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Abstract: In this paper, the concept of a k-(quasi) pseudo metric is generalized to the L-fuzzy case, called
a pointwise k-(quasi) pseudo metric, which is considered to be a map d : J(LX)× J(LX) −→ [0, ∞)

satisfying some conditions. What is more, it is proved that the category of pointwise k-pseudo metric
spaces is isomorphic to the category of symmetric pointwise k-remote neighborhood ball spaces. Besides,
some L-topological structures induced by a pointwise k-quasi-pseudo metric are obtained, including
an L-quasi neighborhood system, an L-topology, an L-closure operator, an L-interior operator, and a
pointwise quasi-uniformity.

Keywords: pointwise k-(quasi) pseudo metric; pointwise k-remote neighborhood ball system;
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1. Introduction

Metric spaces play an important role in the research and applications of mathematics.
Since Zadeh introduced fuzzy set theory, there have been many interesting and creative
works in which different approaches to the concept of a fuzzy metric were introduced and
corresponding theories were developed and used for various applications [1–18].

In 1979, Erceg [1] constructed the theory of fuzzy metrics by considering the Hausdorff
distance function between L-subsets and studied their topological properties. Subsequently,
Erceg’s fuzzy metric was widely studied, in particular, Deng [19], Liang [20], and Peng [21]
greatly contributed to its development. However, Erceg failed to build the distance function
between L-fuzzy points and his approach does not directly reflect the relationships between
a fuzzy point and its quasi-neighborhood. Besides, the topologies induced by Erceg’s fuzzy
metrics are not first countable that can be considered as a certain deficiency of this theory.

In order to solve these defects, Shi [11] introduced a new theory of pointwise metrics
by treating a fuzzy metric as a mapping d : J(LX)× J(LX) → [0, ∞), where the set J(LX)
is the set of all L-fuzzy points on X. The theory of Shi’s pointwise metrics is different
from Erceg’s fuzzy metric and has many advantages. Shi’s pointwise metrics are well
coordinated with the corresponding pointwise topology. Besides, his methods seem more
simpler and more immediate. Moreover, Shi’s pointwise metrics also solved the problem
that the pointwise metric topology is first countable and showed that a Shi’s pointwise
metric can induce an Erceg’s metric on LX .

As a generalization of metric spaces, the notion of metric-type spaces was introduced
by Bakhtin [22] in 1989, and later was rediscovered by Czerwik [23] under the name of
b-metric space in 1993. In order to describe the concept more vividly, Šostak [24] used the
name “k-metric space” to replace metric-type spaces and b-metric spaces, which makes the
triangle inequality to a more general axiom: d(x, z) ≤ k(d(x, y) + d(y, z)), where k ≥ 1 is a
fixed constant.

Recently, Hussain [25] and Nǎdǎban [26] introduced the concept of a fuzzy b-metric and
discussed the corresponding fixed point theorem. A similar concept under the name of a
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fuzzy k-pseudo metric was independently introduced and some topological properties of fuzzy
k-pseudo metric spaces were studied in [24]. Although definitions of (fuzzy) b-metric and
(fuzzy) k-metric are very similar, there is a fundamental difference if we consider the categories
of such spaces. For example, while countable products exist in the category of (fuzzy) b-metric
spaces, the product of two (fuzzy) k-metric spaces may fail to be (fuzzy) k-metric.

By modifying the definition of a fuzzy k-pseudo metric in [24], Zhong and Šostak [27]
proposed an alternative definition of a fuzzy k-pseudo metric, which is treated as a map
M : X × X × [0, ∞) −→ [0, 1] satisfying some modified conditions. Actually, a fuzzy
k-pseudo metric can be viewed as a generalization of the fuzzifying case of a crisp k-pseudo
metric. However, this approach prevents defining the distance function between L-fuzzy
points and cannot induce any L-structures. Until now, researches about fuzzy k-pseudo
metrics lack the L-fuzzy case of crisp k-pseudo metric; that is to say, there is no author that
gives a definition of a pointwise k-pseudo metric and considers its induced L-topological
structures. Therefore, these are our starting points for writing this paper.

The main aims of this paper are to introduce the concept of a pointwise k-(quasi)
pseudo metric and to discuss its characterizations by a pointwise k-remote neighborhood
ball system. Besides, we show that many L-topological structures can be induced by a
pointwise k-quasi-pseudo metric.

This paper is organized as follows. In Section 2, some necessary definitions and
results about k-pseudo metric spaces and L-topological spaces are recalled. In Section 3, the
definitions of a pointwise k-(quasi) pseudo metric and a pointwise k-remote neighborhood
ball system are introduced. Moreover, relationships between pointwise k-(quasi) pseudo
metrics and pointwise k-remote neighborhood ball systems are discussed. In Section 4,
some L-structures induced by a pointwise k-quasi-pseudo metric are constructed, including
an L-quasi neighborhood system, an L-topology, an L-closure operator, an L-interior
operator, and a pointwise quasi-uniformity.

2. Preliminaries

Throughout this paper, (L,∨,∧,≤,′ ) denotes a complete, completely distributive De
Morgan algebra, i.e., a completely distributive lattice with an order-reserving involution ′.
Moreover, ⊥L and >L be its smallest and largest elements, respectively. Let X be a non-
empty set. LX denotes the set of all L-fuzzy subsets on X and LX is also a completely
distributive De Morgan algebra when it inherits the structure of the lattice L in a natural
way, by defining ∧,∨,≤ and ′ pointwisely. The smallest element and the largest element in
LX are denoted by ⊥LX and >LX , respectively.

We say that a is wedge-below b in L, in symbols, a ≺ b, if for every subset D ⊆ L,∨
D ≥ b implies a ≤ d for some d ∈ D. The wedge below relation in a completely

distributive lattice has the interpolation property, i.e., if a ≺ b, then there exists c ∈ L such
that a ≺ c ≺ b. Moreover, it is easy to see that a ≺ ∧

i∈I bi implies a ≺ bi for any i ∈ I,
whereas a ≺ ∨i∈I bi implies a ≺ bi for some i ∈ I [28].

An element a in L is called a co-prime element if b ∨ c > a implies b > a or c > a for
any b, c ∈ L [28]. The set of all nonzero co-prime elements of L is denoted by J(L), such
as, if L = [0, 1], then J(L) = (0, 1]. And the set of all nonzero co-prime elements of LX is
denoted by J(LX). It is easy to see that J(LX) is exactly the set of all L-fuzzy points xλ,
namely J(LX) = {xλ ∈ LX | x ∈ X, λ ∈ J(L)}, where xλ is an L-fuzzy set from X to L such
that xλ(x) = λ, and = ⊥L otherwise . Let f : X −→ Y be a map. Define f→L : LX −→ LY

and f←L : LY ↔ LX by ∀A ∈ LX , f→L (A)(y) =
∧

f (x)=y A(x) and ∀B ∈ LY, f←L (B) = B ◦ f .
First, we recall the definition of k-metric as it was introduced in [24].

Definition 1 ([24]). Let k ≥ 1 be a fixed constant and let d : X × X −→ [0, ∞) be a mapping
such that ∀x, y, z ∈ X,

(D1) d(x, x) = 0;
(D2) d(x, z) ≤ k(d(x, y) + d(y, z)).
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Then, d is called a k-pseudo-quasi metric. A k-quasi-pseudo metric is called a k-pseudo metric if it
is symmetric,

(D3) d(x, y) = d(y, x);

If the axiom (D1) is replaced by a stronger axiom:
(D1)∗ d(x, y) = 0⇔ x = y;
then d is called a k-metric and the pair (X, d) is called a k-metric space.

Example 1. Let R be the set of real numbers and let d : R×R −→ [0, ∞) be a mapping defined
by d(x, y) = |x− y|2 for all x, y ∈ R. Then, d is a 2-metric. Similarly, let (X, ‖ ‖) be a normed
space. There also exists 2-metric on X defined by d(x, y) = ‖x− y‖2 for all x, y ∈ X.

Example 2. Let X be the set of Lebesgue measurable functions on [a, b] such that
∫ b

a | f (x)|2dx < ∞.

Define d : X × X −→ [0, ∞) by d( f , g) =
∫ b

a | f (x)− g(x)|2dx for any f , g ∈ X. Then, d is
also a 2-metric.

The concept of neighborhood systems is very important and fundamental in topology.
However, the situation is more complicated when it is generalized to the L-fuzzy case.
The important work of Pu and Liu [29], in which they generalized crisp neighborhood
systems to quasi neighborhood systems, has drive to a great development of the theory of
L-topological spaces.

Chang [30] first introduced fuzzy theory into topology. The notion of Chang’s fuzzy
topology was generalized to L-fuzzy setting by J.A. Goguen [31,32], which is now called
an L-topology.

In what follows, the notions of an L-topology, an L-quasi neighborhood system, an
L-closure operator and an L-interior operator are recalled.

Definition 2 ([31,32]). An L-topology T on X is a subset of LX satisfying:
(LT1) ⊥LX , >LX ∈ T ;
(LT2) ∀A, B ∈ T ⇒ A ∧ B ∈ T ;
(LT3) ∀{Aj}j∈J ⊆ T ⇒

∨
j∈J Aj ∈ T .

A continuous mapping from an L-topological space (X, T X) to an L-topological
space (Y, T Y) is a mapping f : X −→ Y such that ∀B ∈ T Y, f←L (B) ∈ T X, where
f←L (B)(x) = B( f (x)) for any x ∈ X. The category of L-topological spaces and their
continuous mappings is denoted by L-Top.

We say that a fuzzy point xλ quasi-coincides with A if λ 
 A′(x) or equivalently
xλ 
 A′ [29,33]. In case L = [0, 1], xλ is quasi-coincident with A if and only if A(x) > 1− λ.
Then, we have the following definition.

Definition 3 ([33]). An L-quasi neighborhood system on X is a family of Q = {Qxλ
⊆ LX |

xλ ∈ J(LX)} satisfying the following conditions:
(LQ1) >LX ∈ Qxλ

, ⊥LX /∈ Qxλ
;

(LQ2) ∀U ∈ Qxλ
⇒ xλ 
 U′;

(LQ3) ∀U ∈ Qxλ
, U ≤ V ⇒ V ∈ Qxλ

;
(LQ4) ∀U, V ∈ Qxλ

⇒ U ∧V ∈ Qxλ

(LQ5) ∀U ∈ Qxλ
, there exists V ∈ LX such that xλ 
 V ≥ U′ and V′ ∈ Qyµ . for all yµ 
 V.

A continuous mapping from an L-quasi neighborhood space (X,QX) to an L-quasi
neighborhood space (Y,QY) is a mapping f : X −→ Y such that ∀xλ ∈ J(LX),
∀U ∈ QY

f (x)λ
, f←L (U) ∈ QX

xλ
. The category of L-quasi neighborhood spaces and their

continuous mappings is denoted by L-QNS.



Mathematics 2021, 9, 2505 4 of 15

Remark 1. In [33,34], it is shown that the category L-Top is isomorphic to the category of L-QNS.
Specifically speaking, if T is an L-topology, then QT = {QTxλ

| xλ ∈ J(LX)} is an L-quasi
neighborhood system, where QTxλ

= {U ∈ LX | ∃V ∈ T , s.t., xλ � V′ ≥ U′}. Conversely, if
Q = {Qxλ

| xλ ∈ J(LX)} is an L-quasi neighborhood system, then T Q = {U ∈ LX | ∀xλ � U′,
U ∈ Qxλ

} is an L-topology. In addition, T QT = T , QT Q = Q.

It is well known that the closure operator and the interior operator are convenient
alternative approaches to characterize a topology. In the following, we recall the definitions
of an L-closure operator and an L-interior operator.

Definition 4 ([33,35]). An L-closure operator on X is a mapping cl : LX −→ LX satisfying the
following conditions:

(LC1) cl(⊥LX ) = ⊥LX ;
(LC2) A ≤ cl(A);
(LC3) cl(A ∨ B) = cl(A) ∨ cl(B);
(LC4) cl(cl(A)) = cl(A).

Definition 5 ([35]). An L-interior operator on X is a mapping int : LX −→ LX satisfying the
following conditions:

(LI1) int(>LX ) = >LX ;
(LI2) int(A) ≤ A;
(LI3) int(A ∧ B) = int(A) ∧ int(B);
(LI4) int(int(A)) = int(A).

Remark 2. In [33–35], it is shown that there is a one-to-one correspondence between L-topologies
and L-closure operators. That is, if T is an L-topology, then clT (A) =

∨{xλ ∈ J(LX) |
∀xλ � U ≥ A, U′ /∈ T } is an L-closure operator. Conversely, if cl is an L-closure operator,
then T cl = {A ∈ LX | ∀xλ � A′, xλ � cl(A′)} is an L-topology. In addition, ∀A ∈ LX,
cl(A) = (int(A′)′), int(A) = (cl(A′))′.

3. Pointwise k-Pseudo Metric Space

In this section, first, we will introduce the definition of a pointwise k-pseudo metric
which is inspired by the idea of Shi’s pointwise pseudo metric. Second, we will prove
that there is a bijection between pointwise k-pseudo metrics and pointwise k-remote
neighborhood ball systems.

Definition 6. Let k ≥ 1 be a fixed constant. A pointwise k-quasi-pseudo metric on LX is a
mapd : J(LX)× J(LX) −→ [0, ∞) satisfying the following conditions: ∀xλ, yµ, zν ∈ J(LX)

(LKD1) d(xλ, xλ) = 0;
(LKD2) d(xλ, zν) ≤ k(d(xλ, yµ) + d(yµ, zν));
(LKD3) d(xλ, yµ) =

∧
ν≺µ d(xλ, yν);

(LKD4) ∀γ ≤ λ, d(xγ, yµ) ≤ d(xλ, yµ).

A pointwise k-quasi-pseudo metric d is called a pointwise k-pseudo metric if it is symmetric,
i.e., it satisfies

(LKD5)
∧

γ
λ′ d(xγ, yµ) =
∧

ν
µ′ d(yν, xλ)

Remark 3. If L = {0, 1}, then each fuzzy condition reduces to the corresponding condition of a
crisp k-pseudo metric. To be specific, (LKD1) and (LKD2) correspond to (D1) and (D2), respectively.
(LKD3) and (LKD4) are naturally hold when d is a crisp k-metric, which are essential in the
later research content of this paper. (LKD5) is a generalization of fuzzy symmetry, since it will
be reduced to the symmetry of a crisp k-metric when L = {0, 1}. That is to say, the condition∧

γ
λ′ d(xγ, yµ) =
∧

ν
µ′ d(yν, xλ) reduces to d(x1, y1) = d(y1, x1).
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Example 3. Let X be any set and L = [0, 1]. Then, J(L) = (0, 1]. Define d : J(LX)× J(LX) −→ [0, ∞)
by ∀xλ, yµ ∈ J(LX),

d(xλ, yµ) =

{
|λ− µ|2, λ > µ;
0, λ ≤ µ.

Then, d is a pointwise 2-pseudo metric and d is not a pointwise pseudo metric.

Proof. Step 1: we shall check d satisfies (LKD1)-(LKD5).

(LKD1) d(xλ, xλ) = 0 is trivial.
(LKD2) It suffices to consider the case when d(xλ, zν) > 0, i.e., d(xλ, zν) = |λ− ν|2 and
λ > ν. If one of d(xλ, yµ) and d(yµ, zν) equals 0, say d(xλ, yµ) = 0, then λ ≤ µ. Thus,
ν < µ. Therefore, d(yµ, zν) = |µ− ν|2. As |λ− ν|2 ≤ |µ− ν|2 ≤ 2|µ− ν|2, it follows that
d(xλ, zν) ≤ 2(d(xλ, yµ) + d(yµ, zν)). If d(xλ, yµ) = |λ− µ|2, λ > µ and d(yµ, zµ) = |µ− ν|2,
µ > ν, then |λ− ν|2 ≤ |(λ− µ) + (µ− ν)|2 ≤ (|λ− µ|+ |µ− ν|)2 ≤ 2(|λ− µ|2 + |µ− ν|2).
This shows d(xλ, zν) ≤ 2(d(xλ, yµ) + d(yµ, zν)).
(LKD3) Suppose d(xλ, yµ) = 0, i.e., λ ≤ µ. If λ = µ, then

∧
ν<µ d(xλ, yν) =

∧
ν<µ |λ− ν|2 =

0. If λ < µ, then there exists ν such that λ < ν < µ. Therefore, d(xλ, yν) = 0. Thus,∧
ν<µ d(xλ, yν) = 0. This shows d(xλ, yµ) =

∧
ν<µ d(xλ, yν).

Suppose d(xλ, yµ) > 0, i.e., d(xλ, yµ) = |λ− µ|2 and λ > µ. For any ν < µ, we have λ > ν
and

∧
ν<µ d(xλ, yν) =

∧
ν<µ |λ− ν|2 = |λ− µ|2. This shows d(xλ, yµ) =

∧
ν<µ d(xλ, yν).

(LKD4) The proof is similar to that of (LKD3) and omitted here.
(LKD5) It need to prove that

∧
s>1−λ d(xs, yµ) =

∧
ν>1−µ d(yν, xλ). If 1− λ− µ ≥ 0, then

s > 1− λ > µ, ν > 1− µ > λ. Therefore,
∧

s>1−λ d(xs, yµ) =
∧

s>1−λ |s− µ|2 = |1− λ−
µ|2
and

∧
ν>1−µ d(yν, xλ) =

∧
ν>1−µ |ν − λ|2 = |1 − µ − λ|2. Thus,

∧
s>1−λ d(xs, yµ) =∧

ν>1−µ d(yν, xλ). If 1− λ − µ < 0, then there exist s > 1− λ and v > 1− µ such that
1− λ < s < µ and 1− µ < ν < λ. Therefore,

∧
s>1−λ d(xs, yµ) = 0 and

∧
ν>1−µ d(yν, xλ) =

0. Thus,
∧

s>1−λ d(xs, yµ) =
∧

ν>1−µ d(yν, xλ).

Step 2: we shall show that d is not a pointwise pseudo metric.

Let λ = 5
8 , µ = 3

8 and ν = 1
8 . Then,

d(xλ, zν) = |
5
8
− 1

8
|2 =

1
4

, d(xλ, yµ) = |
5
8
− 3

8
|2 =

1
16

, d(yµ, zν) = |
3
8
− 1

8
|2 =

1
16

.

Therefore, d(xλ, zν) ≤ 2(d(xλ, yµ) + d(yµ, zν)) and d(xλ, zν) � d(xλ, yµ) + d(yµ, zν).

Definition 7. A mapping f : X −→ Y between pointwise k-quasi-pseudo metric spaces (X, dX)
and (Y, dY) is called non-expansive if ∀xλ, yµ ∈ J(LX),

dY
(

f (x)λ, f (y)µ

)
≤ dX(xλ, yµ).

It is easy to check that pointwise k-quasi-pseudo metric spaces and their non-expansive
mappings form a category, denoted by L-KPQMS.

By Definition 6, it is not hard to get the following properties.

Proposition 1. Let d be a pointwise k-quasi-pseudo metric on X. Then, the following statements
hold.

(LKD1)∗ ∀λ ≤ µ, d(xλ, xµ) = 0.
(LKD3)∗ ∀ν ≤ µ, d(xλ, yν) ≥ d(xλ, yµ).

In order to discuss some L-topological type structures induced by a pointwise k-pseudo
metric, we need to introduce the concept of a pointwise k-remote neighborhood ball sys-
tem, which is a generalization of the opposite of the crisp spherical neighborhood system
R(x, r) = (B(x, r))

′
= {y ∈ X | d(x, y) ≥ r}.
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Definition 8. Let k ≥ 1 be a fixed constant. A pointwise k-remote neighborhood ball
system on X is defined to be a set R = {Rr | r ∈ (0, ∞)} of maps {Rr : J(LX) −→ LX}
satisfying ∀xλ, yµ, zν ∈ J(LX), ∀r, s > 0,

(LKR1)
∧

r>0 Rr(xλ) = ⊥LX ;
(LKR2) xλ 
 Rr(xλ);
(LKR3) Rs � Rr ≥ Rk(r+s), where (Rs � Rr)(xλ) =

∧{Rs(yµ) |yµ 
 Rr(xλ)};
(LKR3)Rr(xλ) =

∧
s<r Rs(xλ);

(LKR4)∀γ ≤ λ, Rr(xγ) ≤ Rr(xλ).

The pair (X,R) is called a pointwise k-remote neighborhood ball space. R is called symmetric, if
it satisfies

(LKR6) yµ 

∧

γ
λ′ Rr(xγ)⇔ xλ 

∧

ν
µ′ Rr(yν).

Definition 9. A mapping f : X −→ Y between pointwise k-remote neighborhood ball spaces
(X,RX) and (Y,RY) is called continuous if ∀r > 0, ∀xλ ∈ J(LX),

f←L
(

RY
r ( f (x)λ)

)
≤ RX

r (xλ)).

It is easy to check that pointwise k-remote neighborhood ball spaces and their continu-
ous mappings form a category, denoted by L-KRNBS.

Proposition 2. Let (X,R) be a pointwise k-remote neighborhood ball space. Then, for any
xλ ∈ J(LX) and for all r, s ∈ (0, ∞),

(LKR4)∗ s ≤ r ⇒ Rr(xλ) ≤ Rs(xλ).

In the following, the relationships between pointwise k-pseudo metrics and pointwise
k-remote neighborhood ball systems are discussed.

Let d be a pointwise k-quasi-pseudo metric on X. For any r ∈ (0, ∞), define a mapping
Rd

r : J(LX) −→ LX by ∀xλ ∈ J(LX),

Rd
r (xλ) =

∨
{yµ ∈ J(LX) | d(xλ, yµ) ≥ r}.

Before proving that Rd = {Rd
r | r ∈ (0, ∞)} is a pointwise k-remote neighborhood

ball system, we need the following useful lemma.

Lemma 1. Let d be a pointwise k-quasi-pseudo metric on X. For any r ∈ (0, ∞) and for all
xλ, yµ ∈ J(LX),

yµ ≤ Rd
r (xλ)⇔ d(xλ, yµ) ≥ r, i.e., yµ � Rd

r (xλ)⇔ d(xλ, yµ) < r.

Proof. From the definition of Rd
r , it is obvious that d(xλ, yµ) ≥ r implies yµ ≤ Rd

r (xλ). On
the other hand, suppose that yµ ≤ Rd

r (xλ). For any yν ≺ yµ, as

yν ≺ Rd
r (xλ) =

∨
{yµ ∈ J(LX) | d(xλ, yµ) ≥ r},

there exists yt ∈ J(LX) such that d(xλ, yt) ≥ r and yν ≺ yt. By (LKD3)∗, we know
d(xλ, yν) ≥ d(xλ, yt) ≥ r. Thus, d(xλ, yµ) =

∧
ν≺µ d(xλ, yν) ≥ r.

Theorem 1. Let d be a pointwise k-quasi-pseudo metric on X. Then,Rd = {Rd
r | r ∈ (0, ∞)} is a

pointwise k-remote neighborhood ball system, where Rd
r (xλ) =

∨{yµ ∈ J(LX) | d(xλ, yµ) ≥ r}.

Proof. We need to check (LKR1)-(LKR5) in Definition 8.
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(LKR1) Assume that
∧

r>0 Rd
r (xλ) = B 6= ⊥LX . For each yµ ≤ B, we have yµ ≤ Rd

r (xλ) for
all r > 0. By Lemma 1, we get d(xλ, yµ) ≥ r for any r > 0, which contradicts with the fact
that d(xλ, yµ) ∈ [0, ∞). Therefore,

∧
r>0 Rd

r (xλ) = ⊥LX .
(LKR2) It follows from Lemma 1 and (LKD1).
(LKR3) Let xλ ∈ J(LX).

Take any yµ ∈ J(LX) with

yµ � (Rd
s � Rd

r )(xλ) =
∧
{Rd

s (zw) | zw � Rd
r (xλ)}.

Then, there exists some zw ∈ J(LX) such that zw � Rd
r (xλ) and yµ � Rd

s (zw). By Lemma 1,
we have d(xλ, zw) < r and d(zw, yµ) < s. It follows that

d(xλ, yµ) ≤ k(d(xλ, zw) + d(zw, yµ)) < k(r + s).

Therefore, yµ � Rd
k(r+s)(xλ). By the arbitrariness of yµ, we obtain (Rd

s � Rd
r )(xλ) ≥

Rd
k(r+s)(xλ), i.e., Rd

s � Rd
r ≥ Rd

k(r+s).

(LKR4) It can be obtained from the following equivalences:

yµ ≤ Rd
r (xλ)⇔ d(xλ, yµ) ≥ r ⇔ ∀s < r, d(xλ, yµ) ≥ s

⇔ ∀s < r, yµ ≤ Rd
s (xλ)⇔ yµ ≤

∧
s<r

Rd
s (xλ).

(LKR5) For any γ ≤ λ, we have d(xγ, yµ) ≤ d(xλ, yµ). Thus,

Rd
r (xγ) =

∨
{yµ | d(xγ, yµ) ≥ r} ≤

∨
{yµ | d(xλ, yµ) ≥ r} = Rd

r (xλ).

Theorem 2. If f : (X, dX) −→ (Y, dY) is non-expansive between pointwise k-quasi-pseudo metric
spaces, then f : (X,RdX ) −→ (Y,RdY ) is continuous between pointwise k-remote neighborhood
ball spaces.

Proof. It needs to check that f←L (RdY
r ( f (x)λ)) ≤ RdX

r (xλ) for all xλ ∈ J(LX) and for any
r > 0.

By the definition of Rd
r , the inequality can be proved from the following:

f←L (RdY
r ( f (x)λ)) = f←L

(∨
{zν ∈ J(LY) | dY( f (x)λ, zν) ≥ r}

)
=

∨{
f←L (zν) ∈ J(LX) | dY( f (x)λ, zν) ≥ r

}
≤

∨{
f−1(z)ν ∈ J(LX) | dX(xλ, f−1(z)ν) ≥ r

}
≤

∨{
yµ ∈ J(LX) | dX(xλ, yµ) ≥ r

}
= RdX

r (xλ).

Now, we shall consider the opposite problem: whether a pointwise k-quasi-pseudo
metric can be induced by a pointwise k-remote neighborhood ball system? The answer is
positive and its construction is defined as follows.

LetR = {Rr | r ∈ (0, ∞)} be a pointwise k-remote neighborhood ball system. Define
a map dR : J(LX)× J(LX) −→ [0, ∞) by ∀xλ, yµ ∈ J(LX),

dR(xλ, yµ) =
∧
{r ∈ (0, ∞) | yµ � Rr(xλ)}.

Before proving that dR is a pointwise k-quasi-pseudo metric, we need the following
meaningful lemma.
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Lemma 2. LetR be a pointwise k-remote neighborhood ball system. For any r ∈ (0, ∞) and for
all xλ, yµ ∈ J(LX),

dR(xλ, yµ) < r ⇔ yµ � Rr(xλ) i.e., dR(xλ, yµ) ≥ r ⇔ yµ ≤ Rr(xλ).

Proof. It can be obtained by the following implication:

dR(xλ, yµ) < r ⇔ ∃s < r such that yµ � Rs(xλ)⇔ yµ �
∧
s<r

Rs(xλ) = Rr(xλ).

Theorem 3. LetR = {Rr | r ∈ (0, ∞)} be a pointwise k-remote neighborhood ball system. Then,
dR is a pointwise k-quasi-pseudo metric.

Proof. Step 1: We show dR is well-defined, namely, dR(xλ, yµ) ∈ [0, ∞). If xλ 6= yµ, then
there exists some r > 0 such that yµ � Rr(xλ). By Lemma 2, we have dR(xλ, yµ) < r. If
xλ = yµ, then dR(xλ, xλ) =

∧
r>0 r = 0. Thus, dR(xλ, yµ) ∈ [0, ∞).

Step 2: we check dR satisfies (LKD1)-(LKD4).

(LKD1) dR(xλ, xλ) =
∧{r ∈ (0, ∞) | xλ � Rr(xλ)} =

∧
r>0 r = 0.

(LKD2) Let s, t ∈ (0, ∞) such that dR(xλ, yµ) < s and dR(yµ, zν) < t. By Lemma 2, we
know yµ � Rs(xλ) and zν � Rt(yµ), which implies

zν �
∨
{Rt(yµ) | yµ � Rs(xλ)} = (Rt � Rs)(xλ).

It follows from Rt � Rs ≥ Rk(s+t) that

zν � Rk(s+t)(xλ), i.e., dR(xλ, zν) < k(s + t).

Thus, dR(xλ, zν)≤ k(dR(xλ, yµ) + dR(yµ, zν)) by the arbitrariness of s and t.
(LKD3) Take any ν ≺ µ with yν � Rr(xλ). Then, yµ � Rr(xλ) and dR(xλ, yν) ≥ dR(xλ, yµ).
This shows

∧
ν≺µ dR(xλ, yν) ≥ dR(xλ, yµ). On the other hand, suppose that dR(xλ, yµ) < r.

Then yµ � Rr(xλ), which implies there exists some ν ≺ µ such that yν � Rr(xλ). This
means dR(xλ, yν) < r. Further

∧
ν≺µ dR(xλ, yν) < r. By the arbitrariness of r, we deduce∧

ν≺µ dR(xλ, yν) ≤ dR(xλ, yµ).
(LKD4) It is easy to be proved from (LKR5) and the Definition of dR.

Theorem 4. If f : (X,RX) −→ (Y,RY) is continuous between pointwise k-remote neighborhood
ball spaces, then f : (X, dR

X
) −→ (Y, dR

Y
) is non-expansive between pointwise k-quasi-pseudo

metric spaces.

Proof. It needs to prove that ∀xλ, yµ ∈ J(LX), dR
Y
( f (x)λ, f (y)µ) ≤ dR

X
(xλ, yµ). By the

definition of dR and the continuity of pointwise k-remote neighborhood ball systems, the
inequality can be proved from the following:

dR
X
(xλ, yµ) =

∧{
r > 0 | yµ � RX

r (xλ)
}

≥
∧{

r > 0 | yµ � f←L
(

RY
r ( f (x)λ)

)}
≥

∧{
r > 0 | f (y)µ � RY

r ( f (x)λ)
}
= dR

Y
( f (x)λ, f (y)µ)
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By Lemmas 1 and 2, it is easy to see that RdR = R and dR
d
= d. Therefore, we can

get the following theorem.

Theorem 5. The category L-KPQMS is isomorphic to the category L-KRNBS.

Finally, we shall study the relationship between symmetric versions of pointwise
k-quasi-pseudo metric spaces and pointwise k-remote neighborhood ball spaces.

Theorem 6. Let (X, d) be a pointwise k-pseudo metric space. Then,Rd is symmetric.

Proof. The symmetry ofRd can be derived from the following.

yµ �
∧

γ�λ
′
Rd

r (xγ)⇔ ∃γ � λ
′
, yµ � Rd

r (xγ)⇔ ∃γ � λ
′
, d(xγ, yµ) < r

⇔
∧

γ�λ
′
d(xγ, yµ) =

∧
ν�µ

′
d(yν, xλ) < r ⇔ ∃ν � µ

′
, d(yν, xλ) < r

⇔ ∃ν � µ
′
, xλ � Rd

r (yν)⇔ xλ �
∧

ν�µ
′
Rd

r (yν).

Theorem 7. Let (X,R) be a pointwise k-remote neighborhood ball space. IfR is symmetric, then
dR is symmetric.

Proof. The symmetry of dR can be deduced by the following implications.∧
γ�λ

′
dR(xγ, yµ) =

∧
γ�λ

′

∧
yµ�Rr(xλ)

r =
∧

yµ�
∧

γ�λ
′ Rr(xλ)

r

=
∧

xλ�
∧

ν�µ
′ Rr(yν)

r =
∧

ν�µ
′

∧
xλ�Rr(yν)

r =
∧

ν�µ
′
d(yν, xλ)

In Figure 1, we present a diagram visualizing the obtained relations between the
concepts considered here.

Figure 1. The relationship between d andR.

4. L-Structures Induced by a Pointwise k-Quasi-Pseudo Metric

In this section, we shall give some L-structures induced by a pointwise k-quasi-
pseudo metric.

At first, let us recall some facts about crisp k-metric spaces. Let (X, d) be a k-metric
space. Define B(x, r) = {y ∈ X | d(x, y) < r}. Then, the set N d = {N d

x | x ∈ X}
is a neighborhood system, where N d

x = {A ⊆ X | ∃r > 0, B(x, r) ⊆ A}. Moreover,
T d = {A ⊆ X | ∀x ∈ A, ∃r > 0, B(x, r) ⊆ A} is a topology.

However, Sd = {A ⊆ X | A =
⋃

i∈I B(xi, εi)} is not a topology, is only a supratopol-
ogy (or called a pre-topology) and T d ( Sd. The reason is that every open ball B(x, r) need
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not to be an open set in T d because of the violation of triangle inequality in a k-metric
space. Readers can refer to the following counterexample.

Example 4 ([24]). Let X = {a} ∪ [b, c] and the length of [b, c] is s. Let dt ∈ [b, c] with dt − b = t
for any t ∈ (0, s). The distance on [b, c] is the usual Euclidean metric and define d(a, b) = s,
d(a, c) = 2s, d(a, dt) = 2s− t. Then, d is a 2-metric. However, B(b, δ) * B(a, s + ε) for any
ε > 0 and δ > 0.

Through the relationships between pointwise k-quasi-pseudo metrics and pointwise
k-remote neighborhood ball systems (see Figure 1), we would like to generalize crisp
conclusions to L-fuzzy cases.

First, we introduce an L-quasi neighborhood system induced by a pointwise k-remote
neighborhood ball system in the following theorem.

Theorem 8. Let (X,R) be a pointwise k-remote neighborhood ball space. For any xλ ∈ J(LX),
define QRxλ

⊆ LX as follows:

QRxλ
= {A ∈ LX | ∃r ∈ (0, ∞), A′ ≤ Rr(xλ)}.

Then, QR = {QRxλ
| xλ ∈ J(LX)} is an L-quasi neighborhood system.

Proof. We need to check that QR satisfies (LQ1)-(LQ5) in Definition 3.

(LQ1)–(LQ3) hold obviously.
(LQ4) For any A, B ∈ QRxλ

, there exist r and s such that A′ ≤ Rr(xλ) and B′ ≤ Rs(xλ).
Let t = r ∧ s. Then Rr(xλ) ≤ Rt(xλ) and Rs(xλ) ≤ Rt(xλ). It follows that (A ∧ B)′ =
A′ ∨ B′ ≤ Rt(xλ). This shows A ∧ B ∈ QRxλ

.
(LQ5) For any A ∈ QRxλ

, there exist r > 0 such that A′ ≤ Rr(xλ). Let

B =
∧
{R s

2k
(zν) | Rr(xλ) ≤ Rs(zν)}.

Then, it is not difficult to get yµ ≤ B⇔ ∀Rr(xλ) ≤ Rs(zν), yµ ≤ R s
2k
(zν).

Next, we shall show xλ � B ≥ A′ and ∀yµ � B, B′ ∈ Qyµ .

(i) As xλ � R r
2k
(xλ), it follows that xλ � B. Take any yµ ∈ J(LX) with yµ ≤ A′, we have

yµ ≤ Rr(xλ) ≤ R r
2k
(xλ). Therefore, yµ ≤ B. This implies A′ ≤ B. Thus, xλ � B ≥ A′.

(ii) For any yµ � B, there exists s
2k > 0 and zν ∈ J(LX) such that yµ � R s

2k
(zν) and

Rr(xλ) ≤ Rs(zν). Note that

R s
2k
(yµ) ≥

∧
{R s

2k
(wl) | wl � R s

2k
(zν)} =

(
R s

2k
� R s

2k

)
(zν)

≥ Rk( s
2k +

s
2k )

(zν) = Rs(zν) ≥ Rr(xλ).

This shows R s
4k2

(yµ) ∈ {R s
2k
(zν) | Rr(xλ) ≤ Rs(zν)}. Then, B ≤ R s

4k2
(yµ). Thus,

B′ ∈ Qyµ . Combining (i) and (ii), (LQ5) holds.

Theorem 9. If f : (X,RX) −→ (Y,RY) is continuous between pointwise k-remote neighborhood
ball spaces, then f : (X,QRX

) −→ (Y,QRY
) is continuous between L-quasi neighborhood spaces.

Proof. It needs to check that ∀xλ ∈ J(LX), ∀U ∈ QRY

f (x)λ
, f←L (U) ∈ QRX

xλ
. For any U ∈

QRY

f (x)λ
, there exists r > 0 such that U′ ≤ RY

r ( f (x)λ).
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By the continuity of pointwise k-remote neighborhood ball spaces and the order-
preserving property of f←L , we have

( f←L (U))′ = f←L (U′) ≤ f←L
(

RY
r ( f (x)λ)

)
≤ RX

r (xλ).

This shows f←L (U) ∈ QRX
xλ

.

As the category L-Top is isomorphic to the category of L-QNS [33,36], it is easy to
obtain an L-topology induced byR, that is,

T R = {A ∈ LX | ∀xλ � A′, ∃r > 0, A′ ≤ Rd
r (xλ)}.

Further, we can get an L-topology induced by a pointwise k-pseudo-quasi metric through
Figure 1 as a link,

T d = {A ∈ LX | ∀xλ � A′, ∃r > 0, ∀yµ ≤ A′, d(xλ, yµ) ≥ r}.

In [33,36], it is also shown that there is a one-to-one correspondence between L-quasi
neighborhood systems and L-closure operators. Precisely speaking, if Q is an L-quasi
neighborhood system, then

clQ(A) =
∨
{xλ ∈ J(LX) | A′ /∈ Qxλ

}

is an L-closure operator induced by Q. Conversely, if cl is an L-closure operator, then
Qcl = {Qcl

xλ
| xλ ∈ J(LX)} is an L-quasi neighborhood system induced by cl, in which

Qcl
xλ

= {A ∈ LX | xλ � cl(A′)}.
As we have already gottenQRxλ

= {A ∈ LX | ∃r ∈ (0, ∞), A′ ≤ Rr(xλ)} in Theorem 8,
we have the following conclusions.

Theorem 10. Let (X,R) be a pointwise k-remote neighborhood ball space. Define clR : LX −→ LX by

clR(A) =
∨
{xλ ∈ J(LX) | ∀r > 0, A � Rr(xλ)}.

Then, clR is an L-closure operator.

By Figure 1, we know that an L-closure operator induced by a pointwise k-pseudo
metric d can be expressed by

cld(A) =
∨
{xλ ∈ J(LX) | ∀r > 0, ∃yµ ≤ A, d(xλ, yµ) < r}.

In the following, we shall give a formula of intR.

Theorem 11. Let (X,R) be a pointwise k-remote neighborhood ball space. Define intR : LX −→ LX by

intR(A) =
∨
{xλ ∈ J(LX) | ∃r > 0, ∀yµ � A, xλ ≤ Rr(yµ)}.

Then intR is an L-interior operator.

Proof. We need to check (LI1)-(LI4) in Definition 5.

(LI1), (LI2) are obvious.
(LI3) It is clear that intR(A ∧ B) ≤ intR(A) ∧ intR(B), since intR : LX −→ LX is order-
preserving. What remains is to prove intR(A ∧ B) ≥ intR(A) ∧ intR(B).
Take any xλ ∈ J(LX) with xλ ≺ intR(A) ∧ intR(B), we have xλ ≺ intR(A) and xλ ≺
intR(B). Then there exist r > 0, s > 0 such that xλ ≤ Rr(yµ) for any yµ � A and
xλ ≤ Rs(zν) for any zν � B.
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Let t = r ∧ s. Suppose that wl � A ∧ B (i.e., wl � A or wl � B). If wl � A, then
xλ ≤ Rr(wl) ≤ Rt(wl). If wl � B, then xλ ≤ Rs(wl) ≤ Rt(wl). Hence xλ ≤ Rt(wl) for
any wl � A ∧ B. This shows xλ ≤ intR(A ∧ B). From the arbitrariness of xλ, we obtain
intR(A) ∧ intR(B) ≤ intR(A ∧ B).
(LI4) It suffices to prove that intR(A) ≤ intR(intR(A)).

Take any xλ ∈ J(LX) with xλ ≺ intR(A), there exist r > 0 such that xλ ≤ Rr(yµ) for
any yµ � A. In order to show xλ ≺ intR(intR(A)), we need to prove whether there exists
r̃ > 0 such that xλ ≤ Rr̃(zν) for any zν � intR(A).

Let r̃ = r
2k . For any zν � intR(A), there exists ỹµ � A such that zν � Rs(ỹµ) for all

s > 0. Fix s = r
2k > 0. Then, zν � R r

2k
(ỹµ) and xλ ≤ Rr(ỹµ). As

(R r
2k
� R r

2k
)(ỹµ) =

∧
{R r

2k
(zν) | zν � R r

2k
(ỹµ)}

and (LKR3), it follows that

xλ ≤ Rr(ỹµ) ≤ (R r
2k
� R r

2k
)(ỹµ) ≤ R r

2k
(zν).

Thus, xλ ≤ R r
2k
(zν). Therefore, xλ ≤ int(int(A)). From the arbitrariness of xλ, we obtain

intR(A) ≤ intR(intR(A)).

By Figure 1, we know that an L-interior operator induced by a pointwise k-pseudo
metric d can be expressed by

intd(A) =
∨
{xλ | ∃r > 0, ∀yµ � A, d(yµ, xλ) ≥ r}.

Finally, we shall discuss whether a pointwise k-remote neighborhood ball system can
induce a pointwise quasi-uniformity or not. Before answering this question, some concepts
related to a pointwise quasi-uniformity introduced in [37] are recalled.

Let F = { f : J(LX) −→ LX | f is order-preserving} such that xλ � f (xλ). For any
f , g ∈ F , define

(1) f ≤ g⇔ ∀xλ ∈ J(LX), f (xλ) ≤ g(xλ);
(2) ( f ∨ g)(xλ) = f (xλ) ∨ g(xλ);
(3) ( f � g)(xλ) =

∧{ f (yµ) | yµ � g(xλ)}.
It is not difficult to prove that f ∨ g ∈ F , f � g ∈ F and the operators ∨ and � satisfy

the associativity law.

Definition 10 ([37]). A mapping f ∈ F is said to be symmetric if it satisfies the following condition:

yµ �
∧

γ�λ′
f (xγ)⇔ xλ �

∧
ν�µ′

f (yν).

Definition 11 ([37]). A non-empty subset U ⊆ F is called a pointwise quasi-uniformity on LX if
it satisfies

(LU1) ∀ f ∈ F , ∀g ∈ U , f ≤ g implies f ∈ U ;
(LU2) ∀ f , g ∈ U implies f ∨ g ∈ U ;
(LU3) ∀ f ∈ U implies ∃g ∈ U such that g� g ≥ f .

A subset A ⊆ U is called a basis of U if ∀ f ∈ U , ∃g ∈ A such that f ≤ g, namely,
U = { f ∈ F | ∃g ∈ A, s.t. f ≤ g}. A pointwise quasi-uniformity is called a pointwise uniformity
if it has a symmetric basis.
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Definition 12 ([37]). An order homomorphism F : X −→ Y is said to be pointwise quasi-
uniformly continuous with respect to pointwise quasi-uniformities UX and UY if for each g ∈ UY,
there exists f ∈ UX such that

∀xλ, yµ ∈ J(LX), yµ � f (xλ)⇒ F→L (yµ) � g(F→L (xλ)).

Theorem 12 ([37]). Let F : X −→ Y be an order homomorphism. Then, F : (X,UX) −→ (Y,UY)
is quasi-uniformly continuous if and only if ∀g ∈ UY, ∃ f ∈ UX such that F←L ◦ g ◦ F→L ≤ f .

By the conditions in Definition 8 and Proposition 2, it is easy to know that a (symmetric)
pointwise k-remote neighborhood ball system R = {Rr : J(LX) −→ LX | r > 0} is a
(symmetric) basis of a pointwise uniformity. Then, we have the following theorems.

Theorem 13. Let (X,R) be a (symmetric) pointwise k-remote neighborhood ball space. Define
UR ⊆ F by

UR = { f ∈ F | ∃r > 0, f ≤ Rr}

Then, UR is a pointwise quasi-uniformity (pointwise uniformity).

By Figure 1, we know that a pointwise (quasi)-uniformity induced by a pointwise
k-(quasi) pseudo metric d can be expressed by

U d = { f ∈ F | ∃r > 0, ∀yµ ≤ f (xλ), d(xλ, yµ) ≥ r}.

Theorem 14. If F : (X,RX) −→ (Y,RY) is continuous between pointwise k-remote neigh-
borhood ball spaces, then F : (X,URX

) −→ (Y,URY
) is quasi-uniformly continuous between

pointwise quasi-uniform spaces.

Proof. For any g ∈ URY
, there exists r > 0 such that g ≤ RY

r . By the continuity of pointwise
k-remote neighborhood ball spaces and the order-preserving property of F←L , we have

(F←L ◦ g ◦ F→L )(xλ) = F←L ◦ g(F(x)λ) ≤ F←L (RY
r (F(x)λ))

≤ RX
r (F←L (F(x)λ)) = RX

r (xλ)

As RX
r ∈ UR

X
, it follows that F is quasi-uniformly continuous between pointwise uniform

spaces (X,URX
) and (Y,URY

).

At the end of the paper, we present a diagram illustrating the obtained here results
about L-structures induced by k-quasi-pseudo metrics (see Figure 2).

Figure 2. L-structures induced by d.
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5. Conclusions

In this paper, the definition of a pointwise k-(quasi) pseudo metric and a pointwise
k-remote neighborhood ball system were introduced. We showed that the category of
pointwise k-pseudo metric spaces is isomorphic to the category of symmetric pointwise
k-remote neighborhood ball spaces. Besides, we discussed some L-topological structures
induced by a pointwise k-quasi-pseudo metric and investigated their properties.

Some research works about the concept of an (L, M)-fuzzy k-metric and its induced
(L, M)-fuzzy structures would be our interest in the future. Furthermore, we plan to
generalize an (L, M)-fuzzy k-metric to an (L, M)-fuzzy partial k-metric and study its
properties.
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26. Nǎdxaxban, S. Fuzzy b-metric spaces. Int. J. Comput. Commun. Control 2016, 11, 273–281.

http://doi.org/10.1016/0022-247X(79)90189-6
http://dx.doi.org/10.1016/j.fss.2005.11.002
http://dx.doi.org/10.1016/0165-0114(94)90162-7
http://dx.doi.org/10.1016/0165-0114(88)90064-4
http://dx.doi.org/10.1016/0165-0114(84)90069-1
http://dx.doi.org/10.2298/FIL1811021P
http://dx.doi.org/10.1016/j.fss.2011.11.008
http://dx.doi.org/10.1016/j.fss.2014.06.003
http://dx.doi.org/10.1016/0165-0114(88)90061-9
http://dx.doi.org/10.1016/S0165-0114(00)00013-0
http://dx.doi.org/10.1016/j.ijar.2020.03.006
http://dx.doi.org/10.1016/j.fss.2021.03.010
http://dx.doi.org/10.1016/j.fss.2009.10.001
http://dx.doi.org/10.2989/16073606.2021.1973140
http://dx.doi.org/10.1016/0022-247X(82)90255-4
http://dx.doi.org/10.2298/FIL1810567S
http://dx.doi.org/10.22436/jnsa.008.05.24


Mathematics 2021, 9, 2505 15 of 15

27. Zhong, Y.; Šostak, A.P. A new definition of fuzzy k-pseudo metric and its induced fuzzifying structures. Iran. J. Fuzzy Syst. 2020,
accepted.

28. Gierz, G.; Hofmann, K.H.; Keimel, K. A Compendium of Continuous Lattices; Springer: Berlin/Heidelberg, Germany, 1980.
29. Pu, B.M.; Liu, Y.M. Fuzzy topology (I), Neighborhood structures of a fuzzy point and Moore-smith convergence. J. Math. Anal.

Appl. 1980, 76, 571–599.
30. Chang, C.L. Fuzzy topological spaces. J. Math. Anal. Appl. 1968, 24, 182–190. [CrossRef]
31. Goguen, J.A. L-fuzzy sets. J. Math. Anal. Appl. 1967, 18, 145–174. [CrossRef]
32. Goguen, J.A. The fuzzy Tychonoff theorem. J. Math. Anal. Appl. 1973, 43, 737–742. [CrossRef]
33. Liu, Y.M.; Luo, M.K. Fuzzy Topology; World Scientific Publication: Singapore, 1998.
34. Fang, J. Categories isomorphic to L-FTOP. Fuzzy Sets Syst. 2006, 157, 820–831.
35. Shi, F.G. L-fuzzy interiors and L-fuzzy closures. Fuzzy Sets Syst. 2009, 160, 1218–1232. [CrossRef]
36. Shi, F.G. (L, M)-fuzzy metric spacs. Indian J. Math. 2010, 52, 231–250.
37. Shi, F.G. Pointwise uniformities in fuzzy set theory. Fuzzy Sets Syst. 1998, 98, 141–146.

http://dx.doi.org/10.1016/0022-247X(68)90057-7
http://dx.doi.org/10.1016/0022-247X(67)90189-8
http://dx.doi.org/10.1016/0022-247X(73)90288-6
http://dx.doi.org/10.1016/j.fss.2008.09.002

	Introduction
	Preliminaries
	Pointwise k-Pseudo Metric Space
	L-Structures Induced by a Pointwise k-Quasi-Pseudo Metric
	Conclusions
	References

