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Abstract: A permanent magnet immersed in magnetic fluid experiences magnetic levitation force
which is of the buoyant type. This phenomenon commonly refers to self-levitation or second-order
buoyancy. The stable levitation height of the permanent magnet can be attained by numerical
evaluation of the force. Various authors have proposed different computational methods, but all of
them rely on force formulation. This paper presents an alternative energy approach in the equilibrium
height calculation, which was settled on the minimum energy principle. The problem, involving a
cylindrical magnet suspended in a closed cylindrical container full of magnetic fluid, was considered
in the study. The results accomplished by the proposed method were compared with those of the
well-established surface integral method already verified by experiments. The difference in the
results gained by both methods appears to be under 2.5%.

Keywords: magnetic levitation force; second-order buoyancy; magnetic fluid levitation force; mag-
netic fluid; finite element method (FEM); surface integral method; energy method

1. Introduction

In recent years, many researchers working on problems involving magnetic fluid were
focused on the self-levitation phenomenon, which occurs when a permanent magnet (PM)
is suspended in magnetic fluid (MF). This phenomenon was first reported by Rosensweig
in 1966 [1,2]. A study of the forces acting on such a body has shown that, in addition to
the Archimedes buoyancy, another type of buoyancy appears by virtue of the magnetic
field. Such force is called a magnetic levitation force (MLF), also known as second-order
buoyancy. This new kind of buoyancy is not limited only to the vertical direction, but acts
as the restoring force for any displacement of the PM from the stable levitating position.

Because of this, a PM suspended in MF has found many practical applications, the
most promising of which are dampers and accelerometers. The first damper of this kind,
consisting of PM and MF, was the ferrofluid inertia damper proposed by Moskowitz et al. in
1978, designed to operate in the self-levitated condition [3]. Later on, the configuration was
improved to achieve better performances, but the basic concept remained unchanged [4,5].
The passive ferrofluid dynamic vibration absorber presented in [6] is also a damping
device based on the self-levitation phenomenon. Such an absorber is used to suppress
small amplitude (<1 mm) and low-frequency vibrations (<1 Hz). Some modifications
to the beforementioned absorber have been disclosed in [7]. For more recent theoretical
and experimental studies on the ferrofluid dynamic vibration absorbers, the readers may
refer to [8,9].

Another interesting and promising application that works on the self-levitation princi-
ple is the magnetic fluid-based accelerometer. The typical design of such a device, presented
in [10], is similar to the one introduced with the dampers, but here the inductive coil is
mounted over the housing to detect the PM movement. In the past few years, the magnetic
liquid-based accelerometers have been researched intensively due to their relatively simple
and reliable design [11,12]. Almost all the relevant publications in the field were provided
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by the research groups from China, where the topic of second-order buoyancy has been
addressed both theoretically and experimentally. Yang et al. [13] calculated the magnetic
self-levitation force of a cylindrical PM with the use of the magnetic charge image method
and current image method, respectively. Results have shown a large difference of up to
62% between the calculated and measured results. On the other hand, by employing FEM
on the problem the error did not exceed 9%. The same authors continued with research
on the radial MLF in the following years [8,14]. The current image method and FEM were
employed successfully in the optimization of a magnetic fluid accelerometer [11]. Based
on the magnetic field solution obtained by the commercial FEM software, three effective
and practical computational methods were proposed in [12]: the surface integral method
(SIM), the magnetic force method, and equivalent magnetic force method. The results
achieved by the aforementioned methods matched the experimental results within 7%. The
experimental setup for measuring MLF involved a non-magnetic rod attached to the top of
the PM which influenced the force acting on the PM. The detailed model based on the SIM
and the influence of the measuring rod were studied in [15,16]

There were also some research studies devoted to the development of micro magnetic
fluid devices for driving micro machines. Here, the PM is coated with MF, which acts as a
lubricant. The movement of the PM can be achieved in an alternating magnetic field [17,18].

This article uses two different approaches in calculating the equilibria states of the
permanent magnet (PM) immersed in the magnetic fluid (MF). The first approach is based
on the force formulation, where the stable magnetic state is calculated through the Surface
Integral Method (SIM). This method is well covered, theoretically and experimentally, by
various authors [12,15,16,19]. The main reason it appears in the current study is to use it as
a benchmark for the proposed method, based on the energy formulation.

To the best of the authors’ knowledge, the self-levitation equilibria of the PM have
not been studied by virtue of the energy. To fill this gap in the field, and to illuminate
the addressed topic from a different standpoint, a mathematical model grounded on the
energy principle is presented in this article. Such a formulation is essential, since numerical
issues arise when the SIM is implemented on the first-order finite element mesh [20]. Not
going in deep with the error analysis associated with the numerical evaluation of the stress
tensor, only a summary on the subject is given here. The mesh size on the contour path
should be as fine as possible; the integration should be performed in the free space (air),
or at least in a region with a constant permeability; the contour should not be defined at
the interface between two different materials, but always a few elements away from any
interfaces or boundaries [20,21]. In practical applications, whether the user is coding or
just using the FEM-based software, considering the enlisted requirements could represent
quite demanding work. Anyhow, when the self-levitation equilibrium is tackled with the
energy formulation, the issues mentioned above could be avoided successfully.

2. Materials and Methods

The content of this chapter is devoted to the problem definition, and to introduce the
reader to the basic, but still comprehensive, theoretical background. Even though the quite
extensive mathematical employment used here could be omitted, as the majority of it can
be found in [16], the authors have kept it here on purpose; in the first place, to point out
some crucial differences between the existing approaches reported by other authors.

2.1. Problem Definition

Analysis of the self-levitation phenomena associated with a PM immersed in MF
depends on the engaged geometry and material properties of the solids and liquids in-
volved [11]. This study is focused on the simple cylindrical geometry, where both the PM
and the container with MF are cylindrical. Onward, the PM is placed in a closed and fully
filled container in such way that both axes coincide. The basic deployment is shown in
Figure 1.
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Figure 1. The basic deployment of the problem.

2.2. Surface Integral Method (SIM)

The mathematical expression of the magnetic fluid levitation force (MFLF) Fl which
acts on the PM immersed in MF could be derived from magnetic fluid stress tensor T′m
proposed by Rosensweig in 1966 [22]. The origin of the force is in the interaction between a
permanent magnet’s field and the magnetic liquid’s magnetization. It drags a permanent
magnet into the equilibrium state, where the total energy reaches its minimum.

Fl =
∮
Sp

T′m·np da (1)

T′m = −

p +

H∫
0

µ0

[
∂(vM)

dv

]
H,T

dH +
1
2

µ0H2

I + BH (2)

Here, Sp is the surface of the PM; np is a unit vector normal to the PM’s surface,
pointing outward in the MF (see Figure 2); da is a surface element; p is the pressure in
the MF in the absence of a magnetic field; v is the volume of MF per unit mass i.e., (1/ρ)
where ρ stands for the MF’s density; µ0 is the permeability of the free space; M is the
magnetization of the MF; B and B are the magnetic flux density in the vector notation and
its absolute value, respectively; H and H are the magnetic field intensity in the vector and
its corresponding absolute value, respectively; I is an identity matrix; and T is the absolute
temperature. The product BH represents a tensor. All the physical quantities stated in
Equation (1) and Equation (2) are, in general, functions of position, e.g., B = B(x, y, z),
H = H(x, y, z), p = p(x, y, z), M = M(x, y, z), v = v(x, y, z), etc., but a shorter notation
was used here for convenience.

Executing a derivation in the square brackets of the above expression at constant H
and T gives

T′m = −

p +

H∫
0

µ0MdH +

H∫
0

µ0v
∂M
∂v

dH +
1
2

µ0H2

I + BH . (3)

When the fluid is at rest and fully enclosed within the container (there are no free
surfaces), the pressure p represents the hydrostatic pressure caused by the gravity. To
emphasize this, the subscript for the gravity is added to it, i.e., p = pg. The notation of
Equation (3) is usually written in the following form [22],

T′m = −
{

pg + pm + ps +
1
2

µ0H2
}

I + BH , (4)
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where the fluid-magnetic pressure pm and the magnetostrictive pressure ps are defined as

pm =

H∫
0

µ0MdH (5)

ps =

H∫
0

µ0v
∂M
∂v

dH . (6)

In most of the practical cases where the fluid is considered incompressible, the latter
term can be omitted from the further analysis, i.e., ps ≈ 0 [22].

Figure 2. Permanent magnet immersed in magnetic fluid. Dashed lines indicate the integration paths
over the container’s inner surface Sc and PM surfaces Sp, respectively.

Considering the MF equilibrium state with respect to the representation shown in
Figure 2, the following equation can be given.∫

Vm f

ρgdV =
∮
S

T′m·n da

=
∮

Sp+Sc

T′m·n da =
∮
Sp

T′m·np da +
∮
Sc

T′m·nc da
(7)

Here, Sc is the surface of the container; nc is a unit vector normal to the surface Sc,
pointing inward to the MF (see Figure 2); Vm f is the volume of the MF; g is the acceleration
vector of gravity; and dV is a volume element.

Equation (7) gives a balance of the forces in the MF; here, the term on the left side
of the equation represents the gravity force of the MF, and the right side stands for the
buoyancy force, which consists of magnetic and Archimedes components. The surface
exposed to the MF is here indicated with S.

Expressing Equation (1) with Equation (7) results in a more propriate formulation of
magnetic fluid levitation force Fl [16].

Fl =
∫

Vm f

ρgdV −
∮
Sc

T′m·nc da (8)
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Considering Equations (4)–(6) in Equation (8) a further development follows:

Fl =
∫

Vm f

ρgdV −
∮
Sc

(
−pg − pm − 1

2 µ0H2I + BH
)
·nc da

=
∫

Vm f

ρgdV +
∮
Sc

pgncda +
∮
Sc

pmncda−
∮
Sc

(
− 1

2 µ0H2I + BH
)
·nc da

(9)

By looking at Equation (9), it can easily be noticed that the first two terms on the
right side correspond to the Archimedes buoyancy force Fla. The others terms declare the
magnetic contribution to the magnetic fluid levitation force Flm, i.e., Fl = Fla + Flm.

Fla =
∫

Vm f

ρgdV +
∮
Sc

pgncda (10)

Flm =
∮
Sc

pmncda−
∮
Sc

(
−1

2
µ0H2I + BH

)
·nc da (11)

In the relevant literature, the force Flm also refers to the magnetic levitation force
(MLF), the opposite value of which is known as second-order buoyancy FI I . In other words,
FI I = −Flm [15,16,19].

FI I = −
∮
Sc

pmncda +
∮
Sc

(
−1

2
µ0H2I + BH

)
·nc da (12)

The magnetic part of the second-order buoyancy force, or MLF (Flm), can be calculated
by integrating solely over the container’s surface Sc. The numerical evaluation of the
second-order buoyancy force in this article, as well as in the research studies conducted
in [15], is realized based on the statement given in Equation (12). The conditions are given
illustratively in Figure 3; the pm acts in favor of the PM’s stable position.

Figure 3. Visual representation of how magnetic fluid pressure contributes to the self-levitation
mechanism: (a) In this position, a magnetic field is much higher at the bottom of the container
than it is at the top of it, thus, the magnetic fluid pressure is also higher at the bottom, which
results in PM upward movement; (b) In the stable levitation position, or in equilibrium height, the
magnetic fluid pressure is balanced within the container; (c) If the PM tends to move up somehow,
the pressure on the top increases due to the higher magnetic field, and the PM starts to move toward
the stable position.
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Maybe it is not evident at first, but Equation (12) gives a very useful mathematical
tool. Namely, while all the physical significance of the interest, i.e., the force FI I , is reflected
through the integration over the surface bounding the MF, despite changes inside the
boundary. The following illustrative examples shown in Figure 4 should give a transparent
understanding of Equation (12). In the first case, labeled by (a) in the Figure, where only a
PM is floating inside the liquid, force FI I is obtained by integrating along the four Sections
1–2, 2–3, 3–4, and 4–1. Now, suppose some other object besides PM floats within the MF,
as shown in Figure 4b. While the surface of the container is not affected by the additional
object, the calculation of force FI I follows the same procedure. If the setup is given as
in Figure 4c, where a non-magnetic rod is attached to the PM and passes through the
container, then the integration over the rod’s surface Sr in the container’s hole should be
included in the force FI I calculation, due to the difference in the magnetic properties of the
rod and the MF. The integration pertaining to the MF is performed through the paths 1–5,
6–2, 2–3, 3–4 and 4–1, while Sections 5 and 6 passes through the non-magnetic rod.

Figure 4. Magnetic levitation force calculated through the integration over the container surface:
(a,b) The integration path is not affected by the object’s non-intersecting the surface over which it is
integrated; (c) The integration path involving materials with different magnetic properties.

A peculiarly interesting case relevant for an experimental verification or a practical
application is the one marked by (c) in Figure 4. Here, the non-magnetic rod is attached to
the PM at one side, while the other—upper—side goes to a dynamometer not shown in the
figure. Because such an arrangement was used in the experiments conducted in [15], the
same composition comes with the simulation model presented by the current study.

2.3. Energy Method

It was mentioned in the previous section that the static equilibrium is met when the
energy of a physical system under consideration reaches its minimum. In classical physics,
this is known as the principle of minimum energy. The principle has its background
in thermodynamics, and could be applied prosperously to a wide range of problems
involving magnetic fluids, such as magnetocaloric energy conversion and magnetic liquid
free surface instabilities [22,23]. Not wishing to enter further into the topic, for the case
study presented here, it suffices to consider the total energy as a sum of the gravitational
and magnetostatic energy

Wtot = Wg + Wm , (13)

where Wtot is the total energy; Wg and Wm are gravitational potential energy and magneto-
static energy, respectively.
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Here, the gravitational energy Wg is given as a function of a PM levitation height, as
shown in Figure 5.

Wg = g
(

ρp − ρm f

)
Vpz0 = wgVp (14)

Figure 5. Schematic representation of a magnetic field caused by the PM levitating in the MF.

A specific gravitational energy, or gravitational energy per unit of volume, can be
stated as

wg = g
(

ρp − ρm f

)
z0 = g∆ρz0 . (15)

Here, ρp and ρm f are the density of the PM and MF, respectively; ∆ρ is the difference
in material densities; Vp is the PM volume; z0 is the levitation height (see Figure 5); wg is
the density of gravitational energy; and g is gravity acceleration. For simplicity, the MF is
assumed as a homogeneous media, thus the parameters ρp and ρm f could be considered as
constants. In reality, the concentration of magnetic nanoparticles is denser in the vicinity of
the PM, while the magnetic nanoparticles are attracted toward the region with the higher
magnetic field [11].

While the levitation height z0 of the PM is subjected to change, the magnetic field
will not be distributed symmetrically with respect to the z-axis, and, consequently, the
magnetostatic energy density will vary with the position of the PM. To take into account
the spatial variation of the energy as well as the MF nonlinear magnetization characteristic,
the magnetostatic energy Wm is written as a function of the density of magnetostatic energy
wm(x, y, z) as follows,

Wm =
∫

Vm f +Vp

wm(x, y, z)dV =
∫

Vm f +Vp

 B′′∫
B′

H(B)dB

dV , (16)

wm(x, y, z) =
B′′∫

B′

H(B)dB . (17)

In the latter equation, B′ and B′′ stand for the lower and upper integration limits, and
represent the initial and the final fields established in the magnetizing process, respectively.
The expression for the magnetostatic energy density given with Equation (17) holds in gen-
eral for both the linear and nonlinear relations between quantities B(x, y, z) and H(x, y, z).
With the linear magnetic conditions, this expression becomes wm(x, y, z) = BH/2.
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The main idea is to find the PM levitation height z0 at which the total energy an-
nounced by Equation (13) is minimal. The aforementioned task is not achieved easily
without computer-aided numerical methods; after all, knowing the magnetic field distri-
bution in the space is essential to the problem. However, still, with some simplifications
applied to the model, the problem can be handled analytically to some extent. The follow-
ing consideration of the equilibrium state of the PM immersed in an MF is addressed by
qualitative rather than quantitative analysis.

Suppose the arrangement as shown in Figure 6, which is unbounded in both x and
y directions. The MF with constant permeability µ occupies the space from the reference
level at z = 0 to the height of the container at z = L. The space surrounding the MF is
free space or air with the permeability µ0. Now, imagine having such a PM which has
an infinitesimally small thickness and is extended extensively over the x− y plane at the
height z = z0 within the MF. As indicated in Figure 6, the computational domain is divided
into four sections, 1 to 4. Section 1 corresponds to the region with the MF above the PM,
Section 3 announces the free space above the PM, and a similar indication is carried out
for the regions below the PM, where Sections 2 and 4 pertain to the MF and free space
region below the PM, respectively. The magnetic field intensity and magnetic flux density
at the PM’s surface are Hp and Bp, respectively, which are specified by the PM’s properties.
Assuming the edges of the PM are distant from the segment of interest, then a z-component
of a magnetic field will dominate near that fraction of the PM. To the first approximation,
an exponential decrease in the magnetic field can be assumed with respect to the vertical
distance from the piece of the PM in question. The rate of change in the field is determined
by another PM’s constant, α. Here, the levitation height of the PM is indicated with z0, and
is taken as a parameter.

H(z) ≈
Bp

µ
e−α(z−z0) (18)

Figure 6. Simplified analytical model: (a) The MF is extended to infinity with respect to the x and
y directions, and the PM is presented as an unbounded infinitesimal thin layer; (b) Magnetic field
intensity decreases exponentially with the distance from the magnet, and has discontinuity when
facing material with different permeability; (c) Magnetic flux density decreases exponentially and
continuously with the distance from the magnet.
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The relation between B and H in the matter can be written in a particularly useful
form when the medium has a constant permeability

B(z) = µH(z) . (19)

According to Figure 6, the magnetic field intensity in the MF’s region above the PM in
region 1, H1, is stated with Equation (20).

H1(z) =
Bp

µ
e−α(z−z0) (20)

Applying Equation (19) to Equation (20) gives a magnetic flux density in region 1

B1(z) = µH1(z) = Bpe−α(z−z0) . (21)

At this point, it is appreciated to assert a total differential of B1(z) with respect to z,
which appears in the expression for the density of magnetostatic energy in Equation (17)

dB1 = −αBpe−α(z−z0)dz (22)

wm1(z) =
Bp∫
Ba

H1(z)dB1 = −
z0∫
L

α
B2

p
µ e−2α(z−z0)dz

=
B2

p
2µ

(
1− e−2α(L−z0)

)
,

(23)

where Ba corresponds to the magnetic flux density at the MF, i.e., the free space interface
where z = L. Similarly, Bp corresponds to the magnetic flux density at the PM’s surface
z = z0. wm1 is the density of magnetostatic energy in region 1.

Similar expressions can be obtained for region 2 as follows:

H2(z) =
Bp

µ
e−α(z0−z) , (24)

B2(z) = µH2(z) = Bpe−α(z0−z) , (25)

dB2 = αBpe−α(z0−z)dz , (26)

wm2(z) =
Bp∫
Bb

H2(z)dB2 =
z0∫
0

α
B2

p
µ e−2α(z0−z)dz

=
B2

p
2µ

(
1− e−2αz0

)
.

(27)

Here, Bb corresponds to the magnetic flux density at the MF, i.e, the free space interface
where z = 0. Bp corresponds to the magnetic flux density at the PM’s surface z = z0. wm2(z)
is the density of magnetostatic energy in region 2.

At the boundary between the MF and the free space (region 1 and region 3), the
magnetic flux density remains unchanged, i.e., B3(z) = B1(z),

B3(z) = µ0H3(z) = µH1(z)= Bpe−α(z−z0) . (28)

Hence, the magnetic field intensity in the free space above the PM is described with
the following expressions:

H3(z) =
µ

µ0
H1(z) =

Bp

µ0
e−α(z−z0) , (29)

dB3 = −αBpe−α(z−z0)dz , (30)
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wm3(z) =
Ba∫
0

H3(z)dB3 = −
L∫

∞
α

B2
p

µ0
e−2α(z−z0)dz

=
B2

p
2µ0

(
e−2α(L−z0)

)
,

(31)

where wm3(z) stands for the magnetostatic energy density in region 3.
The foregoing prosecution can be adapted similarly to the magnetic conditions in

region 4.
B4(z) = µ0H4(z) = µH2(z)= Bpe−α(z0−z) (32)

H4(z) =
µ

µ0
H2(z) =

µ

µ0
Hpe−α(z0−z) (33)

dB4 = αBpe−α(z0−z)dz (34)

wm4(z) =
Bb∫
0

H2(z)dB2 =
0∫
−∞

α
B2

p
µ0

e−2α(z0−z)dz

=
B2

p
2µ0

(
e−2αz0

) (35)

Here, wm4(z) corresponds to the density of the magnetostatic energy in region 4.
Employment of the presented approach to the problem addressed in this article is

indicated in Figure 7. Here, the column consisting of all four regions is virtually isolated
from the rest of the space, and considered as an independent problem. The diameter
D of the column equals the one of the PM, and also the other spatial extents should be
selected so, to reflect the real situation. According to Figure 7, the magnetostatic energy
accumulated in the column is the sum of the regions’ energies,

Wm = wm1S0(L− z0) + wm2S0z0 + wm3S0(a− L) + wm4S0(−c) , (36)

where S0 is an area of the PM’s base; a is an upper limit in region 1; c is a lower limit in
region 4; L is the height of the container; and z0 is the levitation height. For convenience,
the dependence of wm on the vertical height z is not written explicitly in Equation (36).

Figure 7. A column of the simplified analytical model is considered in a qualitative analysis of a
stable levitation height.
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While the PM is abstracted to have the mass mp but no volume, the gravitational
potential energy can then be written as

Wg = mpgz0 . (37)

The total energy is then, by Equation (13), the sum of magnetostatic and gravitational
potential energy. The graphical representation of energies with respect to the levitation
height z0 is plotted in Figure 8. From the shape of the energy curves, the following
deduction can be made. The minimum of the magnetostatic energy corresponds to the
state where the second-order buoyancy force is equal to zero, which is in the center of the
magnetic fluid region. Besides, the influence of the magnet’s weight on the equilibrium
height is evident in Figure 8. The stable height, or minimum in total energy, is moved
toward lower values, which is somehow the expected effect. However, the aforementioned
conclusion might be obtained intuitively as well, but here the effort was made for the
reader’s convenience.

Figure 8. Results of a qualitative analysis based on the energy method. A stable levitation height is
attained at the minimum of the total energy. The influence of the levitating object’s weight acts in the
way to move the equilibrium height towards the lower value. Data used in the analysis are given as
follows Bp = 1.21 T, D = 10 mm, S0 = 100 mm2, L = 40 mm, α = 64 m−1, µ = 1.17 µ0, a = 200 mm,
and c = −160 mm. Each of the curves are normalized by the maximum value of the total energy.

All the implementations of this section were referring to the basic model given in
Figure 2, and could be extended to a model comprised of multiple bodies; in other words,
the expression of total energy given by Equation (13) should be understood as the sum of
all the gravitational potential and magnetostatic energies within the observed volume.

2.4. Simulation Setup

Based on the presented theory, the actual calculations were executed by the FEM-
based computer program FEMM 4.2. Among others, the used FEM software is capable of
handling two dimensional (2D) axisymmetric magnetostatic problems, and is a reasonable
choice for launching such numerical effort. The dimensions and FEMM model of the
problem in preprocessor mode are shown in Figure 9. The right side of the Figure shows
the regions with finer mesh, and those regions pertain to the integration paths used with the
SIM. The mesh density is chosen automatically by the FEMM 4.2 code, and it is constrained
by the maximal mesh size defined by the user. Not shown in Figure 9, the computational
domain is enclosed with a 100-mm radius of free space.
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Figure 9. (a) Dimensions of the model; (b) FEMM 2D axisymmetric model in preprocessor mode,
where mesh details are shown. Denser mesh is prescribed to the integration paths used with the SIM.

The properties of the materials used with the calculation are listed in Table 1. The
relative permeability µr is a unitless number revealing how many times a magnetic material
is more susceptible to magnetization of a free space, defined as µr = µ/µ0. The initial
susceptibility is defined as the ratio M/H at a low magnetic field intensity. The PM consists
of a strong rare earth material that has quite linear B− H characteristics, with its slope very
close to µ0, i.e., the relative permeability of such a magnet is very close to the unit. Strictly
speaking, the actual value moves around 1.05, but here the idealized case was acquired
to fit with the one stated in [15]. In particular, the values of the remanence Br and the
coercivity Hc of the magnet are given in Table 1.

Table 1. Values of the parameters used with the model 1.

Permanent Magnet
(PM)

Magnetic Fluid
(MF) Rod Free Space

material NdFeB (N38) - copper Air
ρ [kgm−3] 7450 1377.6 8900 1.2

µr 1 1.31 1 1
Br [T] 1.24 - - -

Hc [kAm−1] 986.7 - - -
χi 0 0.31 0 0

Max. mesh size in material [mm] 0.25 0.25 0.5 10
Max. mesh size at boundary [mm] 0.05 0.05 - -

1 The values are selected to fit well with the ones in ref. [15].

3. Results and Discussion

Based on the presented numerical models introduced in the previous section, the
simulations were performed for each of the proposed concepts. The concept employing the
SIM method appears in two stages; firstly, the second-order buoyancy FI I is calculated with
respect to the levitation height z0, and, thereafter, the equilibrium height is determined
as a point where the magnetic levitation force compensates the gravitational force of the
floating PM. The alternative approach introduced here as a novelty used the principle of
minimum energy as a criterion of stable levitation height.
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3.1. Calculations Based on the Surface Integral Method (SIM)

The results of the first approach, in which the magnetic levitation force is calculated by
applying the SIM, are presented in Figure 10. The measurements refer to the ones given in
ref. [15] (p. 327—Figure 5b) for the case where the diameter of the rod is 2 mm. In the figure,
the calculated values of FI I were evaluated at the same points as the measured values
exposed in the aforementioned work of Yu et al. [15]. Numerical values and error analysis
can be found in Table 2. Regardless of the deviations between measured and calculated
values, the SIM can be considered as a suitable method when a numerical determination of
the magnetic levitation force is in focus.

However, suppose that the influence of the rod attached to the top of the PM can
somehow be eliminated from the measurements while it is a part of the measurement
device which measures the force (dynamometer). Then, by knowing the second-order
buoyancy force FI I , the equilibrium height or stabile levitation state of a permanent magnet
is determined by finding an intersection point between the gravitational force of the PM in
the MF, Fg, and FI I . With respect to the calculated values, the equilibrium height of the PM
for the case study corresponds to z0 = 7.64 mm. The intersection is drawn in Figure 10 (the
intersection between Fg and FI I). Gravitational force is calculated as the weight of the PM
subtracted by the weight of the displaced fluid for a given example Fg ≈ 0.094 N.

Figure 10. Calculated and measured values of the second order buoyancy force and determination
of the equilibrium state at the intersection point between Fg and FI I . The intersection is established
with respect to the calculated values, and its value is z0 = 7.64 mm. Measured data were acquired
from [15] (p. 327—Figure 5b) for the case where the diameter of the rod is 2 mm.
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Table 2. Numerical values pertain to calculated and measured values of magnetic levitation force.
The error analysis is given for the difference between the calculated and measured quantities.

Levitation Height 1

z0 [mm]

Magnetic Levitation
Force—Calculated

FII [N]

Magnetic Levitation
Force—Measured 1

FII [N]

Error
∆ε [%]

1.40 1.84 1.80 2.2

1.73 1.51 1.41 6.6

2.03 1.27 1.12 11.8

2.37 1.07 0.91 15.0

2.71 0.88 0.76 13.6

3.23 0.69 0.60 13.0

3.71 0.55 0.49 10.9

4.38 0.39 0.37 5.1

5.00 0.30 0.29 3.3

5.41 0.25 0.25 0.0

5.94 0.20 0.20 0.0

6.47 0.16 0.16 0.0

6.97 0.13 0.12 7.7000

7.92 0.08 0.08 0.0

8.94 0.04 0.04 0.0

9.98 0.01 0.00 -

11.23 −0.04 −0.05 −25.0

11.74 −0.05 −0.04 20.0

12.16 −0.07 −0.07 0.00

12.76 −0.10 −0.13 −30.0

13.37 −0.13 −0.14 −7.7

13.95 −0.17 −0.15 11.8

14.35 −0.20 −0.19 5.0

14.75 −0.24 −0.20 16.7

15.15 −0.29 −0.24 17.2

15.60 −0.35 −0.27 22.9

16.02 −0.42 −0.30 28.6

16.39 −0.51 −0.35 31.4

16.85 −0.62 −0.44 29.0

17.27 −0.78 −0.53 32.1

17.53 −0.88 −0.62 29.5

17.75 −1.01 −0.72 28.7

17.95 −1.14 −0.81 28.9

18.15 −1.26 −0.92 27.0

18.39 −1.44 −1.04 27.8
1 Data were acquired from ref. [15] (p. 327—Figure 5b) for the case where the diameter of the rod is 2 mm.

3.2. Calculations Based on the Energy Method (EM)

Obeying the minimum energy principle, the equilibrium height of the levitation object
can be found at the point where the total energy is minimal. Based on the theoretical



Mathematics 2021, 9, 2507 15 of 25

conclusions brought in Section 2.1, the PM is expected to levitate in the lower half of the
container. Magnetostatic energy calculations were executed in the FEM-based software
FEMM 4.2. The properties of the model used with the calculations are given in Figure 9a
and Table 1. The computational strategy for the problem was selected as follows. The total
energy was evaluated at evenly spaced distances from the container’s bottom in steps of
0.1 mm. The attained discrete energy values were thereafter approximated by the sixth
degree polynomial curve. The equilibrium height, z0, was determined at the minimal
energy value on the curve.

The results obtained by numerical analysis, which are shown in Figure 11, fit well
with the theory at this point. The figure is drawn with two energy axes, due to the large
difference between the magnetostatic Wm and gravitational potential energy Wg; the left
axis refers to the magnetostatic energy (in Joules), while the right applies to the gravitational
potential energy (in milli-Joules).

Figure 11. Results obtained by the energy method, where the equilibrium height appears at a
minimum of total energy with the value of z0 = 7.58 mm.

A careful analysis of the energy curve Wtot shows that the levitation height coincides
with the minimum of the total energy at z0 = 7.58 mm. At first look, the result is in good
agreement with the one attained by the SIM, which was verified experimentally. However,
the results presented so far are based on a single case, and no general conclusion can be
given on the subject. For that, a comprehensive parametric analysis is brought in the section
that follows.

3.3. Parametric Analysis

To verify the proposed EM method, an additional parametric analysis of magnetic
levitation was performed. The following quantities were selected as parameters, and varied
with respect to the reference case.

• the radius of the rod (r)
• relative permeability of the MF (µr)
• the remanent flux density of the PM (Br)
• the ratio between the PM’s diameter and height at constant volume (d0/h0)
• the ratio between the container’s diameter and height at constant volume (D/ L)

Five cases, marked A, B, C, D, and E, were included in the analysis; a single parameter
was varied in each of the cases. The reference case was the one with the geometry intro-
duced in Figure 9a and with the properties stated in Table 1 (i.e., r = 2 mm, Br = 1.24 T,
µr = 1.31, d0 = 10 mm, h0 = 20 mm, D = 20 mm, and L = 40 mm). The container’s vol-
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ume and the PM’s volume were taken as constants, and did not change with the variation
of geometry. Due to the large difference in energy values, each of the energy curves in
the figures were normalized with its maximum value and were stated on a per unit (p.u)
scale. A minimum value on the energy curve is indicated with a dot. The error analysis
was attained with help of the following formula ∆ε(%) =

z0,SIM−z0,EM
z0,SIM

·100. Here, ∆ε is the
relative error expressed in %, z0,SIM is the equilibrium levitation height computed with
SIM, and z0,EM is the equilibrium levitation height computed with EM.

3.3.1. Case A (Variation of the Rod’s Radius—r)

The impact of the rod’s radius (r) on the PM’s equilibrium height is presented in this
sub-section. The parameter was varied from 1 mm to 3mm in steps of 1 mm. The results
were obtained from Figures 12–15 and collected in Table 3. In this case, both methods can
be compared with the experimental results deduced from [15]. Other relevant parameters
to the analysis are given as Br = 1.24 T, µr = 1.31, d0 = 10 mm, h0 = 20 mm, D = 20 mm,
and L = 40 mm. The mesh parameters were the same as the ones stated in Table 1, and the
mesh density was selected automatically by FEMM 4.2.

Table 3. The impact of the rod’s radius (r) on the PM’s equilibrium height.

Method r = 1 mm
z0 [mm]

r = 2 mm
z0 [mm]

r = 3 mm
z0 [mm]

SIM 7.59 7.64 7.69
EM 7.53 7.58 7.63

Experiment 1 8.20 7.63 8.09
Error ∆ ε 0.8% 0.8% 0.8%

1 Data were acquired from ref. [15].

Figure 12. The measured and calculated curves of magnetic levitation force FI I for the case r = 1 mm.
The force was calculated by the SIM. An intersection between the gravitational Fg and mag-netic
levitation force FI I is shown in the magnified window. Measured data were acquired from ref. [15].
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Figure 13. The measured and calculated curves of magnetic levitation force FI I for the case r = 2 mm.
The force was calculated by the SIM. An intersection between the gravitational Fg and mag-netic
levitation force FI I is shown in the magnified window. Measured data were acquired from ref. [15].

Figure 14. The measured and calculated curves of magnetic levitation force FI I for the case r = 3 mm.
The force was calculated by the SIM. An intersection between the gravitational Fg and mag-netic
levitation force FI I is shown in the magnified window. Measured data were acquired from ref. [15].
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Figure 15. The PM’s equilibrium height calculated by EM. The results are shown for three different
values of the rod’s radius, i.e., r = 1 mm, r = 2 mm and r = 3 mm, respectively. The minimum value
on the individual curve is indicated with the Asterisk (*). Each of the curves was nor-malized by its
maximum value.

3.3.2. Case B (Variation of the MF’s Relative Permeability—µr)

This subsection exposed the impact of the MF’s relative permeability (µr) on the PM’s
equilibrium height z0. Three values of µr were considered in the calculations: µr = 1.16,
µr = 1.31, and µr = 1.46, respectively. The results are given in Table 4. The solutions
are presented graphically in Figures 16 and 17. Other relevant parameters used with the
analysis were r = 2 mm, Br = 1.24 T, d0 = 10 mm, h0 = 20 mm, D = 20 mm, and
L = 40 mm. The mesh parameters were the same as the ones stated in Table 1.

Figure 16. The calculated curves of magnetic levitation force FI I for three different values of MF’s
permeability, i.e., µr = 1.16, µr = 1.31, and µr = 1.46, respectively. The force FI I was calculated
by the SIM. The stable levitation height z0 appears where the individual curve FI I intersects the
gravitational force line Fg.
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Figure 17. The PM’s equilibrium height calculated by EM. The results are given for three different
values of the MF’s permeability, i.e., µr = 1.16, µr = 1.31, and µr = 1.46, respectively. The mini-mum
value on the individual curve is indicated with the Asterisk (*). Each of the curves was normalized
by its maximum value.

Table 4. The impact of the MF’s relative permeability (µr) on the PM’s equilibrium height.

Method µr = 1.16
z0 [mm]

µr = 1.31
z0 [mm]

µr = 1.46
z0 [mm]

SIM 6.56 7.64 8.13
EM 6.32 7.58 8.08

Error ∆ε 3.6% 0.8% 0.6%

3.3.3. Case C (Variation of the PM’s Remanence flux Density—Br)

Variation of the PM’s remanent flux density (Br) and its influence on the PM’s equilib-
rium height z0 is studied here. The values of Br were set as follows: Br = 0.7 T, Br = 1 T, and
Br = 1.24 T. Other relevant parameters used with the analysis were r = 2 mm, µr = 1.31,
d0 = 10 mm, h0 = 20 mm, D = 20 mm, and L = 40 mm. The mesh parameters were the
same as in the ones stated in Table 1. The results of the analysis are collected in Table 5 and
presented in Figures 18 and 19.

Table 5. The influence of the MF’s remanence flux density (Br) on the PM’s equilibrium height.

Method Br = 0.7 T
z0 [mm]

Br = 1.0 T
z0 [mm]

Br = 1.24 T
z0 [mm]

SIM 5.08 6.73 7.64
EM 4.82 6.57 7.58

∆ε [%] 5.1% 2.4% 0.8%
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Figure 18. The calculated curves of magnetic levitation force FI I for three different values of the PM’s
remanence, i.e., Br = 0.7 T, Br = 1.0 T, and Br = 1.24 T, respectively. The force FI I was calculated
by the SIM. The stable levitation height z0 appears where the individual curve FI I in-tersects the
gravitational force line Fg.

Figure 19. The PM’s equilibrium height calculated by EM. The results are shown for three different
values of the PM’s remanence, i.e., Br = 0.7 T, Br = 1.0 T, and Br = 1.24 T, respectively. The minimum
value on the individual curve is indicated with the Asterisk (*). Each of the curves were normalized
by its maximum value.

3.3.4. Case D (Variation of the PM’s Diameter d0 at Constant PM Volume)

The results presented in Table 6 and Figures 20 and 21 demonstrate the influence of
the PM’s geometry proportions on its equilibrium height z0. The analysis was performed
with three different values of d0: 9 mm, 10 mm, and 11 mm. The geometry of the PM was
conditioned with the assumption of constant PM volume. Other relevant parameters used
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with the analysis were r = 2 mm, µr = 1.31, Br = 1.24 T, D = 20 mm, and L = 40 mm. The
mesh parameters were the same as those stated in Table 1.

Figure 20. The calculated curves of magnetic levitation force FI I for three different values of the PM’s
diameter, i.e., d0 = 9 mm, d0 = 10 mm, and d0 = 11 mm, respectively. The force FI I was calculated
by the SIM. The stable levitation height z0 appears where the individual curve FI I in-tersects the
gravitational force line Fg. In calculations, the PM’s volume remained unchanged.

Figure 21. The PM’s equilibrium height calculated by EM. The results are shown for three different
values of the PM’s diameter, i.e., d0 = 9 mm, d0 = 10 mm, and d0 = 11 mm, respectively. The
minimum value on the individual curve is indicated with the Asterisk (*). Each of the curves was
normalized by its maximum value. In the calculations, the PM’s volume VPM remained un-changed.



Mathematics 2021, 9, 2507 22 of 25

Table 6. The impact of the PM’s geometry proportion (d0/h0) on its equilibrium height.

Method
d0 = 9 mm

h0 = 24.69 mm
z0 [mm]

d0 = 10 mm
h0 = 20 mm

z0 [mm]

d0 = 11 mm
h0 = 16.53 mm

z0 [mm]

SIM 6.22 7.64 8.66
EM 6.98 7.58 8.53

∆ε [%] −12.2% 0.8% 1.5%

3.3.5. Case E (Variation of the Container’s Diameter D at Constant Container’s Volume)

The geometry of the container was varied similarly as in the previous case (case
D). The container’s diameter (D) was varied at a constant container volume. The results
presented in Table 7 and Figures 22 and 23 show how the container’s proportions impact
the PM’s equilibrium height z0. Other relevant parameters used with the analysis were
r = 2 mm, µr = 1.31, Br = 1.24 T, d0 = 10 mm, and h0 = 20 mm. The mesh parameters
were the same as those stated in Table 1.

Table 7. The impact of the container’s geometry proportion (D/L) on the PM’s equilibrium height.

Method
D = 18 mm

L = 49.38 mm
z0 [mm]

D = 20 mm
L = 40 mm

z0 [mm]

D = 22 mm
L = 33.06 mm

z0 [mm]

SIM 8.15 7.64 5.93
EM 8.13 7.58 5.90

∆ε [%] 0.2% 0.8% 0.5%

Figure 22. The calculated curves of magnetic levitation force FI I for three different values of container
diameter, i.e., D = 18 mm, D = 20 mm, and D = 22 mm, respectively. The force FI I was calculated
by the SIM. The stable levitation height z0 appears where the individual curve FI I in-tersects the
gravitational force line Fg. In the calculations the container’s volume re-mained unchanged.
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Figure 23. The PM’s equilibrium height calculated by EM. The results are shown for three different
values of the container’s diameter, i.e., D = 18 mm, D = 20 mm, and D = 22 mm, respectively. The
minimum value on the individual curve is indicated with the Asterisk (*). Each of the curves was
normalized by its maximum value. In calculations the container’s volume Vc remained unchanged.

4. Conclusions

In the current study, the numerical investigation of the equilibrium height of a PM
immersed in MF was carried out in two different concepts: the surface integral method
(SIM) and the employment of the energy method (EM). The latter approach brings novelty
to the field. To verify the proposed method, a comprehensive parametric analysis was
carried out on the subject. The analysis encompassed five cases, where the properties of
both MF and the PM were varied. For each of the five cases, the PM’s equilibrium height
was calculated with both methods, i.e., SIM and EM. In addition to the numerical results
and analysis, the reader is also provided with the essential theoretical background on
which the energy concept is based.

The following can be summarized, focusing on the EM, presented as an alternative
and novel method to calculate the equilibrium levitation height of a PM drowned in
MF. In both concepts based on EM and SIM, magnetic field distributions in space are
essential data which are nowadays, almost without exception, obtained numerically, most
commonly with FEM. From that point of view, both methods are practically equivalent in
the computational time consumption. The main advantage of the EM over the SIM is that
the adoption of the Maxwell stress tensor surface integral can be avoided. As mentioned
in the Introduction, a numerical problem arises when evaluating this integral on a finite
element mesh made of first-order triangles [20].

The following remarks can be stated based on the parametric analysis.

• By increasing the radius of the measuring rod (r), the PM’s levitation height will
tend to reach a higher level. The reason is evident; while the rod usually consists of
non-magnetic material, the fluid-magnetic pressure at the PM’s top face is going to
produce a lower force than at the PM’s bottom face. The difference in this pressure
acts upward, hence, the magnet will levitate at a higher level. For this case, the error
between SIM and EM was less than 1%.

• The magnetic properties of the MF are reflected in the value of relative permeabil-
ity µr which is, here, assumed as a constant. Truly speaking, this is only a rough
approximation. Namely, in real magnetic fluids, the magnetizing characteristic are
non-linear, and the concentration of the particles also decreases with the distance from
the magnet. However, even with this simplification, the conclusion can be declared
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that the PM immersed in a magnetic fluid with lower permeability will experience a
weaker magnetic buoyancy force. Consequently, the levitation height will be lower to
some extent.

• The same can be derived by considering the problem in the light of the energy. In
highly permeable MF, the PM would rather be centered in the fluid, because its
magnetostatic energy is minimal there. By decreasing the MF’s permeability the
magnetostatic energy increases and its variation with respect to the levitation height
becomes smaller, thus, the influence of the gravitational energy comes to the fore,
and moves the minimum of the total energy curve towards a lower value. The
results’ comparison obtained by the SIM and EM for the case shows that the error
between the methods is less than 4%. The results fit better at higher values of the
MF’s permeabilities.

• A remanent magnetic flux density Br is a property of a PM, and from the presented
results, it is evident that higher Br leads to a higher levitation height. The remanence
Br is related to the origin of the magnetic force in the MF, and, therefore, it is reasonable
to expect such an effect. Again, a good agreement was achieved between the methods.
The maximum error value was about 5%.

• Variation in the PM’s geometry shows that the levitation height is proportional to
the PM’s diameter defining the top and the bottom surface area. The theoretical
explanation is straightforward. The magnetic levitation force appears mainly as a
consequence of a fluid-magnetic pressure acting on those surfaces. An increase in the
surface area will result in a rise in the magnetic levitation force. The numerical results
attained by the SIM and EM showed the same tendency, with the maximum error
of 12.2%.

• Change in the container’s geometry acts oppositely to the change in the PM’s geometry
as discussed previously. Namely, in this case, the magnetic force acting on the PM
reduces proportionally to the ratio of the diameters of the PM and container. The error
in the analysis between the methods was less than 1%.

Regarding the presented numerical results, both methods, the SIM and EM, predicted
similar results. The maximum deviation between the results obtained by the methods
was 12.2%, but for most of the cases, the expected error should not exceed a few percent.
However, the SIM for Case A was verified experimentally, where the maximum error in
the lower half of the container appeared to be 15% [15]. The authors of the text believe
that the error can be reduced significantly by an improved MF model that apprehends the
magnetic nonlinearity and inhomogeneity of the particle distribution. The researchers in
the field may find this a topic to focus on.

In the end, a final remark on the subject can be made as follows: when the numerical
evaluation of the PM levitation height is in question, satisfactory results can be attained by
the proposed EM approach.
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