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Abstract: Numerous key components of tool machines possess critical smaller-the-better-type quality
characteristics. Under the assumption of normality, a one-to-one mathematical relationship exists
between the process quality index and the process yield. Therefore, this paper utilized the index
to produce a quality fuzzy evaluation model aimed at the small-the-better-type quality character-
istics and adopted the model as a decision-making basis for improvement. First, we derived the
100(1 − α)% confidence region of the process mean and process standard deviation. Next, we ob-
tained the 100(1 − α)% confidence interval of the quality index using the mathematical programming
method. Furthermore, a one-tailed fuzzy testing method based on this confidence interval was
proposed, aiming to assess the process quality. In addition, enterprises’ pursuit of rapid response
often results in small sample sizes. Since the evaluation model is built on the basis of the confidence
interval, not only can it diminish the risk of wrong judgment due to sampling errors, but it also can
enhance the accuracy of evaluations for small sample sizes.

Keywords: fuzzy evaluation model; smaller-the-better; membership function; quality characteristic;
confidence interval

1. Introduction

According to Yu et al. [1], many key components of tool machines contain critical
smaller-the-better-type (STB-type) quality characteristics. Several STB-type quality char-
acteristics, such as roundness, concentricity, and verticality existing in gears, bearings,
and axle centers, are commonly seen. In addition to important mechanical components,
the radiation dose of computers, mobile phones, and home appliances; the regulations of
various pollutant emission amounts; and the time interval of customers’ arrival at a store all
belong to the STB-type characteristics [1–3]. Chen et al. [4] combined the six-sigma quality
level with the concept of allowing the process mean to deviate by 1.5 standard deviations
and proposed a STB-type six-sigma quality-level index. Since the proposed angle is based
on the nominal-the-best-type quality characteristic, the measured value may be larger or
smaller than the target value, while the measured value of the STB-type characteristic can
only be larger than the target value in practice. Myriads of studies have emphasized that if
the target value of the STB-type quality characteristics is T = 0, process mean µ will only
be larger than target value T but cannot be smaller than target value T; for example, the
values of roundness and verticality will not be smaller than zero. In practice, considering
limitations of costs and processing technology, the measured value of the product is usually
distant from target value T and very close to USL, that is, process mean µ is very close to
USL and process standard deviation σ is relatively small [2]. Therefore, Chang et al. [2]
suggested a process quality index, specificially QIS, for the STB-type quality characteristics,
as follows:

QIS =
USL− µ

σ
, (1)
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where USL is the upper specification limit, µ is process mean, and σ is process stan-
dard deviation.

Furthermore, under the assumption of normality, a one-to-one mathematical relation-
ship exists between process quality index QIS and process yield Yield%, as shown below:

Yield% = p{X ≤ USL} = p
{

Z ≤ USL−µ
σ

}
=
∫ QIS
−∞

1√
2πσ

exp
(
− z2

2

)
dz = Φ(QIS),

(2)

where Z = (X− µ)/σ is regarded as a standard normal distribution while Φ(·) is the
cumulative function of the standard normal distribution. For instance, when QIS = 3.0, we
can guarantee the process yield: Yield% = Φ(3.0) = 99.865%.

Many studies have indicated that in order to enhance enterprises’ market compet-
itiveness and increase their own operational flexibility, the strategy of obtaining partial
components offered by suppliers has become a trend in their operating models. Neverthe-
less, these components’ quality will influence the final products’ quality [5,6]. For instance,
if the roundness or concentricity of the axle center is not good, it will cause vibrations of
the subsequent operations of related tools and products, which will not only affect the
quality of the final products but also reduce the lifetime of the products. Obviously, if the
components that companies outsource or purchase from suppliers are of excellent quality,
not only will it help improve the quality of the final products but it will also advance the
entire industry chain’s competitiveness [7].

According to many studies, with the popularity of the environment of the Inter-
net of Things (IoT) and the rapid development of big data analysis technology, enter-
prises’ pursuit of rapid responses will help the industry move towards the goal of smart
manufacturing [8,9]. The development of a faster and more accurate process capability
evaluation model has apparently become an important issue. Under this premise, the
sample size will not be too large [10,11]. The advantage of interval estimation is that it
can reduce the risk of misjudgment caused by sampling errors. However, in the case of a
small sample, the interval length will be too long, which will cause big errors in the process
quality evaluation.

The process quality index QIS can not only measure the process quality level but it also
has a one-to-one mathematical link with the process yield. This paper employs this index
as well as proposes a confidence interval-based quality fuzzy evaluation model aimed at
the STB-type quality characteristics, which will be used as a decision-making basis for
improvement. Since the evaluation model is based on the confidence interval, the risk of
misjudgment caused by sampling errors can be reduced. In addition, the fuzzy evaluation
method can solve many risk assessment issues of industrial processes [12]. Furthermore,
the model developed by this study not only has the advantages of the traditional fuzzy
evaluation but is also capable of integrating the accumulated professional experience of the
past production data [7,13], thus the accuracy of the evaluation can be maintained in the
case of a small sample size. As a result, it can meet the needs of enterprises to pursue rapid
response as well as can help the industry move towards the goal of smart manufacturing.

The rest of this paper is arranged as follows. Section 2 demonstrates the 100(1 − α)%
joint confidence region of the process mean and process standard deviation. Section 3
shows that the 100(1− α)% confidence interval of quality index QIS is obtained by means of
the mathematical programming method and a one-tailed confidence interval-based fuzzy
testing method is proposed to assess the process quality as well as determine whether the
process need improvement. Section 4 presents an application example demonstrating the
applicability of the proposed approach. Section 5 provides the conclusions and discussion.
Last but not least, Section 6 reviews the limitations. The flowchart of this model is shown
in Figure 1.
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Figure 1. Flowchart of fuzzy evaluation model.

2. Joint Confidence Region of (µ, σ)

Let (X1, . . . ,Xi, . . . ,Xn) be a random sample obtained from N
(
µ, σ2) with sample

size n, where N
(
µ, σ2) is a normal distribution with mean µ and variance σ2. Next, the

maximum likelihood estimators (MLE) of the process mean and process standard deviation
are expressed as follows:

X =
1
n

n

∑
i=1

Xi and S =

√
1
n

n

∑
i=1

(
Xi − X

)2.

Therefore, the estimator of process quality index QIS is represented as follows:

Q∗IS =
USL− X

S
. (3)

Obviously,
√

n
(
X− µ

)
/σ is distributed as N(0, 1) and nS2/σ2 is distributed as χ2

n−1,
where N(0, 1) standard normal distribution and χ2

n−1 chi-square are the distribution with
n−1 degree of freedom. Therefore,

p
{
−Z0.5−

√
1−α/2 ≤ N(0, 1) ≤ Z0.5−

√
1−α/2

}
=
√

1− α (4)

and

p
{

χ2
0.5−

√
1−α/2;n−1 ≤ χ2

n−1 ≤ χ2
0.5+

√
1−α/2;n−1

}
=
√

1− α, (5)

where ZZ0.5−
√

1−α/2
is the upper 0.5−

√
1− α/2 quintile of N(0, 1) and χ2

a;n−1 is the lower

a quintile of χ2
n−1, where a = 0.5 −

√
1− α/2 or 0.5 +

√
1− α/2. Since X and S2 are

mutually independent,
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1− α

= p
{
−Z0.5−

√
1−α/2 ≤ N(0, 1) ≤ Z0.5−

√
1−α/2, χ2

0.5−
√

1−α/2;n−1
≤ χ2

n−1 ≤ χ2
0.5+

√
1−α/2;n−1

}
= P

{
X− Z0.5−

√
1−α/2σ
√

n ≤ µ ≤ X +
Z0.5−

√
1−α/2σ
√

n , σL ≤ σ ≤ σU

}
,

(6)

where

σL =

√
n

χ2
0.5+

√
1−α/2;n−1

S and σU =

√
n

χ2
0.5−

√
1−α/2;n−1

S.

Let (x1, x2, · · · , xn) be the observed value of (X1, X2, · · · , Xn) and let both x and s be
the observed values of X and S, respectively, as follows:

x =
1
n

n

∑
i=1

xi and s =

√
1
n

n

∑
i=1

(xi − x)2.

Thus, the observed value of Q∗IS is

q∗IS =
USL− x

s
. (7)

The confidence region of (µ, σ) is illustrated as follows:

CR=
{
(µ, σ)|x−

(
Z0.5−

√
1−α/2

) σ√
n
≤ µ ≤ x +

(
Z0.5−

√
1−α/2

) σ√
n

, σl ≤ σ ≤ σu

}
, (8)

where

σl =

√
n

χ2
0.5+

√
1−α/2;n−1

s and σu =

√
n

χ2
0.5−

√
1−α/2;n−1

s.

Obviously, process quality index QIS is a function of (µ, σ). This paper used process
quality index QIS(µ, σ) as an objective function and the confidence region CR as a feasible
solution area. Additionally, the mathematical programming model for the lower confidence
limit is depicted as follows: 

LQIS = Min QIS(µ, σ)
subject to
(µ, σ) ∈ CR

. (9)

For any (µ, σ) ∈ CR and σ ≤ σu, QIS(µ, σ) ≥ QIS(µ, σu). Thus, the mathematical
programming model can be represented as

LQIS = Min (USL− µ)/σu
subject to
x− eU ≤ µ ≤ x + eU

, (10)

where LQIS is the lower confidence limit of index QIS and error item eU can be shown
as follows:

eU =
Z0.5−

√
1−α/2s√

χ2
0.5−

√
1−α/2;n−1

. (11)
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Based on Equation (10), for any µ ≤ x + eU , QIS(µ, σu) ≥ QIS(x + eU , σu). The lower
confidence limit can be defined as

eU =
Z0.5−

√
1−α/2s√

χ2
0.5−

√
1−α/2;n−1

σU =

√
ns√

χ2
0.5−

√
1−α/2;n−1

LQIS =
USL− (x + eU)

σu

= q∗IS

√
χ2

0.5−
√

1−α/2;n−1

n
−

Z0.5−
√

1−α/2√
n

. (12)

Similarly, the mathematical programming model for the upper confidence limit is
denoted as: 

UQIS = Max QIS(µ, σ)
subject to
(µ, σ) ∈ CR

(13)

For any (µ, σ) ∈ CR and σ ≥ σl , QIS(µ, σ) ≤ QIS(µ, σl). Thus, the mathematical
programming model can be rewritten as:

UQIS = Max (USL− µ)/σl
subject to
x− eL ≤ µ ≤ x + eL

, (14)

where UQIS is the upper confidence limit of index QIS and error item eL can be shown
as follows:

eL =
Z0.5−

√
1−α/2s√

χ2
0.5+

√
1−α/2;n−1

. (15)

Based on Equation (14), for any µ ≥ x− eL, QIS(µ, σl) ≤ QIS(x− eL, σl). The upper
confidence limit can be represented as:

UQIS =
USL− (x− eL)

σl
= q∗IS

√
χ2

0.5+
√

1−α/2;n−1

n
+

Z0.5−
√

1−α/2√
n

. (16)

3. Developing a Fuzzy Evaluation Model

The fuzzy evaluation method based on confidence intervals is an effectual scheme that
can help decide whether the process quality is acceptable or needs improvement [14–19]. If
the customer requires the value of the quality index QIS to be at least k (QIS ≥ k), the null
hypothesis H0:QIS ≥ k will be contradictory to the alternative hypothesis H1:QIS < k. As
described by Chen [10], the α−cuts of the triangular-shaped fuzzy number Q̃IS is expressed
as follows:

Q̃IS[α] =

{
[QIS1(α), QIS2(α)], f or 0.01 ≤ α ≤ 1
[QIS1(0.01), QIS2(0.01)], f or 0 ≤ α ≤ 0.01

, (17)

where QIS1(α) and QIS2(α) in Equation (17) can be denoted as

QIS1(α) = q∗IS

√
χ2

0.5−
√

1−α/2;n−1

n
−

Z0.5−
√

1−α/2√
n

, (18)

and

QIS2(α) = q∗IS

√
χ2

0.5+
√

1−α/2;n−1

n
+

Z0.5−
√

1−α/2√
n

. (19)
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Therefore, the triangular-shaped fuzzy number is Q̃IS = ∆(QL, QM, QR), where
QL = QIS1(0.01), QM = QIS1(1) = QIS2(1), and QR = QIS2(0.01) are expressed as follows:

QL = q∗IS

√
χ2

0.0025;n−1

n
− Z0.0025√

n
, (20)

QM = q∗IS

√
χ2

0.5;n−1

n
, (21)

and

QR = q∗IS

√
χ2

0.9975;n−1

n
+

Z0.0025√
n

. (22)

Therefore, the membership function of the fuzzy number Q̃IS is

η(x) =


0 i f x < QL
α1 i f QL ≤ x < QM
1 i f x = QM
α2 i f QM < x ≤ QR
0 i f x > QR

, (23)

where α1 and α2 are determined by

q∗IS

√
χ2

0.5−
√

1−α1/2;n−1

n
−

Z0.5−
√

1−α1/2√
n

= x, QL ≤ x < QM, (24)

and

q∗IS

√
χ2

0.5+
√

1−α2/2;n−1

n
+

Z0.5−
√

1−α2/2√
n

= x, QM < x ≤ QR. (25)

Before the fuzzy evaluation model was proposed, the statistical testing rules were first
reviewed. They are listed below:

(1) If UQIS ≥ k, do not reject H0 and assume that QIS ≥ k.
(2) If UQIS < k, reject H0 and assume that QIS < k.

Next, we constructed a fuzzy evaluation model based on the above-mentioned statistical
testing rules. Based on Yu et al. [1] and Huang et al. [20], let set AT be the area in the graph of
η(x) and let AR be the area in the graph of η(x) but to the right of vertical line x = k. Figure 2
presents a diagram of the membership functions of η(x) with vertical line x = k.

Figure 2. Membership functions of η(x) with x = k.
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Therefore, let

AT = { (x, α)|QIS1(α) ≤ x ≤ QIS2(α), 0 ≤ α ≤ 1} (26)

and
AR = { (x, α)|k ≤ x ≤ QIS2(α), 0 ≤ α ≤ a}, (27)

where QIS2(a) = k. Let dT = QR −QL and dR = QR − k. Then,

dR
dT

=
q∗IS

√
χ2

0.9975;n−1
n + Z0.0025√

n − k

q∗IS

(√
χ2

0.9975;n−1
n −

√
χ2

0.0025;n−1
n

)
+ 2 Z0.0025√

n

. (28)

Note that we let 0 < φ ≤ 0.5, where the value of φ can be determined based on the
past accumulated production data or expert experience [21–24].

Therefore, we let 0 < φ1 < φ2 < 0.5. As noted by Yu et al. [1] and Buckley [25], we
may obtain the following fuzzy testing rules:

(1) If dR/dT ≤ φ1, reject H0 and assume that QIS < k.
(2) If φ1 < dR/dT < φ2, do not make any decision on whether to reject H0 or not.
(3) If φ2 ≤ dR/dT < 0.5, do not reject H0 and assume that QIS ≥ k.

4. A Practical Application

As mentioned earlier, many machined parts have multiple quality characteristics of
unilateral STB tolerances. This paper takes the runout of an axle center as an example
demonstrating the application of the fuzzy evaluation model presented in Section 3. The
so-called runout of the axle center is the maximum allowable verticality of change when the
axle center rotates around the reference axis [26]. This STB tolerance is (0, USL) = (0, 0.05)
and the process quality index QIS can be expressed as follows:

QIS =
0.05− µ

σ
. (29)

Taiwan’s machine tool output value ranks seventh in the world and its export volume
ranks fifth in the world. Taiwan’s machinery industry holds a significant position in global
markets [27–29]. The central region not only connects parts of the processing and mainte-
nance industries but also combines aerospace and intelligent machine industries to form a
huge cluster for the machinery industry [9,30]. Generally speaking, the machining industry
usually requires that the index value of the process capability be at least 1.33, equivalent to
the requirement of QIS ≥ 4 and then null hypothesis is expressed as H0:QIS ≥ 4 versus the
alternative hypothesis H1:QIS < 4.

There are three random samples, namely (x1, x2, . . . , x36), (x′1, x′2, . . . , x′36), and
(x′′1 , x′′2 , . . . , x′′36) with sample size n = 36 for the three cases. Then, various values of
the three samples for three cases are shown respectively as follows:
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Case 1 consists of:

x = 1
36

36
∑

i=1
xi = 0.041,

s =

√
1

36

36
∑

i=1
(xi − x)2 = 0.0031,

q∗IS = 0.05−0.041
0.0031 = 2.90,

QL = q∗IS

√
χ2

0.0025;35
36 + Z0.0025

6 = 2.90
√

16.032
36 + 2.807

6 = 2.40

QM = q∗IS

√
χ2

0.5;35
36 = 2.90

√
34.336

36 = 2.83,

QR = q∗IS

√
χ2

0.9975;35
36 + Z0.0025

6 = 2.90
√

63.076
36 + 2.807

6 = 4.31.

Hence, the membership function of the fuzzy number Q̃IS is

η(x) =


0 i f x < 2.40
α1 i f 2.40 ≤ x < 2.83
1 i f x = 2.83
α2 i f 2.83 < x ≤ 4.31
0 i f x > 4.31

,

where α1 and α2 are determined by

2.90

√
χ2

0.5−
√

1−α1/2;35

36
−

Z0.5−
√

1−α1/2

6
= x, 2.40 ≤ x < 2.83,

and

2.90

√
χ2

0.5+
√

1−α2/2;35

36
+

Z0.5−
√

1−α2/2

6
= x, 2.83 < x ≤ 4.31.

Hence, we have
dR = QR − k = 4.31− 4 = 0.31,

dT = QR −QL = 4.31− 2.40 = 1.91,

and
dR
dT

=
0.31
1.91

= 0.16.

Case 2 consists of:

x′ = 1
36

36
∑

i=1
x′i = 0.039,

s′ =

√
1

36

36
∑

i=1

(
x′i − x′

)2
= 0.0035,

q′∗IS = 0.05−0.039
0.0035 = 3.14,

Q′L = q′∗IS

√
χ2

0.0025;35
36 + Z0.0025

6 = 3.14
√

16.032
36 + 2.807

6 = 2.56

Q′M = q′∗IS

√
χ2

0.5;35
36 = 3.14

√
34.336

36 = 3.06,

Q′R = q′∗IS

√
χ2

0.9975;35
36 + Z0.0025

6 = 3.14
√

63.076
36 + 2.807

6 = 4.63.
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Hence, the membership function of the fuzzy number Q̃′IS is

η′(x) =


0 i f x < 2.56
α′1 i f 2.56 ≤ x < 3.06
1 i f x = 3.06
α′2 i f 3.06 < x ≤ 4.63
0 i f x > 4.63

,

where α′1 and α′2 are determined by

3.14

√
χ2

0.5−
√

1−α1/2;35

36
−

Z0.5−
√

1−α1/2

6
= x, 2.56 ≤ x < 3.06,

and

3.14

√
χ2

0.5+
√

1−α2/2;35

36
+

Z0.5−
√

1−α2/2

6
= x, 3.06 < x ≤ 4.63.

Hence, we have
d′R = Q′R − k = 4.63− 4 = 0.63,

d′T = Q′R −Q′L = 4.63− 2.56 = 2.07,

and
d′R
d′T

=
0.63
2.07

= 0.30.

Case 3 consists of:

x′′ = 1
36

36
∑

i=1
x′′i = 0.037,

s′′ =

√
1
36

36
∑

i=1

(
x′′i − x′′

)2
= 0.0037,

q
′′∗
IS = 0.05−0.041

0.0031 = 3.51,

Q′′L = q
′′∗
IS

√
χ2

0.0025;35
36 + Z0.0025

6 = 3.51
√

16.032
36 + 2.807

6 = 2.81

Q′′M = q
′′∗
IS

√
χ2

0.5;35
36 = 3.51

√
34.336

36 = 3.43,

Q′′R = q
′′∗
IS

√
χ2

0.9975;35
36 + Z0.0025

6 = 3.51
√

63.076
36 + 2.807

6 = 5.10.

Hence, the membership function of the fuzzy number Q̃′′IS is

η′′ (x) =


0 i f x < 2.81
α
′′
1 i f 2.81 ≤ x < 3.43

1 i f x = 3.43
α
′′
2 i f 3.43 < x ≤ 5.10

0 i f x > 5.10

,

where α
′′
1 and α

′′
2 are determined by

2.9

√√√√χ2
0.5−

√
1−α

′′
1 /2;35

36
−

Z
0.5−

√
1−α

′′
1 /2

6
= x, 2.81 ≤ x < 3.43,

and
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2.9

√√√√χ2

0.5+
√

1−α
′′
2 /2;35

36
+

Z
0.5−

√
1−α

′′
2 /2

6
= x, 3.43 < x ≤ 5.10.

Hence, we have
d′′R = Q′′R − k = 5.10− 4 = 1.10,

d′′T = Q′′R −Q′′L = 5.10− 2.81 = 2.29,

and

d′′R
d′′T

=
1.10
2.29

= 0.48.

As noted by Chen et al. [12], in practice, the obtained value of φ1 is equal to 0.2 and
the value of φ2 is equal to 0.4. Based on the fuzzy testing rules, then

Case 1 is expressed as dR/dT = 0.16 < φ1: reject H0 and assume that QIS < 4;
Case 2 is express as φ1 < d′R/d′T = 0.30 < φ2: do not make any decision and require

re-evaluation; and
Case 3 is expressed as φ2 ≤ d′′R/d′′T < 0.5: do not reject H0 and assume that QIS ≥ 4.
For case 1, given that the upper confidence limit is UQIS = QR = 4.31 > k = 4, QIS ≥ 4

is inferred based on the statistical testing rules. However, the value of the process quality
index is q∗IS = 2.90, far less than 4. Obviously, the fuzzy evaluation model in this paper is
more practical than the traditional statistical testing model. The small sample size (n = 36)
can lead to big sampling errors, which should be the main reason for the model. The
comparison of the statistical testing method and fuzzy testing method is presented in
Table 1.

Table 1. The comparison of the statistical testing method and fuzzy testing method.

Statistical Testing Method Fuzzy Testing Method

1. The statistical testing method can reduce the risk
of misjudgment caused by sampling errors.

2. The small sample size can lead to big
sampling errors.

3. Is unable to integrate the expert experience or
accumulated past data.

4. This method needs a bigger sample size.

1. The fuzzy testing method not only reduces the risk of misjudgment
caused by sampling errors but also can improve the accuracy
of evaluation.

2. Makes decisions based on expert experience and accumulated past
data to improve the accuracy of cases with small sample sizes.

3. This method does not need a bigger sample size.
4. This method is more practical than the traditional statistical

testing model.

5. Conclusions and Discussion

This paper proposed a fuzzy quality evaluation model with a process quality index
aimed at the STB quality characteristics and used it as the basis of decision-making for
improvement. The process quality index can reflect the process quality level and process
yield. With the advent of the Industry 4.0 era, companies demand rapid responses, thus
they must frequently use small samples to make decisions. The fuzzy evaluation method
suggested in this paper was built on the basis of confidence intervals. Therefore, not only
can it reduce the risk of misjudgment caused by sampling errors but it also can improve the
accuracy of evaluation. In addition, the mathematical programming method was employed
to discover the confidence interval of the process quality index. Finally, an application
example was presented in Section 4 to demonstrate the applicability of the recommended
approach. The value of the process quality index is q∗IS = 2.9. This value is far less than 4.
Obviously, the fuzzy evaluation model in this paper is more reasonable than the traditional
statistical testing one. Furthermore, the advantage of this method is that it simply requires
common software, such as Excel and SAS, instead of complicated programs, which is very
convenient for the industry to use.

Numerous performance evaluations of industrial processes or business workflows
all belong to the STB-type quality characteristics, such as machinery, computers, mobile
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phones, home appliances, and the time interval of customers’ arrival at a store. Neverthe-
less, the commonly used or seen evaluation indicators or models are based on the NTB-type
quality characteristics. In addition, with the popularity of the environment of the Internet
of Things (IoT) and the rapid development of big data analysis technology, companies seek
to respond quickly to situations in which small sample sizes are generated, thus a novel
evaluation model must be developed to cope with this. The evaluation index adopted by
this study not only has a one-to-one mathematical relationship with the process yield but
it also reflects the process quality level. The evaluation model is based on the confidence
interval, thus the risk of the misjudgment caused by sampling errors can be reduced.
Moreover, the fuzzy evaluation model can be integrated into the accumulated professional
experience of the past production data. As a result, the accuracy of the evaluation can be
maintained in the case of small sample sizes to ensure that it can both meet the needs of
enterprises’ pursuit of quick responses and help the industry move towards the goal of
smart manufacturing.

6. Limitations

The fuzzy evaluation model of the STB-type quality characteristics proposed by
this study is applicable to normal process distribution, such as regarding the STB-type
quality characteristics of machinery, computers, mobile phones, and home appliances. In
contrast, this model is not applicable to abnormal distributions, such as regarding the
time interval of customers’ arrival at a certain store. Abnormal distributions of STB-type
quality characteristics that cannot be included in this research study can be considered for
future research.
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Nomenclature
T the target value
µ process mean
USL upper specification limit
σ process standard deviation
QIS process quality index
Yield% process yield
Φ(·) the cumulative function of the standard normal distribution
Z the standard normal distribution
X a random sample
n sample size
σ2 variance
MLE the maximum likelihood estimators
X the maximum likelihood estimators of the process mean
S the maximum likelihood estimators of the process standard deviation
Q∗IS the estimator of process quality index QIS
χ2

n−1 chi-square indicates distribution with n−1 degree of freedom
(x1, x2, · · · , xn) the observed value of (X1, X2, · · · , Xn)
x the observed values of X
s the observed values of S
CR the confidence region of (µ, σ)
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σl the lower limit of σ

σu the upper limit of σ

LQIS the lower confidence limit of index QIS
eU error item of the lower confidence limit of index QIS
UQIS the upper confidence limit of index QIS
eL error item of the higher confidence limit of index QIS
k the value of the required level
H0 null hypothesis
H1 alternative hypothesis
Q̃IS[α] the α-cuts of the triangular-shaped fuzzy number Q̃IS
∆(QL, QM, QR) the triangular-shaped fuzzy number
η(x) the membership function of the fuzzy number Q̃IS
AT the area in the graph of η(x)
AR the area in the graph of η(x) but to the right of vertical line x = k
dT QR −QL
dR QR − k
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