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Abstract: Unravelling how the human brain structure gives rise to function is a central question
in neuroscience and remains partially answered. Recent studies show that the graph Laplacian
of the human brain’s structural connectivity (SC) plays a dominant role in shaping the pattern of
resting-state functional connectivity (FC). The modeling of FC using the graph Laplacian of the
brain’s SC is limited, owing to the sparseness of the Laplacian matrix. It is unable to model the
negative functional correlations. We extended the graph Laplacian to the hypergraph p-Laplacian
in order to describe better the nonlinear and high-order relations between SC and FC. First we
estimated those possible links showing negative correlations between the brain areas shared across
subjects by statistical analysis. Then we presented a hypergraph p-Laplacian model by embedding
the two matrices referring to the sign of the correlations between the brain areas relying on the brain
structural connectome. We tested the model on two experimental connectome datasets and evaluated
the predicted FC by estimating its Pearson correlation with the empirical FC matrices. The results
showed that the proposed diffusion model based on hypergraph p-Laplacian can predict functional
correlations more accurately than the models using graph Laplacian as well as hypergraph Laplacian.

Keywords: brain connectivity; structure–function relation; graph Laplacian; hypergraph Laplacian;
p-Laplacian

1. Introduction

Humans still know little regarding how the human brain works out cognitive tasks,
due to its complex structure [1,2], in which hundreds of thousands of neurons, sets of
neural populations and multiple brain regions are interconnected and interact together to
yield diverse functions in the brain, both in the absence of external stimuli and performing
cognitive tasks. Yet, the underlying mechanism behind this still remains incompletely
understood. In the last decade, a growing body of research has been performed to explore
the relationship between SC and FC with the help of two different kinds of invasive
neuroimaging methods, diffusion magnetic resonance imaging (dMRI) measuring the fiber
tracts of the white matter between brain regions [3,4] and functional magnetic resonance
imaging (fMRI) recording the blood oxygenation level-dependent (BOLD) signals that
characterize ongoing neural activities [5,6].

In the last decade, a great number of studies have been conducted to predict the
human brain’s SC using resting-state FC, such as network models on the basis of graph
measures, neural mass models (NMMs) that describe the neural activity with partial
differential equations, and learning-based regression models explicitly mapping FC from
SC. The network models usually regard the brain as a graph in which the brain regions are
treated as nodes and the connections between regions are defined as edges. A number of
network metrics, such as node degrees [7,8], shortest path [9], as well as search information
and path transitivity [10], etc., have been used to establish the relation between SC and
resting-state FC. These models can only partially capture the nature of FC. Neural mass
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models [11–13] are used to mimic the interactions between neurons in the brain, without
considering the signal exchanges between network modules, in which tens of physiological
parameters need to be specified prior to obtaining the optimal solution. The regression
learning models [14–16] simply relate SC with FC using weighted regression, in which
the weights are trained using part of the empirical data. Nevertheless, the learned weight
coefficients are only effective for the trained dataset while failing to extend to other datasets.

Some studies show that the graph Laplacian of the human brain’s SC has been found
to be able to highly capture the relationship between SC and FC, such as the graph dif-
fusion (GD) model [17,18] proposed by Abdelnour, et al. and the hypergraph diffusion
(HGD) model [19] proposed by us, in which the FC is described as an exponential decay
function [20] of the Laplacian of SC. However, the GD model can yield merely the positive
correlations in FC since the graph Laplacian reflects merely the direct connectivity between
brain regions. The HGD model, defined by the hypergraph representation of SC, can
capture more connection information than SC, thus showing better performance than GD
model. However, the modeling of FC using the hypergraph Laplacian of the brain’s SC is
also limited to capturing the high-order and nonlinear relation between SC and FC, since
the hypergraph Laplacian matrix is still sparse.

To overcome the limitations of GD and HGD models, we extend the graph Lapla-
cian to hypergraph p-Laplacian, which better preserves the local structure [21] and has
been successfully applied in pattern recognition and image processing [22,23]. The pro-
posed hypergraph p-Laplacian diffusion model, termed as the HpGD model, is capable
of better capturing the high-order relation between SC and FC, demonstrating better per-
formance than GD and HGD models on simulating FC, including the modeling of the
negative correlations.

The remainder of the paper is structured as follows. Section 2 gives the notations
of the hypergraph network of the human brain adopted in this paper. In Section 3, the
HGD model is first introduced in brief then the proposed HpGD model is presented in
detail. Section 4 demonstrates comprehensive experiments on two empirical datasets and
is following by some discussions in Section 5.

2. Hypergraph Network Notation of the Human Brain

The hypergraph representation of human brain is defined as G = (V, E, W), where
V = {vi| i = 1, 2, · · · , n } is a set of n vertices referring to grey matter brain areas, E
represents a set of m hyperedges, E =

{
ej| j = 1, 2, · · · , m

}
, in which each hyperedge

is composed of several brain areas, vk(k = 1, 2, · · · , n), that connect to the corresponding
brain area vj, and W =

{
wj| j = 1, 2, · · · , m

}
corresponds the weights of each hyperedge

defined by summing all the edge weights in the hyperedge.
According to the above notations, we can define the incidence matrix of G by a

|V| × |E| matrix H, in which Hij = h (vi, ej) = 1 if vi is a vertex of hyperedge ej and
0 otherwise. The degree of a vertex v ∈ V in the hypergraph is defined as dv(v) =

∑ e∈E w (e) h (v, e), while the degree of a hyperedge e ∈ E in the hypergraph is defined
by δ(e) = ∑ v∈V h (v, e). Let Dv and De denote the diagonal vertex degree matrix and
hyperedge degree matrix, respectively, and Wd indicates the diagonal matrix containing the
weights of each hyperedge. Then the normalized hypergraph Laplacian can be expressed
as L = I−D−1/2

v HWdD−1
e HTD−1/2

v while Whp = HWdHT −Dv is defined as the adjacency
matrix of the hypergraph G. It is worth mentioning that L = I− 1

2 D−1/2
v HWdHTD−1/2

v for
the case of simple graph when the hyperedge degree matrix De reduces to 2I [24].

3. The Hypergraph p-Laplacian Diffusion Model
3.1. The Hypergraph Laplacian Diffusion Model

In what follows, we briefly describe the hypergraph diffusion model (HGD) in our
recent work [19]. Firstly, consider an isolated cortical region vi. There are k(k = 1, 2, · · · , n)
brain areas linking to the brain area vi via edges, with p(p = 1, 2, · · · , k) brain areas,vp

k ,
with positive correlations and q(q = 1, 2, · · · , k) brain areas,vq

k , with negative correlations to
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vi, respectively, where k = p + q. Then the first-order dynamics of the signal transmission
between cortical regions vi and all the other brain regions (vj) can be modified as

dxi(t)
dt = β

(
dv(vi)

−1/2 m
∑

j=1

n
∑

k=1
h(vi, ej)w(ej)δ

(
ej
)−1
(

h(vp
k , ej)− h(vq

k, ej)
)

dv(vk)
−1/2xk(t)− xi(t)

)
(1)

where β is the decay rate. Assume that Mp indicates the matrix whose entries are 1 if
the correlations between brain areas are positive, otherwise 0, while Mq indicates the
matrix whose entries are 1 if the correlations between brain areas are negative, otherwise 0,
Mq = 1−Mp. Then the hypergraph network dynamics between all the brain regions can
be depicted as

dx(t)
dt

= β
(

D−1/2
v HWdD−1

e HT ◦ (Mp −Mq)D−1/2
v − I

)
x(t) (2)

where Mp and Mq can be estimated by analyzing the averaged experiment FC matrices,
respectively. “◦” denotes the Hadamard product.

The solution to the above equation can be solved, i.e.,

x(t) = exp(−β L ◦ (Mp −Mq)t)x0 (3)

where L = I−D−1/2
v HWdD−1

e HTD−1/2
v is the normalized hypergraph network Laplacian.

Suppose the initial condition x0 = I, then the above solution can be used to simulate
the functional interactions between brain areas.

3.2. The Hypergraph p-Laplacian Diffusion Model

Recently, the p-Laplacian has been found to be able to describe the nonlinear relation-
ship in a graph and exhibit better performance than Laplacian in image classification [21].
To this end, we extend the Laplacian in the above model to p-Laplacian and the hypergraph
p-Laplacian diffusion (HpGD) model can be formulated as:

x(t) = exp(−β Lp ◦ (Mp −Mq)t) (4)

where Lp denotes the hypergraph p-Laplacian, which satisfies,

gTLp g = ∑ ijw
h p
i j

∣∣g(vi)− g(vj)
∣∣p (5)

where g(·) is a real-valued function defined on the vertices of a weighted hypergraph G,
and wh p

i j ∈Whp denotes the weight strength between vertex i and j in the hypergraph.
The detailed calculation of the hypergraph p-Laplacian is presented in the follow-

ing section.

3.3. The Computation of Hypergraph p-Laplacian

For any given p, it is complex and difficult to directly obtain the hypergraph p-
Laplacian matrix Lp from Equation (5). Here we propose an alternative approach to
determine Lp by eigen-decomposition.

Assume that there are n eigenvectors Γ =
(

f 1, f 2, · · · , f n) for hypergraph p-Laplacian
corresponding to n eigenvalues λ = (λ1, λ2, · · · , λn), the hypergraph p-Laplacian matrix
expresses by Lp = Γ λ Γ−1. Thus, it is crucial to estimate all eigenvectors and eigenvalues
for the hypergraph p-Laplacian.

Thomas et al. [21] proposed a method to define the eigenvectors and eigenvalues for
the nonlinear operator Lp. The real number λp is named as an eigenvalue of the operator
Lp if the function f : V → R satisfies the relationship:

(Lp f )vi
= λp ϕp( fvi ) (6)
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where ϕp is defined by ϕp(x) = |x|p−1sign(x), and the function f is called an eigenvector
of Lp corresponding to the eigenvalue λp. When p = 2, the operator Lp is equivalent to the
standard hypergraph Laplacian L.

According to Equation (5), define Kp( f ) := fTLpf.

Kp( f ) := fTLpf = ∑
i,j

whp
ij

∣∣∣ fvi − fvj

∣∣∣p (7)

Similarly, a functional Fp : RV → R is defined as

Fp( f ) :=
Kp( f )
‖ f ‖p

p
(8)

where ‖ f ‖p
p := ∑

vi∈V
| f (vi)|p.

From the Theorem 3.1 in [21] we learned that the functional Fp has a critical point at
f ∈ RV if, and only if f is a p-eigenfunction of Lp. The corresponding eigenvalue λp is
given as λp = Fp( f ). Moreover, we have Fp(α f ) = Fp( f ) for all f ∈ RV and α ∈ R.

The above theorem can be applied to the computation of p-Laplacian. It is extremely
time-consuming, which limits its applications. Here we propose an efficient approximation
algorithm by converting the problem of complex solving eigenvectors into the following
optimizing problem:

min
Γ

J(Γ) = ∑k Fp( f k)

s.t. ∑
vi∈V

ϕp( f k
vi
)ϕp( f l

vi
) = 0, k 6= l (9)

where Γ = ( f 1, f 2, · · · , f n) denotes the optimal approximate eigenvector of Lp.
According to Equations (7) and (8), it is equivalent to:

min
Γ

JE(Γ) = ∑
k

∑
i,j

wh p
i j

∣∣∣∣ f k
vi
− f k

vj

∣∣∣∣p
‖ f k‖p

p

s.t. ΓTΓ = I

(10)

where Γ is the eigenvector matrix of the optimal approximate Lp. Since the partial derivative
with respect to f k

vi
can be written as,

∂JE

∂ f k
vi

=
1∥∥ f k
∥∥p

p

 ∑
vj∈V

wh p
i j ϕp( f k

vi
− f k

vj
)−

ϕp( f k
vi
)∥∥ f k

∥∥p
p

, (11)

then the gradient change can be obtained from Equation (10), as follows,

G =
∂JE
∂Γ
− Γ

(
∂JE
∂Γ

)T
Γ. (12)

Meanwhile, the eigenvalues λ = (λ1, λ2, · · · , λn) can be obtained by

λk =

∑
i,j

wh p
i j

∣∣∣ f k
vi
− f k

vj

∣∣∣p∥∥ f k
∥∥p

p

. (13)

Finally, the hypergraph p-Laplacian can be approximated by the eigenvalues
and eigenvectors.

Lp = Γ λ Γ−1. (14)
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The estimation algorithm for hypergraph p-Laplacian is summarized in Algorithm 1,
in which the step length α is chosen by α = β ∑i k |Γi k |

∑i k |Gi k |
, where β is a parameter to control

the step length.

Algorithm 1 The estimation of hypergraph p-Laplacian

Input: The structural connectivity network and three parameters k, p, β
Output: Hypergraph p-Laplacian: Lp
Step 1: Initialize the hypergraph Laplacian matrix L and adjacent matrix Whp from the

structural connectivity network.
Step 2: Decomposition of the hypergraph Laplacian: L = X λ X−1.
Initialize: Γ = X(:, 1 : k).
Step 3: While not converged do:

G = ∂JE
∂Γ
− Γ

(
∂JE
∂Γ

)T
Γ, where ∂JE

∂Γ
is given by Equation (10)

Γ = Γ− αG
End

Step 4: λk =
∑
i,j

whp
ij

∣∣∣ f k
vi
− f k

vj

∣∣∣p
‖ f k‖p

p

Return: Lp = Γ λ Γ−1

4. Experiments

We demonstrate the performance of the extended HpGD model in contrast to the GD
model and HGD model in predicting FC. Two commonly used experiment datasets, one
with 90 regions of interest (ROIs) derived from eight subjects [17,18] and another with
246 ROIs derived from 50 subjects [25,26], are employed to test the models. The FC and
SC of all subjects are rendered as two connectome matrices, with each element in the FC
matrix representing the Pearson’s correlation coefficients. Assume that X and Y are BOLD
time series of two brain areas recorded using fMRI at rest, each time series has M points,
then the Pearson correlation between the two brain areas is calculated by

R =
M∑ XiYi −∑ Xi∑ Yi√

M∑ X2
i − (∑ Xi)

2
√

M∑ Y2
i − (∑ Yi)

2
(15)

Note that all the p values of the correlations estimated in our approach are P << 10−6.

4.1. Correlations with the Experiment FC

For each subject, the prediction result is evaluated using the Pearson correlation
between the predicted FC and the empirical FC. The higher of the correlation value is, the
more similar the predicted FC is to the empirical FC.

Figure 1 shows the time-varying Pearson correlations between the predicted FC and
the empirical FC for each subject of the two datasets using the GD model, HGD model
and the proposed HpGD model, respectively. We can observe that the maximum Pearson
correlation of the eight subjects of the 90 ROI dataset changed from 0.3735 to 0.4426 for
the GD model, 0.4612 to 0.5911 for the HGD model, and 0.4960 to 0.6492 for the HpGD
model. The mean correlation values of the three models were 0.4113, 0.5196, and 0.5514,
respectively, while the maximum Pearson correlation of the fifty subjects of the 246 ROI
dataset changed from 0.3150 to 0.4281 for the GD model, 0.4170 to 0.5436 for the HGD
model, and 0.4594 to 0.6547 for the HpGD model. The mean correlation values of the three
models are 0.3761, 0.4918 and 0.5789, respectively.

It should be noted that the maximal correlations (critical points) appeared at βtcrit = 2
for the 90 ROIs dataset, βtcrit = 2.5 for the 246 ROIs dataset with the GD model, while at
βtcrit = 5 and βtcrit = 5.5 with HGD model and HpGD model, respectively.

Figure 2 demonstrates the scatter plots between the mean predicted FC and the mean
empirical FC for the two datasets using the three models. We can observe that the proposed
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HpGD model showed the best effect in mapping the empirical FC because the relation
between the predicted FC using HpGD model and the empirical FC was more linear.
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Fig. 2 The scatter plots for the two datasets with the three models. (a) 90 ROIs dataset. (b) 246 ROIs dataset. 
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Figure 2. The scatter plots for the two datasets with the three models. (a) The 90 ROIs dataset. (b) The 246 ROIs dataset.
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4.2. Mean FC Network

Figure 3 shows the mean predicted FC in contrast to the mean empirical FC rendered
as a matrix using the three models, respectively. Figure 4 shows the mean predicted FC in
contrast to the mean empirical FC rendered as a network [27] using the three models. It
can be clearly observed that the FC predicted by the proposed HpGD model was much
closer to the empirical FC than the other two models.

12  

 
(a) 

 

(b) 

Fig. 3 The mean empirical FC matrices vs the mean predicted FC matrices by the three models. (a) 90 ROIs 

dataset. (b) 246 ROIs dataset.  

  

Figure 3. The mean empirical FC matrices vs. the mean predicted FC matrices by the three models. (a) The 90 ROIs dataset.
(b) The 246 ROIs dataset.
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Fig. 4 The mean empirical FC network vs the mean predicted FC networks by the three models. (a) 90 ROIs 

dataset. (b) 246 ROIs datasets. 

 

Figure 4. The mean empirical FC network vs. the mean predicted FC networks by the three models. (a) The 90 ROIs dataset.
(b) The 246 ROIs datasets.

4.3. Stability and Robustness Analysis

To demonstrate that the predicted FC was not acquired by happenstance, for each
dataset, we scrambled the mean SC 100 times randomly, then we estimated the FC for
each permuted SC matrix with the three models. Figure 5 plots the histogram of the
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Pearson correlations between the averaged predicted FC and the averaged empirical FC.
The histogram of the Pearson correlations without scrambling using the three models is
also shown for the two datasets, respectively. The Pearson correlations were calculated
between the mean empirical FC and the mean predicted FC (blue) as well as the mean
predicted FC without permuting (orange).
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Figure 5. The histogram of the Pearson correlations with the three models. (a) The 90 ROIs dataset. (b) The 246 ROIs dataset.

5. Conclusions

In this paper, we presented HpGD as an extended graph diffusion model to map
FC from SC relying on hypergraph p-Laplacian. HpGD allowed the network to capture
the nonlinear and high-order relations between the brain regions. Furthermore, the two
matrices that indicate whether the correlations are positive or negative were embedded to
entail the model simulating negative functional correlations. To validate the effectiveness
of the HpGD model, we performed tests on two experiment connectome datasets with
different resolutions. The experimental results from both the 90 ROI dataset and the
246 ROI dataset showed that a hypergraph p-Laplacian-based HpGD model could predict
functional correlations more accurately than both the graph Laplacian-based GD model
and the hypergraph Laplacian-based HGD model.

However, there are still some limitations. Firstly, the computation of p-Laplacian is
time consuming and the three parameters k, p and β need to be optimized beforehand.
Secondly, there is still a scarcity of biologically plausible interpretations to the mecha-
nism behind the negative correlations. We will continue to address these issues in our
future work.
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