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Abstract: By considering the new forms of the notions of lower semicontinuity, pseudomonotonicity,
hemicontinuity and monotonicity of the considered scalar multiple integral functional, in this paper
we study the well-posedness of a new class of variational problems with variational inequality con-
straints. More specifically, by defining the set of approximating solutions for the class of variational
problems under study, we establish several results on well-posedness.
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1. Introduction

The concept of well-posedness is a very useful mathematical tool in the study of
optimization problems. Thus, beginning with the work of Tykhonov [1], many types
of well-posedness associated with variational problems have been introduced (Levitin–
Polyak well-posedness [2–5], α-well-posedness [6,7], extended well-posedness [8–16], L-
well-posedness [17]). Additionally, this mathematical tool can be used to study some
related problems: variational inequality problems [18–20], complementary problems [21],
equilibrium problems [22,23], fixed point problems [24], hemivariational inequality prob-
lems [25], Nash equilibrium problems [26], and so on. The well-posedness of generalized
variational inequalities and the corresponding optimization problems have been analyzed
by Jayswal and Shalini [27]. Moreover, an interesting and important extension of varia-
tional inequality problem is the multidimensional variational inequality problem and the
associated multi-time optimization problems (see [28–33]). Recently, Treanţă [30] inves-
tigated the well-posed isoperimetric-type constrained variational control problems. For
other different but connected ideas, the reader is directed to Dridi and Djebabla [34] and
Jana [35].

In this paper, motivated and inspired by the above research papers, we study the
well-posedness property for new constrained variational problems, implying second-order
multiple integral functionals and partial derivatives. In this regard, we formulate new
forms of monotonicity, lower semicontinuity, hemicontinuity, and pseudomonotonicity
for the considered multiple integral-type functional. Further, we introduce the set of ap-
proximating solutions for the constrained optimization problem under study and establish
several theorems on well-posedness. The previous research works in this scientific area
did not take into account the new form of the notions mentioned above. In essence, the
results derived here can be considered as dynamic generalizations of the corresponding
static results already existing in the literature. In this paper, the framework is based on
function spaces of infinite-dimension and multiple integral-type functionals. This element
is completely new for the well-posed optimization problems.

The present paper is structured as follows: In Section 2, we formulate the problem
under study and introduce the new forms of monotonicity, lower semicontinuity, hemi-
continuity, and pseudomonotonicity for the considered multiple integral-type functional.
Additionally, an auxiliary lemma is provided. In Section 3, we study the well-posedness
for the considered constrained variational problem. More precisely, we prove that well-
posedness is equivalent with the existence and uniqueness of a solution in the aforesaid
problem. Finally, Section 4 concludes the paper and provides further developments.
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2. Preliminaries and Problem Formulation

In this paper, we consider the following notations and mathematical tools: denote by
K a compact domain in Rm and consider the point K 3 ζ = (ζα), α = 1, m; let E denote the

space of state functions of C4-class s : K → Rn and sα :=
∂s

∂ζα
, sβγ :=

∂2s
∂ζβ∂ζγ

denote the

partial speed and partial acceleration, respectively; consider E ⊆ E as a nonempty, closed and
convex subset, with s|∂K = given, equipped with the inner product

〈s, z〉 =
∫

K
[s(ζ) · z(ζ)

]
dζ =

∫
K

[ n

∑
i=1

si(ζ)zi(ζ)
]
dζ, ∀s, z ∈ E

and the induced norm, where dζ = dζ1 · · · dζm is the element of volume on Rm.

Let J2(Rm,Rn) be the second-order jet bundle for Rm and Rn. By using the real-
valued continuously differentiable function f : J2(Rm,Rn) → R, we define the multiple
integral-type functional:

F : E → R, F(s) =
∫

K
f
(
ζ, s(ζ), sα(ζ), sβγ(ζ)

)
dζ.

By using the above mathematical framework, we formulate the constrained variational
problem (in short, CVP) ((πs(ζ)) := (ζ, s(ζ), sα(ζ), sβγ(ζ)))):

(CVP) Minimize
∫

K
f (πs(ζ))dζ

subject to s ∈ Ω,
where Ω stands for the set of solutions for the variational inequality problem (in short, VIP):
find s ∈ E such that

(VIP)
∫

K

[∂ f
∂s

(πs(ζ))(z(ζ)− s(ζ)) +
∂ f
∂sα

(πs(ζ))Dα(z(ζ)− s(ζ))

+
1

n(β, γ)

∂ f
∂sβγ

(πs(ζ))D2
βγ(z(ζ)− s(ζ))

]
dζ ≥ 0, ∀z ∈ E,

where D2
βγ := Dβ(Dγ), and n(β, γ) represents the multi-index notation (Saunders [36],

Treanţă [33]).
More precisely, the set of all feasible solutions of (VIP) is defined as

Ω =
{

s ∈ E :
∫

K

[
(z(ζ)− s(ζ))

∂ f
∂s

(πs(ζ)) + Dα(z(ζ)− s(ζ))
∂ f
∂sα

(πs(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s(ζ))
∂ f

∂sβγ
(πs(ζ))

]
dζ ≥ 0, ∀z ∈ E

}
.

Definition 1. The functional F(s) =
∫

K
f (πs(ζ))dζ is monotone on E if the inequality holds:

∫
K

[
(s(ζ)− z(ζ))

(
∂ f
∂s

(πs(ζ))−
∂ f
∂s

(πz(ζ))

)
+ Dα(s(ζ)− z(ζ))

(
∂ f
∂sα

(πs(ζ))−
∂ f
∂sα

(πz(ζ))

)
+

1
n(β, γ)

D2
βγ(s(ζ)− z(ζ))

(
∂ f

∂sβγ
(πs(ζ))−

∂ f
∂sβγ

(πz(ζ))

)]
dζ ≥ 0,

for ∀s, z ∈ E.
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Definition 2. The functional F(s) =
∫

K
f (πs(ζ))dζ is pseudomonotone on E if the implica-

tion holds: ∫
K

[
(s(ζ)− z(ζ))

∂ f
∂s

(πz(ζ)) + Dα(s(ζ)− z(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(s(ζ)− z(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ ≥ 0

⇒
∫

K

[
(s(ζ)− z(ζ))

∂ f
∂s

(πs(ζ)) + Dα(s(ζ)− z(ζ))
∂ f
∂sα

(πs(ζ))

+
1

n(β, γ)
D2

βγ(s(ζ)− z(ζ))
∂ f

∂sβγ
(πs(ζ))

]
dζ ≥ 0,

for ∀s, z ∈ E.

Example 1. Consider m = 2, n = 1, and K = [0, 3]2. Additionally, we define

f (πs(ζ)) = 2 sin s(ζ) + s(ζ)es(ζ).

The functional F(s) =
∫

K
f (πs(ζ))dζ is pseudomonotone on E = C4(K, [−1, 1]),

∫
K

[
(s(ζ)− z(ζ))

∂ f
∂s

(πz(ζ)) + Dα(s(ζ)− z(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(s(ζ)− z(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ

=
∫

K

[
(s(ζ)− z(ζ))(2 cos z(ζ) + ez(ζ) + z(ζ)ez(ζ))

]
dζ ≥ 0

∀s, z ∈ E

⇒
∫

K

[
(s(ζ)− z(ζ))

∂ f
∂s

(πs(ζ)) + Dα(s(ζ)− z(ζ))
∂ f
∂sα

(πs(ζ))

+
1

n(β, γ)
D2

βγ(s(ζ)− z(ζ))
∂ f

∂sβγ
(πs(ζ))

]
dζ

=
∫

K

[
(s(ζ)− z(ζ))(2 cos s(ζ) + es(ζ) + s(ζ)es(ζ))

]
dζ ≥ 0

∀s, z ∈ E.

By direct computation, we obtain∫
K

[
(s(ζ)− z(ζ))

(
∂ f
∂s

(πs(ζ))−
∂ f
∂s

(πz(ζ))

)
+ Dα(s(ζ)− z(ζ))

(
∂ f
∂sα

(πs(ζ))−
∂ f
∂sα

(πz(ζ))

)
+

1
n(β, γ)

D2
βγ(s(ζ)− z(ζ))

(
∂ f

∂sβγ
(πs(ζ))−

∂ f
∂sβγ

(πz(ζ))

)]
dζ

=
∫

K

[
(s(ζ)− z(ζ))[2(cos s(ζ)− cos z(ζ)) + s(ζ)es(ζ) + es(ζ) − z(ζ)ez(ζ) − ez(ζ)]

]
dζ � 0,

∀s, z ∈ E,
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which implies that the functional F(s) =
∫

K
f (πs(ζ))dζ is not monotone on E (in the sense of

Definition 1).
By considering the work of Usman and Khan [37], we provide the following definition.

Definition 3. The functional F(s) =
∫

K
f (πs(ζ))dζ is hemicontinuous on E if the application

λ→
〈

s(ζ)− z(ζ),
δF
δsλ

(ζ)

〉
, 0 ≤ λ ≤ 1

is continuous at 0+, for ∀s, z ∈ E, where

δF
δsλ

(ζ) :=
∂ f
∂s

(πsλ
(ζ))− Dα

∂ f
∂sα

(πsλ
(ζ)) +

1
n(β, γ)

D2
βγ

∂ f
∂sβγ

(πsλ
(ζ)) ∈ E,

sλ := λs + (1− λ)z.

Lemma 1. Consider the functional F(s) =
∫

K
f (πs(ζ))dζ as hemicontinuous and pseudomono-

tone on E. Then, the function s ∈ E solves (VIP) if and only if it solves the variational inequality∫
K

[
(z(ζ)− s(ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− s(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ ≥ 0, ∀z ∈ E.

Proof. Firstly, let us consider that the function s ∈ E solves (VIP). In consequence, it follows∫
K

[
(z(ζ)− s(ζ))

∂ f
∂s

(πs(ζ)) + Dα(z(ζ)− s(ζ))
∂ f
∂sα

(πs(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s(ζ))
∂ f

∂sβγ
(πs(ζ))

]
dζ ≥ 0, ∀z ∈ E.

By using the pseudomonotonicity property of F(s) =
∫

K
f (πs(ζ))dζ, the previous

inequality involves∫
K

[
(z(ζ)− s(ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− s(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ ≥ 0, ∀z ∈ E.

Conversely, assume that∫
K

[
(z(ζ)− s(ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− s(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ ≥ 0, ∀z ∈ E.

For z ∈ E and λ ∈ (0, 1], we define

zλ = (1− λ)s + λz ∈ E.
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Therefore, the above inequality can be rewritten as follows∫
K

[
(zλ(ζ)− s(ζ))

∂ f
∂s

(πzλ
(ζ)) + Dα(zλ(ζ)− s(ζ))

∂ f
∂sα

(πzλ
(ζ))

+
1

n(β, γ)
D2

βγ(zλ(ζ)− s(ζ))
∂ f

∂sβγ
(πzλ

(ζ))
]
dζ ≥ 0, z ∈ E.

By considering λ → 0 (and the hemicontinuity property of F(s) =
∫

K
f (πs(ζ))dζ),

it results that ∫
K

[
(z(ζ)− s(ζ))

∂ f
∂s

(πs(ζ)) + Dα(z(ζ)− s(ζ))
∂ f
∂sα

(πs(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s(ζ))
∂ f

∂sβγ
(πs(ζ))

]
dζ ≥ 0, ∀z ∈ E,

which shows that s is solution for (VIP). The proof of this lemma is now complete.

Definition 4. The functional F(s) =
∫

K
f (πs(ζ))dζ is lower semicontinuous at s0 ∈ E if

∫
K

f (πs0(ζ))dζ ≤ lim
s→s0

inf
∫

K
f (πs(ζ))dζ.

3. Well-Posedness Associated with (CVP)

In this section, we analyze the well-posedness property for the constrained variational
problem (CVP). To this aim, we provide the following mathematical tools.

Let us denote by S the set of all solutions for (CVP), that is,

S =
{

s ∈ E |
∫

K
f (πs(ζ))dζ ≤ inf

z∈Ω

∫
K

f (πz(ζ))dζ and∫
K

[
(z(ζ)− s(ζ))

∂ f
∂s

(πs(ζ)) + Dα(z(ζ)− s(ζ))
∂ f
∂sα

(πs(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s(ζ))
∂ f

∂sβγ
(πs(ζ))

]
dζ ≥ 0, ∀z ∈ E

}
.

Additionally, for θ, ϑ ≥ 0, we define the set of approximating solutions for (CVP) as

S(θ, ϑ) =
{

s ∈ E |
∫

K
f (πs(ζ))dζ ≤ inf

z∈Ω

∫
K

f (πz(ζ))dζ + θ and∫
K

[
(z(ζ)− s(ζ))

∂ f
∂s

(πs(ζ)) + Dα(z(ζ)− s(ζ))
∂ f
∂sα

(πs(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s(ζ))
∂ f

∂sβγ
(πs(ζ))

]
dζ + ϑ ≥ 0, ∀z ∈ E

}
.

Remark 1. For (θ, ϑ) = (0, 0), we have S = S(θ, ϑ) and, for (θ, ϑ) > (0, 0), we obtain
S ⊆ S(θ, ϑ).

Definition 5. If there exists a sequence of positive real numbers ϑn → 0 as n→ ∞, such that the
following inequalities

lim
n→∞

sup
∫

K
f (πsn(ζ))dζ ≤ inf

z∈Ω

∫
K

f (πz(ζ))dζ

and ∫
K

[
(z(ζ)− sn(ζ))

∂ f
∂s

(πsn(ζ)) + Dα(z(ζ)− sn(ζ))
∂ f
∂sα

(πsn(ζ))



Mathematics 2021, 9, 2478 6 of 12

+
1

n(β, γ)
D2

βγ(z(ζ)− sn(ζ))
∂ f

∂sβγ
(πsn(ζ))

]
dζ + ϑn ≥ 0, ∀z ∈ E

are fulfilled, then the sequence {sn} is called an approximating sequence of (CVP).

Definition 6. The problem (CVP) is called well-posed if:

(i) It has a unique solution s0;
(ii) Each approximating sequence of (CVP) will converge to this unique solution s0.

Further, the symbol "diam B" stands for the diameter of B. Moreover, it is defined by

diam B = sup
x,y∈B

‖x− y‖.

Theorem 1. Consider the functional F(s) =
∫

K
f (πs(ζ))dζ as lower semicontinuous, hemicon-

tinuous and monotone on E. Then, the problem (CVP) is well-posed if and only if

S(θ, ϑ) 6= ∅, ∀θ, ϑ > 0 and diam S(θ, ϑ)→ 0 as (θ, ϑ)→ (0, 0).

Proof. Let us consider the case that (CVP) is well-posed. Therefore, it admits a unique
solution s̄ ∈ S . Since S ⊆ S(θ, ϑ), ∀θ, ϑ > 0, we obtain S(θ, ϑ) 6= ∅, ∀θ, ϑ > 0. Contrary
to the result, let us suppose that diam S(θ, ϑ) 9 0 as (θ, ϑ) → (0, 0). Then, there exists
r > 0, a positive integer m, θn, ϑn > 0 with θn, ϑn → 0, and sn, s′n ∈ S(θn, ϑn) such that

‖sn − s′n‖ > r, ∀n ≥ m. (1)

Since sn, s′n ∈ S(θn, ϑn), we obtain∫
K

f (πsn(ζ))dζ ≤ inf
z∈Ω

∫
K

f (πz(ζ))dζ + θn,

∫
K

[
(z(ζ)− sn(ζ))

∂ f
∂s

(πsn(ζ)) + Dα(z(ζ)− sn(ζ))
∂ f
∂sα

(πsn(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− sn(ζ))
∂ f

∂sβγ
(πsn(ζ))

]
dζ + ϑn ≥ 0, ∀z ∈ E

and ∫
K

f (πs′n(ζ))dζ ≤ inf
z∈Ω

∫
K

f (πz(ζ))dζ + θn,

∫
K

[
(z(ζ)− s′n(ζ))

∂ f
∂s

(πs′n(ζ)) + Dα(z(ζ)− s′n(ζ))
∂ f
∂sα

(πs′n(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s′n(ζ))
∂ f

∂sβγ
(πs′n(ζ))

]
dζ + ϑn ≥ 0, ∀z ∈ E.

It results that {sn} and {s′n} are approximating sequences of (CVP) which tend to s̄
(the problem (CVP) is well-posed, by hypothesis). By direct computation, it follows that

‖sn − s′n‖ = ‖sn − s̄ + s̄− s′n‖

≤ ‖sn − s̄‖+ ‖s̄− s′n‖ ≤ ϑ,

which contradicts (1) for some ϑ = r. In consequence, diam S(θ, ϑ)→ 0 as (θ, ϑ)→ (0, 0).
Conversely, let us consider that {sn} is an approximating sequence of (CVP). Then

there exists a sequence of positive real numbers ϑn → 0 as n→ ∞ such that the inequalities

lim
n→∞

sup
∫

K
f (πsn(ζ))dζ ≤ inf

z∈Ω

∫
K

f (πz(ζ))dζ, (2)
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∫
K

[
(z(ζ)− sn(ζ))

∂ f
∂s

(πsn(ζ)) + Dα(z(ζ)− sn(ζ))
∂ f
∂sα

(πsn(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− sn(ζ))
∂ f

∂sβγ
(πsn(ζ))

]
dζ + ϑn ≥ 0, ∀z ∈ E (3)

hold, including sn ∈ S(θn, ϑn), for a sequence of positive real numbers θn → 0 as n→ ∞.
Since diam S(θn, ϑn)→ 0 as (θn, ϑn)→ (0, 0), {sn} is a Cauchy sequence which converges
to some s̄ ∈ E as E is a closed set.

By hypothesis, the multiple integral functional
∫

K
f (πs(ζ))dζ is monotone on E. There-

fore, by Definition 1, for s̄, z ∈ E, we have∫
K

[
(s̄(ζ)− z(ζ))

(
∂ f
∂s

(πs̄(ζ))−
∂ f
∂s

(πz(ζ))

)

+Dα(s̄(ζ)− z(ζ))
(

∂ f
∂sα

(πs̄(ζ))−
∂ f
∂sα

(πz(ζ))

)

+
1

n(β, γ)
D2

βγ(s̄(ζ)− z(ζ))

(
∂ f

∂sβγ
(πs̄(ζ))−

∂ f
∂sβγ

(πz(ζ))

)]
dζ ≥ 0,

or, equivalently,∫
K

[
(s̄(ζ)− z(ζ))

∂ f
∂s

(πs̄(ζ)) + Dα(s̄(ζ)− z(ζ))
∂ f
∂sα

(πs̄(ζ))

+
1

n(β, γ)
D2

βγ(s̄(ζ)− z(ζ))
∂ f

∂sβγ
(πs̄(ζ))

]
dζ

≥
∫

K

[
(s̄(ζ)− z(ζ))

∂ f
∂s

(πz(ζ)) + Dα(s̄(ζ)− z(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(s̄(ζ)− z(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ. (4)

Taking limit in inequality (3), we have∫
K

[
(s̄(ζ)− z(ζ))

∂ f
∂s

(πs̄(ζ)) + Dα(s̄(ζ)− z(ζ))
∂ f
∂sα

(πs̄(ζ))

+
1

n(β, γ)
D2

βγ(s̄(ζ)− z(ζ))
∂ f

∂sβγ
(πs̄(ζ))

]
dζ ≤ 0. (5)

On combining (4) and (5), we obtain∫
K

[
(z(ζ)− s̄(ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− s̄(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s̄(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ ≥ 0.

Further, taking into account Lemma 1, it follows that∫
K

[
(z(ζ)− s̄(ζ))

∂ f
∂s

(πs̄(ζ)) + Dα(z(ζ)− s̄(ζ))
∂ f
∂sα

(πs̄(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s̄(ζ))
∂ f

∂sβγ
(πs̄(ζ))

]
dζ ≥ 0, (6)

which implies that s̄ ∈ Ω.
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Since the functional
∫

K
f (πs(ζ))dζ is lower semicontinuous, it results that

∫
K

f (πs̄(ζ))dζ ≤ lim
n→∞

inf
∫

K
f (πsn(ζ))dζ ≤ lim

n→∞
sup

∫
K

f (πsn(ζ))dζ.

By using (2), the above inequality reduces to∫
K

f (πs̄(ζ))dζ ≤ inf
z∈Ω

∫
K

f (πz(ζ))dζ. (7)

Thus, from (6) and (7), we conclude that s̄ solves (CVP).
Now, let us prove that s̄ is the unique solution of (CVP). Suppose that s1, s2 are two

distinct solutions of (CVP). Then,

0 < ‖s1 − s2‖ ≤ diam S(θ, ϑ)→ 0 as (θ, ϑ)→ (0, 0),

and the proof is complete.

Theorem 2. Consider the functional F(s) =
∫

K
f (πs(ζ))dζ as lower semicontinuous, hemicon-

tinuous and monotone on E. Then, the problem (CVP) is well-posed if and only if it has a unique
solution.

Proof. Let us consider that (CVP) is well-posed. Thus, it possesses a unique solution s0.
Conversely, let us consider that (CVP) has a unique solution s0, that is,∫

K
f (πs0(ζ))dζ ≤ inf

z∈Ω

∫
K

f (πz(ζ))dζ,

∫
K

[
(z(ζ)− s0(ζ))

∂ f
∂s

(πs0(ζ)) + Dα(z(ζ)− s0(ζ))
∂ f
∂sα

(πs0(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s0(ζ))
∂ f

∂sβγ
(πs0(ζ))

]
dζ ≥ 0, ∀z ∈ E, (8)

but it is not well-posed. Therefore, by Definition 6, there exists an approximating sequence
{sn} of (CVP), which does not converge to s0, such that the following inequalities

lim
n→∞

sup
∫

K
f (πsn(ζ))dζ ≤ inf

z∈Ω

∫
K

f (πz(ζ))dζ

and ∫
K

[
(z(ζ)− sn(ζ))

∂ f
∂s

(πsn(ζ)) + Dα(z(ζ)− sn(ζ))
∂ f
∂sα

(πsn(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− sn(ζ))
∂ f

∂sβγ
(πsn(ζ))

]
dζ + ϑn ≥ 0, ∀z ∈ E (9)

are fulfilled. Further, we proceed by contradiction to prove the boundedness of {sn}.
Contrary to the result, we suppose that {sn} is not bounded; consequently, ‖sn‖ → +∞

as n → +∞. We define δn =
1

‖sn − s0‖
and sn = s0 + δn[sn − s0]. We observe that {sn} is

bounded in E. Therefore, if necessary, passing to a subsequence, we may consider that

sn → s weakly in E 6= (s0).

It is not difficult to see that s 6= s0 due to ‖δn[sn − s0]‖ = 1, for all n ∈ N. Since s0 is a
solution of (CVP), the inequalities (8) are verified. By using Lemma 1, it follows that∫

K
f (πs0(ζ))dζ ≤ inf

z∈Ω

∫
K

f (πz(ζ))dζ,
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∫
K

[
(z(ζ)− s0(ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− s0(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s0(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ ≥ 0, ∀z ∈ E. (10)

By considering the monotonicity property of the functional
∫

K
f (πs(ζ))dζ, for sn, z ∈ E,

we obtain ∫
K

[
(sn(ζ)− z(ζ))

(
∂ f
∂s

(πsn(ζ))−
∂ f
∂s

(πz(ζ))

)
+Dα(sn(ζ)− z(ζ))

(
∂ f
∂sα

(πsn(ζ))−
∂ f
∂sα

(πz(ζ))

)

+
1

n(β, γ)
D2

βγ(sn(ζ)− z(ζ))

(
∂ f

∂sβγ
(πsn(ζ))−

∂ f
∂sβγ

(πz(ζ))

)]
dζ ≥ 0,

or, equivalently,∫
K

[
(z(ζ)− sn(ζ))

∂ f
∂s

(πsn(ζ)) + Dα(z(ζ)− sn(ζ))
∂ f
∂sα

(πsn(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− sn(ζ))
∂ f

∂sβγ
(πsn(ζ))

]
dζ

≤
∫

K

[
(z(ζ)− sn(ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− sn(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− sn(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ. (11)

Combining with (9) and (11), we have∫
K

[
(z(ζ)− sn(ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− sn(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− sn(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ ≥ −ϑn, ∀z ∈ E.

Next, we can take n0 ∈ N be large enough such that δn < 1, for all n ≥ n0 (because of
δn → 0 as n → ∞). Multiplying the above inequality and (10) by δn > 0 and 1− δn > 0,
respectively, we obtain∫

K

[
(z(ζ)− sn(ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− sn(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− sn(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ ≥ −ϑn, ∀z ∈ E, ∀n ≥ n0.

By using sn → s 6= s0 and sn = s0 + sn[sn − s0], we obtain∫
K

[
(z(ζ)− s(ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− s(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ

= lim
n→∞

∫
K

[
(z(ζ)− sn(ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− sn(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− sn(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ
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≥ − lim
n→∞

ϑn = 0, ∀z ∈ E.

Taking into account Lemma 1 and by using the lower semicontinuity property, we obtain∫
K

f (πs(ζ))dζ ≤ inf
z∈Ω

∫
K

f (πz(ζ))dζ,

∫
K

[
(z(ζ)− s(ζ))

∂ f
∂s

(πs(ζ)) + Dα(z(ζ)− s(ζ))
∂ f
∂sα

(πs(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s(ζ))
∂ f

∂sβγ
(πs(ζ))

]
dζ ≥ 0, ∀z ∈ E. (12)

This involves that s solves (CVP), contradiction with the uniqueness of s0. Therefore,
{sn} is a bounded sequence having a convergent subsequence {snk}, which converges to
s̄ ∈ E as k→ ∞. Now, for snk , z ∈ E, we obtain (see (11))∫

K

[
(z(ζ)− snk (ζ))

∂ f
∂s

(πsnk
(ζ)) + Dα(z(ζ)− snk (ζ))

∂ f
∂sα

(πsnk
(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− snk (ζ))
∂ f

∂sβγ
(πsnk

(ζ))
]
dζ

≤
∫

K

[
(z(ζ)− snk (ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− snk (ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− snk (ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ. (13)

Additionally, by (9), we can write

lim
k→∞

∫
K

[
(z(ζ)− snk (ζ))

∂ f
∂s

(πsnk
(ζ)) + Dα(z(ζ)− snk (ζ))

∂ f
∂sα

(πsnk
(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− snk (ζ))
∂ f

∂sβγ
(πsnk

(ζ))
]
dζ ≥ 0. (14)

By (13) and (14), we have

lim
k→∞

∫
K

[
(z(ζ)− snk (ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− snk (ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− snk (ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ ≥ 0

⇒
∫

K

[
(z(ζ)− s̄(ζ))

∂ f
∂s

(πz(ζ)) + Dα(z(ζ)− s̄(ζ))
∂ f
∂sα

(πz(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s̄(ζ))
∂ f

∂sβγ
(πz(ζ))

]
dζ ≥ 0.

Using Lemma 1 and the lower semicontinuity property of the considered functional,
we obtain ∫

K
f (πs̄(ζ))dζ ≤ inf

z∈Ω

∫
K

f (πz(ζ))dζ,

∫
K

[
(z(ζ)− s̄(ζ))

∂ f
∂s

(πs̄(ζ)) + Dα(z(ζ)− s̄(ζ))
∂ f
∂sα

(πs̄(ζ))

+
1

n(β, γ)
D2

βγ(z(ζ)− s̄(ζ))
∂ f

∂sβγ
(πs̄(ζ))

]
dζ ≥ 0,

which shows that s̄ is a solution of (CVP). Hence, snk → s̄, that is, snk → s0, involving
sn → s0 and the proof is complete.
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Example 2. We consider n = 1 and K = [0, 2]2 = [0, 2]× [0, 2]. Let us minimize the mass of K
having the density (that depends on the current point) f

(
ζ, s(ζ), sα(ζ), sβγ(ζ)

)
= es(ζ) − s(ζ),

such that the following behavior (positivity property)∫∫
K
(z(ζ)− s(ζ))(es(ζ) − 1)dζ1dζ2 ≥ 0,

∀z ∈ E = C1(K, [−15, 15]), s|∂K = 0,

is satisfied.
To solve the previous practical problem, we consider the following constrained optimiza-

tion problem:

(CVP1) Minimize
∫∫

K
[es(ζ) − s(ζ)]dζ1dζ2

subject to s ∈ Ω,
where Ω is the solution set of the following inequality problem∫∫

K
(z(ζ)− s(ζ))(es(ζ) − 1)dζ1dζ2 ≥ 0,

∀z ∈ E = C1(K, [−15, 15]), s|∂K = 0.

Clearly, S = {0} and the functional
∫

K
es(ζ) − s(ζ))dζ is hemicontinuous, monotone and

lower semicontinuous on E. Thus, all the hypotheses of Theorem 2 hold and, in consequence, the
problem (CVP1) is well-posed. Additionally, S(θ, ϑ) = {0} and, therefore, S(θ, ϑ) 6= ∅ and
diam S(θ, ϑ)→ 0 as (θ, ϑ)→ (0, 0). In conclusion, by Theorem 1, the variational problem (CVP1)
is well-posed.

4. Conclusions

In this paper, we have studied the well-posedness property of new constrained varia-
tional problems governed by second-order partial derivatives. More precisely, by using the
concepts of lower semicontinuity, monotonicity, hemicontinuity and pseudomonotonicity
of considered multiple integral-type functional, we have proved that the well-posedness
property of the problem under study is described in terms of existence and uniqueness
of solution.
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