapping PxA
onto R (also known as performance model). This implies that there must exist an extensive
set of problem instances and features that describe them and the algorithm state at any
time [409]. Thus, although advances regarding algorithm selection were made [409,410], the
most used strategy in the metaheuristic filed is based on comparison. The work of LaTorre
et al. [411] presents a series of methodological guidelines for comparing metaheuristics
that involves: (i) selection of benchmarks and refence algorithms; (ii) validation of results
(with statistical analysis and visualization); (iii) parameter tunning; (iv) identification
of usefulness.

As a demonstration, in this work, the three most used real-world benchmark problems
were selected (Table 7) and used to determine (based on already reported results) what
the best performing animal-inspired metaheuristics are. The centralized results, organized
from the best to the worst solution, are presented in Table 8 for the pressure vessel design,
Table 9 for the welded beam design and Table 10 for the tension/compression spring design.
All the considered problems are constrained minimization problems and their description
can be found in the references from the column “Reported work” of Tables 8–10.

Table 7. Real-world problems characteristics.

Problem Decision Variables Inequality Constraints

Tension/Compression spring 3 (diameter, mean coil diameter, number of active coils) 4

Pressure vessel design 4 (thinckness of the shell, thinkness of th head, inner
radius, length of the cylindrical section) 4

Welded beam design 4 (thikness of the weld, length of the attached part of the
bar, height of the bar and thickess of the bar) 7
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Table 8. Solutions for the pressure vessel design problem.

Algorithms Reported
Work

Modified
Version Ts Th R L Optimal

Cost

Sooty Tern Optimization Algorithm (STOA) [54] [54] No 0.778095 0.38324 40.31511 200 5879.1253

Emperor Pinguin Optimization (EPO) [55] [55] No 0.778099 0.383241 40.31512 200 5880.07

Chameleon Swarm Algorithm (ChSA) [224] [224] No 12.450698 6.154387 40.31961 200 5885.3327

Memory based Dragonfly algorithm (MHDA)
[313] [313] Yes 0.778169 0.384649 40.3196 200 5885.3353

COOT [412] [412] No 0.77817 0.384651 40.31961 200 5885.3487

Marine Predator Algorithm (MPA) -continuous
variant [229] [229] No 0.77816876 0.3846497 40.31962 199.99999 5885.3353

Spotted Hyena Optimizer (SHO) [142] [55] No 0.77821 0.384889 40.31504 200 5885.5773

Modified Spider Monkey Optimization (SMONM)
[203] [412] Yes 0.778322 0.384725 40.32759 199.8889 5885.595

African Vulture Optimization Algorithm (AVOA)
[57] [57] No 0.778954 0.3850374 40.36031 199.43429 5886.67659

Grey Wolf Optimizer (GWO) [136] [55] No 0.779035 0.38466 40.32779 199.65029 5889.3689

Dragonfly Algorithm (DA) [264] [313] No 0.782825 0.384649 40.3196 200 5923.11

Aquila Optimization (AO) [47] [47] No 1.0540 0.182806 59.6219 38.8050 5949.2258

Improved Grasshoper Oprimization (OBLGOA)
[413] [412] Yes 0.81622 0.4035 42.29113 174.81119 5966.6716

Slime Mould Algorithm (SMA) [414] [414] No 0.7931 0.3932 40.6711 196.2178 5994.1857

Harris Hawk Optimization (HHO) [46] [412] No 0.81758383 0.4072927 42.09174 176.71963 6000.46259

Improved Artificial bee Colony (I-ABC greedy)
[415] [412] Yes 0.8125 0.4375 42.0984 176.6369 6059.7124

Firefly Algorithm (FA) [416] [412] No 0.8125 0.4375 42.09844 176.63659 6059.7143

Moth-flame Optimization (MFO) [284] [412] No 0.8125 0.4375 42.09844 176.63659 6059.7143

Marine Predator Algorithm (MPA) -mixed integer
variant [229] [229] No 0.8125 0.4375 42.09844 176.63660 6059.7144

Sine-Cosine Grey Wolf Optimizer (SC-GWO) [417] [412] Yes 0.8125 0.4375 42.0984 176.6370 6059.7179

Co-evolutionary Differential Evolution (CDE)
[418] [229] Yes 0.8125 0.4375 42.09841 176.6376 6059.734

Whale Optimization Algorithm (WOA) [134] [412] No 0.8125 0.4375 42.09826 176.63899 6059.741

Bacterial foraging Optimization (BFOA) [419] [229] No 0.8125 0.4375 42.09639 176.68323 6060.46

Co-evolutionary Particle Swarm Optimization
(CPSO) [420] [313] Yes 0.8125 0.4375 42.09126 176.7465 6061.077

Artificial Immune System-Genetic Algorithm
(HGA-1) [421] [229] Yes 0.8125 0.4375 42.0492 177.2522 6065.821

Artificial Immune System-Genetic Algorithm
(HGA-2) [421] [229] Yes 1.125 0.5625 58.1267 44.5941 6832.583

Harmony Search (HS) [422] [229] No 1.125 0.625 58.2789 43.7549 7198.433
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Table 9. Solutions for the welded beam design.

Algorithms Reported
Work

Modified
Version τ σ Pc δ

Optimal
Cost

Aquila Optimization (AO) [47] [47] No 0.1631 3.3652 9.0202 0.2067 1.6566

Butterfly Optimization Algorithm (BOA) [283] [283] No 0.1736 2.969 8.7637 0.2188 1.6644

COOT [412] [412] No 0.19883 3.33797 9.19199 0.19883 1.6703

Memory based Dragon Fly algorithm(MHDA))
[313] [313] Yes 0.20573 3.25312 9.03662 0.20573 1.69525

Slime Mould algorithm (SMA) [414] [414] No 0.2054 3.2589 9.0384 0.2058 1.696

Dragonfly Algorithm (DA) [264] [313] No 0.19429 3.46681 9.04543 0.2057 1.70808

Tunicate Swarm Algorithm (TSA) [380] [412] No 0.20329 3.47114 9.0351 0.20115 1.72102

Seagull optimization algorithm (SOA) [53] [53] No 0.205408 3.472316 9.035208 0.20114 1.723485

Emperor Pinguin Optimization (EPO) [55] [55] No 0.205411 3.472341 9.035215 0.20115 1.723589

Sooty Tern Optimization Algorithm (STOA) [54] [54] No 0.205415 3.472346 9.03522 0.20116 1.72359

Improved Artificial bee Colony (I-ABC greedy)
[415] [412] Yes 0.20573 3.47049 9.03662 0.20573 1.72482

Co-evolutionary Particle Swarm Optimization
(CPSO) [420] [313] Yes 0.20573 3.47049 9.03662 0.20573 1.72485

Modified Artificial Bee Colony (ABC) [263] [313] Yes 0.20573 3.47049 9.03662 0.20573 1.72485

Modified Spider Monkey Optimization (SMONM)
[203] [412] Yes 0.20573 3.47049 9.03662 0.20573 1.72485

Chameleon Swarm Algorithm (ChSA) [224] [224] No 0.205730 3.470489 9.036624 0.20573 1.724852

African Vulture Optimization Algorithm (AVOA)
[57] [57] No 0.20573 3.470474 9.03662 0.20573 1.724852

Moth-flame Optimization (MFO) [284] [370] No 0.20573 3.47049 9.03662 0.20573 1.7249

Water Strider Algorithm (WSA) [370] [370] No 0.20573 3.47049 9.03662 0.20573 1.7249

Marine Predator Algorithm (MPA) [229] [229] No 0.20573 3.47051 9.03662 0.20573 1.72485

Salp Swarm Algorithm (SSA) [11] [414] No 0.2057 3.4714 9.0366 0.2057 1.7249

Derivative free Simulated Annealing (SA) [423] [313] Yes 0.20564 3.47258 9.03662 0.20573 1.725

Spotted Hyena Optimizer(SHO) [142] [412] No 0.20556 3.47485 9.0358 0.20581 1.72566

Improved Grasshopper Optimization Algorithm
(OBLGOA) [413] [412] Yes 0.20577 3.47114 9.03273 0.20591 1.7257

Grey Wolf Optimizer (GWO) [136] [414] No 0.2057 3.4784 9.0368 0.2058 1.7262

Whale Optimization Algorithm (WOA) [134] [134] No 0.205396 3.484293 9.037426 0.20627 1.730499

Harris Hawk Optimization (HHO) [46] [412] No 0.20404 3.53106 9.02746 0.20615 1.73199

Sailfish Optimizer (SFO) [222] [222] No 0.2038 3.6630 9.0506 0.2064 1.73231

Co-evolutionary Differential Evolution (CDE)
[418] [412] Yes 0.20314 3.543 9.0335 0.20618 1.73346

Levy Flight Distribution (LFD) [424] [412] No 0.1857 3.907 9.1552 0.2051 1.77

Harmony Search and Genetic Algorithm
(HSA-GA) [425] [229] Yes 0.2231 1.5815 12.8468 0.2245 2.25

Improved harmony Search (HS) [426] [283] Yes 0.2442 6.2231 8.2915 0.2443 2.3807

Differential Evolution with stochastic selection
(DSS-DE) [427] [229] Yes 0.2444 6.1275 8.2915 0.2444 2.381

APPROX [428] [134] No 0.2444 6.2189 8.2915 0.2444 2.3815

Ragsdell [428] [370] No 0.2455 6.196 8.2915 0.2444 2.38154

David [428] [134] No 0.2434 6.2552 8.2915 0.2444 2.3841

Bacterial Foraging Optimization (BFOA) [419] [229] No 0.2057 3.4711 9.0367 0.2057 2.3868

Simplex [428] [370] No 0.2792 5.6256 7.7512 0.2796 2.5307

Random [428] [134] No 0.4575 4.7313 5.0853 0.66 4.1185



Mathematics 2021, 9, 2335 33 of 52

Table 10. Solutions for the tension/compression spring.

Algorithms Reported
Work

Modified
Version d D N Optimal

Cost

Aquila Optimization (AO) [47] [47] No 0.050243 0.35262 10.5425 0.011165

Butterfly Optimization Algorithm (BOA) [283] [283] No 0.051343 0.334871 12.9227 0.011965

Emperor Pinguin Optimization (EPO) [55] [55] No 0.051087 0.342908 12.0898 0.012656

Sooty Tern Optimization Algorithm (STOA) [54] [54] No 0.05109 0.34291 12.09 0.012656

FireFly algorithm (BA) [416] [412] No 0.05169 0.35673 11.2885 0.012665

Pathfinder algorithm (PFA) [429] [229] No 0.051726 0.357629 11.235724 0.012665

Marine Predator Algorithm (MPA) [229] [229] No 0.0517244 0.35757003 11.2391955 0.012665

Improved Artificial bee Colony (I-ABC greedy)
[415] [412] Yes 0.051686 0.356014 11.202765 0.012665

COOT [412] [412] No 0.0516527 0.3558442 11.340383 0.012665

African Vulture Optimization Algorithm (AVOA)
[57] [57] No 0.051669 0.3562553 11.316126 0.0126652

Chameleon Swarm Algorithm (ChSA) [224] [224] No 0.051778 0.358851 11.164981 0.0126653

Harris Hawk Optimization (HHO) [46] [412] No 0.0517963 0.3593053 11.138859 0.01266

Grey Wolf Optimizer (GWO) [136] [412] No 0.05169 0.356737 11.28885 0.012666

Modified Spider Monkey Optimization (SMONM)
[203] [412] Yes 0.051918 0.362248 10.97194 0.012666

Moth-flame Optimization (MFO) [284] [412] No 0.0519944 0.36410932 10.868422 0.012666

Artificial Immune System-Genetic Algorithm
(HGA-1) [421] [229] Yes 0.051302 0.347475 11.852177 0.012668

Co-evolutionary Differential Evolution (CDE) [418] [229] Yes 0.051609 0.354714 11.410831 0.01267

Improved harmony Search (HS) [426] [283] Yes 0.051154 0.349871 12.076432 0.012670

Bacterial Foraging Optimization (BFOA) [420] [229] No 0.051825 0.359935 11.107103 0.012671

Sine-Cosine Grey Wolf Optimizer (SC-GWO) [417] [412] Yes 0.051511 0.352376 11.5526 0.012672

Spotted Hyena Optimizer (SHO) [142] [412] No 0.051144 0.343751 12.0955 0.012674

Co-evolutionary Particle Swarm Optimization
(CPSO) [420] [229] Yes 0.051728 0.357644 11.244543 0.012674

Whale Optimization Algorithm (WOA) [134] [412] No 0.051207 0.345215 0.004032 0.012676

Salp Swarm Algorithm (SSA) [11] [412] No 0.051207 0.345215 12.004032 0.012676

Improved Grasshopper Optimization Algorithm
(OBLGOA) [413] [412] Yes 0.0530178 0.38953229 9.6001616 0.012701

Mathematical_optimization [430] [283] - 0.053396 0.39918 9.1854 0.012730

Constraint_correction [431] [283] - 0.05 0.3159 14.25 0.012833

In Tables 8–10, the column “Reported work” indicates the paper where the specific
results were reported and where the control parameters used to obtain those results where
indicated. The column “Modified version” indicates if the specific algorithm is a modified
version of the base variant. As it can be observed, the majority of the algorithms in the top
of the list represent base variants of metaheuristics proposed in the last five years. This
indicates that, for this type of constrained problem with a reduced number of parameters,
the newer metaheuristics tend to perform better than the older, more known metaheuristics,
as well as the classical mathematical approaches.

To determine which algorithm is best suited to all the considered engineering prob-
lems, a Condorcet-based approach was applied [432]. It is based on the idea of the voting
system, the problem of determining a rank of algorithms becoming an electoral problem. In
this context, the considered algorithms represent the candidates and their solutions for each
problem indicate the voters. Thus, as a majority-based method, the Condorcet algorithm
determines the winner of an election as the candidate who outperforms or is equal to each
candidate in a pair-wise comparison. As not all the algorithms considered were tested on
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all of the problems, the Condorcet algorithm was applied for the metaheuristics tested on
all three problems. The obtained results identified the top four metaheuristics as: EPO
(45 votes), AO (42 votes), COOT (40 votes) and ChSA (34 votes). In the fifth and sixth
pace, at equality with 32 votes, are I-ABC greedy and AVOA. As it can be observed, the
difference between the algorithms placed in the first three positions is relatively small (2
votes). Similarly, there is a small difference between the algorithm placed in positions four,
five and six. On the other hand, the difference between place three and four is larger (6
votes), indicating that the first three algorithms, when applied for the three engineering
problems considered, performed substantially better than the next three. To test if there
is a significant difference between the two groups, a t-Test Paired Sample was performed.
The results obtained indicate a Pearson correlation of 0.999 and a P(T <= t) two-tail of
0.3168. As it is higher than 0.05, the null hypothesis is accepted, resulting in that there
are no statistically significant differences between the results provided by the best three
algorithms versus the results provided by the next three best algorithms. Thus, it can be
concluded that, although from the 17 algorithms considered EPO is the winner, all of the
first six algorithms can provide similar results and can be used successfully for solving the
three engineering problems considered.

6. General Issues

Eighty five percent of articles that propose new bio-inspired metaheuristics have a high
number of citations, i.e., more than 20/year, in a relatively reduced period in comparison
with the norm in the area of artificial intelligence, where, during a year, the average number
of citations is around 5. This indicates that the issues of finding good optimizers that can be
easily applied to solve different problems is of high interest. However, a high percentage of
the research performed and the subsequently published articles is focused on applications.
An in-depth analysis of the theoretical aspects that influence the performance of the
different operators used and their combination is relatively scarce. However, researchers
are trying to correct this aspect and, in the latest years, a series of studies focusing on the
analysis of theoretical and practical aspects were published [10,409,411,433–436].

The high number of citations was observed mostly for the algorithms for which the
source-code is provided or easy to find. For the majority of these highly cited metaheuristics,
the research focused on two main directions: (i) improvement or hybridization and (ii)
applications—usually without any analysis or motivation for the selection of a particular
algorithm. However, although the rate of publishing new algorithms (and the variants
proposed) is high, studies focusing on the aspects that make an algorithm successful or on
the mechanisms that lead to improvements in performance are quite rare. Therefore, in
order to further advance the knowledge in the area and to establish some comprehensive
basis on which newer, faster and efficient approaches are developed and successfully
applied to problems from various domains, the mechanisms and the influence of different
aspects of the problem/optimizer domain must be analyzed in depth. In the last years, it
was observed that the manuscripts publishing new metaheuristics contain a more detailed
analysis and comparison with other algorithms. However, these studies are predominantly
based on empirical observations gathered from simulations performed on a handful of
benchmarks (mathematical functions such as those proposed in the CEC competitions
and engineering problems such as welded beam, pressure vessel or tension/compression
spring design). The fact that the CEC test problems are considered, until recently, only in
C++ and Matlab can be one explanation for the fact that the majority of these metaheuristics
are implemented in Matlab.

This paper presented a comprehensive list of metaheuristics, with a focus on animals
as a source of inspiration. All the studied works have a similar organization. First, a general
description of the domain is presented, followed by the natural mechanisms used as sources
of inspiration and a section with the implementation strategies used to simulate the natural
mechanisms. In the results section, a set of problems are selected to demonstrate the
strengths and weaknesses of the proposed approach. Although this seems straightforward
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and easy to understand, in the metaheuristics area, the main issues are related to the
fact that:

• The biological terminology used is complex and, in many cases, difficult to understand,
which conceals that, in the implementation phase, the mechanisms used are simple
and well-known and are, in fact, variations on the same theme; the work of [437]
tries to shed some light onto the computational mechanisms used by the best-known
metaheuristics. Also, in terms of the real-world mechanisms modeled, some of the
algorithms are ‘weak inspired’, in the sense that the so-called modeled behavior is not
met in the species that give the name of the algorithm [438];

• After overcoming the terminology barrier, upon a closer analysis, some of the so-called
new algorithms not only do not have any novel aspect, but the papers describing
them are incomplete or an implementation following the pseudo-code identifies
other problems. In this regard, the work of Nguyen Van Thieu is worth mentioning,
wherein he strides to implement these in a comprehensive python module with
metaheuristics [438], and identified some of these dummy metaheuristics;

• Although some algorithms are inspired from the same source, the mechanisms mod-
eled are different. For example, for Pidgeon inspired approaches, two algorithms were
identified: PIO, which focuses on the movement of an individual from point A to
point B and POA, which focuses on the movement of pigeons, taking into account the
social interactions;

• There are multiple benchmark libraries that can be used and, in the majority of cases,
the problems chosen by the authors to test the performance are very varied; thus,
a comparison of performance between multiple algorithms based on the published
literature is not always possible. The work of [439] presents the winners of some well-
known competitions where standard benchmarks are used. In addition, as publishing
bad results is sometimes discouraged, only the problems with the best results are
chosen. In [2], it was shown that, in the comparison phase, the number of algorithms,
the number of problems tested and the statistics used can lead to wrong conclusions if
not properly selected;

• In an attempt to create high performance algorithms, the tendency is to include
multiple strategies that have proven efficient over the years, e.g., self-adaptation,
chaos, local search, etc. However, this has led to over-complicated methods that do not
always show a direct correlation between complexity and performance. For example,
for two winners of the CEC2016 competition, simpler versions (without operators
biased towards 0) proved competitive against a large number of metaheuristics and
even performed better for problems with solutions not close to 0 [435].

It can be observed that the source of inspiration follows the main classes identified
in the biological taxonomy. Although the inspiration sources are varied and range from
the behavior of simple organisms to the mechanisms used for survival of the species by
large animals, the simulation of these sources is focused on exploration and exploita-
tion, which translates into mathematical relations that make changes on the individu-
als. As it can be observed from Table 6, the majority of mechanisms used to control the
exploration–exploitation balance in the standard versions belong to the niching class and
are population-based. Overall, the manner in which the mechanisms that simulate the real-
life behavior of animals are implemented and the combinations used represent the main
aspects that differentiate the algorithms and that make them more sensitive or insensitive
to the characteristics of the problem being solved, e.g., multi-modality, separability, etc.

Based on the aspects described above, the following potential directions of research
can be identified:

• Performance measurement: the issue of performance is a complex aspect, especially
taking into account that different metrics can be used. Although the tendency is to
see performance as the capability to provide the best solution, other aspects such
as complexity, computational resources consumed and stability can be employed.
Moreover, how the best solution is identified is usually based on experiments with
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mean and standard deviation as validation criteria [440], and a standardization of all
these metrics and criteria of evolution can be a further step in the development of a
general framework for metaheuristics.

• Performance analysis and improvement: identifying the main mechanisms that make a
particular algorithm efficient for a particular class or group of problems. In this context,
a better understanding of the exploration–exploitation balance, convergence analysis,
diversity and the strategies that focus these aspects to a direction or another would help
in providing a better foundation for the improvement of existing variants and creating
new ones. In this regard, some studies focusing on these aspects were published
(examples include: convergence analysis [441–444], fitness landscape analysis [445–
448], exploration–exploitation [449–451]). However, additional research is required to
reach field maturity.

• Algorithm selection: procedures and algorithms that can automatically select the
best metaheuristic for a specific problem or group of problems. A wide level of
applicability is one of the reasons for the popularity of metaheuristics. Thus, better
strategies that can allow an easy identification of suitable algorithms are necessary. In
this context, in the last few years, various methodologies and strategies to compare
and select algorithms were proposed [2,411,433] and recommender systems were
developed [409]. However, they are not widely accepted and applied and additional
research in simplifying and generalizing these aspects is required.

7. Conclusions

This work is a review that focus on the animal-inspired metaheuristics proposed
between 2006–2021. It was observed that, despite the rising number of critiques addressed
to the entire metaheuristic community, the trend of proposing algorithms based on novel
ideas and sources of inspiration does not seem to slow down considerably. In fact, it
maintains the growth rate already observed a few years ago, mainly due to the large area
of applicability and popularity of both the older, more established algorithms such as the
GA, and newer approaches, for which the tendency is to provide the source code and thus
increase the ease of use.

Regarding the animal-based metaheuristics, the most used source of inspiration is
represented by the vertebrates, where easily observable behaviors such as food finding
and mating are mathematically modeled using various approaches. However, a closer
analysis of the inspiration sources indicated that all the main branches of the biological
classification are represented in the metaheuristic world. This shows that researchers are
actively searching for new ideas in unusual places and are not hindered by the difficulties
associated with identifying the mechanisms of the behaviors of hard to analyze sources,
such as animals living in remote and difficult to reach areas. In fact, the more exotic the
inspiration source and the more uncommon the behavior, the higher the probability of
finding new mechanisms that can be translated into truly novel approaches.

The main directions of research that were identified focus on the proposal of new
metaheuristics and their application for various types of problems and only a few studies
tackle the influence of specific operators or mechanisms on performance. Better performing
algorithms are always desired and using nature as a source of inspiration can lead to new
advances in this field of metaheuristics. However, attention must be paid not only to the
source of inspiration but also to how this inspiration is modelled and put into practice. Sim-
ilarity with existing variants, performance, complexity, exploration–exploitation balance,
proper comparison and use of benchmarks must also be taken into account. An in-depth
analysis of all the aspects that influence the performance behavior and the relations with the
characteristics of the problems being solved can benefit both the metaheuristic community
and the areas where these algorithms are applied.
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