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Abstract: The single-cell RNA-seq allows exploring the transcriptome for one cell at a time. By
doing so, cellular regulation is pictured. One limitation is the dropout events phenomenon, where
a gene is observed at a low or moderate expression level in one cell but not detected in another.
Dropouts obscure legitimate biological heterogeneity leading to the description of a small fraction
of the meaningful relations. We used a stochastic approach to model the Reverse Transcription
Polymerase Chain Reaction (RT-PCR) kinetic, in which we contemplated the temperature profile, RT-
PCR duration, and reaction rates. By studying the underlying biochemical processes of RT-PCR, using
a computational and analytical framework, we show a minimal amount of RNA to avoid dropout
events. We further use this fact to characterize the limits in the dispersion reduction. Dispersion
asymptotically decreases as the RNA initial value increases. Despite always being a basal dispersion,
their decreasing speed is modulated mainly by the degradation rates, particularly for the RNA. We
concluded that the critical step into the RT-PCR is the RT phase due to the fragile nature of the RNA.
We propose that limiting RNA degradation might ensure that the portraited transcriptional landscape
is unbiased by technical error.

Keywords: Markov model; stochastic process; noise dispersion; dropouts; RNAseq; chemical master
equation and RT-PCR

1. Introduction

The transcriptome englobes the information about the active genes under a spe-
cific physiological condition or stimulus. Therefore, understanding the transcriptome is
critical to elucidate the inner cellular regulation and their molecular constituents, post-
transcriptional modifications, mutations, alternative splicing, and differences in gene
expression in various conditions of treatments and diseases [1]. In principle, through RNA
sequencing (RNA-seq), it is possible to quantify all transcripts in the cell and compare the
differential expression of genes among samples. Thus, the RNA-seq is a suitable technique
for the new sequencing technologies that use RNA mapping to unravel biological processes.
Recently, the capacities of transcriptome technologies can obtain the gene expression profile
for thousands of individual cells simultaneously (single-cell RNA-seq) [2]. However, one
common phenomenon found in the single-cell RNA-seq is the dropout events, where an
observed gene has a certain level in one cell but is not detected in another cell of the same
type [3]. Dropout events induce a bimodal tendency among the cell types. However,
bimodal distributions also reflect the heterogeneity in the biological sample; despite the
cells being isogenic, they have a diversity of functions [4]. Moreover, as a result of the
dropouts, the data is often zero-inflated, only capturing a small fraction of the transcrip-
tome of each cell [5]. In addition, given the low concentration of mRNA inside cells (nano
mols), experimental detection is another noise source impairing the RNA-seq.

The Reverse Transcription Polymerase Chain Reaction (RT-PCR) is a crucial exper-
imental technique used to detect the concentration of RNA in a sample and amplify it.
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One tenet of RT-PCR is that the sample does not suffer alterations besides exponential
amplification. Therefore, the ratio between RNAs within low and high counts is constant.
However, this is only true for high RNA counts. Therefore, the RT-PCR has a resolution
problem for lower counts where the amplification is inefficient, a condition that limits
genetic landscape exploration and adds noise to the measurements. So far, some challenges
remain open to increase single-cell reliability. A fundamental one concerns overcoming
the zero-inflated data due to dropouts events [6]. Two approaches are widely applied to
overcome data sparsity. First, a theoretical description sets the RT-PCR posterior distribu-
tion for single-cell RNA-seq as a sum of a Poisson and a negative binomial distribution [3].
Despite this approach focused on data correction, it assumes a prior distribution for the
dropout events without experimental validation. Second, the imputation of missing values,
particularly the zero counts from technical errors. Several algorithms based on machine
learning, model-based imputation, and data reconstruction have proved the efficacy of
imputation [6]. However, a problem within imputation methods is the lack of external
reference to associate the errors. Instead, they rely on internal information related to the
imputed dataset, leading to inflated correlations and false positives [7]. Notwithstanding
the efforts to describe the noise sources in RNA-seq by data processing and statistical
description [8], there is a lack of research studying technical steps to affect final RNA
counts and disguise relevant biological conditions.

This research presents a theoretical analysis of the RT-PCR process as a noise source
in the RNA-seq. Accordingly, we modeled the RT-PCR as a stochastic process defined by
their chemical master equation (CME). Hence, the kinetic description is ruled by a Markov
process and their reaction propensities. We split the whole process into two steps which are
in agreement with the experimental protocols. Additionally, we considered variables like
temperature cycles that set the final transcripts concentration. Finally, we applied analytic
and numerical approaches to solve the equation and identify those parameters ruling the
noise induction and dropout events. As a result, we postulate that the minimum RNA
concentration for each gene to ensure proper amplification is around 10–50 copies. It is in
concordance with the standard used in experimental protocols for single-cell RNA-seq. We
also concluded that the limiting parameters in the noise inductions are RNA degradation
rate and not any of the amplification rates. This result highlights the relevance of the
non-contaminated conditions that can lead to RNA degradation during the experimental
phase related to sample processing.

2. Materials and Methods
2.1. RT-PCR Model

The RT-PCR is an experimental technique that combines reverse transcription to trans-
form RNA into cDNA and a polymerase chain reaction (PCR) for amplifying a specific
cDNA target. Therefore, the complete method integrates two phases. Following the experi-
mental design for the one and two steps RT-PCR, we split the RT-PCR into two coupled
processes, the RT and the PCR processes.

Figure 1 depicts a schematic representation of our model; the green and blue arrows
differentiate each process. For the RT, cDNA molecules are synthesized by reverse tran-
scription using RNA molecules as templates; the ar parameter portrays the cDNA synthesis
rate held by the activation of the reverse transcriptase. Ideally, the culture medium is
RNase-free, so the RNA molecules do not degrade. However, RNA is a labile molecule,
and RNases are present everywhere. Therefore, we considered RNA degradation with
a rate βr. Once the reverse transcription is successfully carried on, the cDNA is stable
and hardly degraded by enzymes. Moreover, we included the scenario of cDNA loss by
enzymatic effect or human manipulation errors with the parameter βc. In the PCR, the
exponential amplification of the cDNA takes place. A cDNA duplication represents a
successful amplification. The PCR runs under temperature cycles in which the polymerase
activity changes, impacting the cDNA replication rate (ac) (see Section 2.4). Again, we
considered a possible cDNA loss by the parameter βc; finally, in some cases, the complete
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cDNA strand cannot be appropriately amplified due to errors or temperature changes
in the cycle, so the cDNA count does not change. We represent this scenario with the
parameter γ. We coupled both processes by taking the cDNA final value in the RT step as
the initial value for the PCR step.

Figure 1. RT-PCR model. Representation of the complete RT-PCR process that was split into two subprocesses. Green and
blue arrows denote the RT and the PCR processes, respectively.

2.2. Chemical Master Equation

Given that the concentration of RNA in one cell is of nanomoles, amplification of
cDNA by real-time PCR is governed by random biochemical processes. At a molecular
level, random events of gains and inconsistent cDNA amplification contribute to this
stochasticity. Although variability was considered to describe the PCR efficiency [9,10],
a stochastic approach based on CME has not been used to model the RT-PCR. To do
so, we modeled the RT-PCR as a set of biochemical reactions portraying the main steps.
Every reaction represented a Markov process derived from the stochastic chemical reaction
kinetics [11,12]. We considered a fixed reaction volume in thermal equilibrium with n
different chemical species homogeneously distributed. Furthermore, we assumed that
molecules collide randomly and chemical reactions occur at random times in a well-mixed
space. The CME governs the evolution of the probability distribution of the chemical
species given a reaction network. Therefore, the CME positively determines all conditions
that lead to the n state minus the possible reactions that take the system out of the n state.
The generalization of the CME is presented as follows:

d
dt

p(n, t) =
m

∑
i=1

(p(n− di, t) fi(n− di)− p(n, t) fi(n)), (1)

where p(n, t) defined the distribution probability for the molecular count n of random
variables at time t. f is the associated propensity function (occurrence probability for
each reaction) for a specific state for the possible i reactions. The associated propensity
fi → R ≥ 0 and has the form

fi = γi ∏n
j=1

(
xj
lj

)
, (2)

γi is the reaction rate of the reaction i. ∏n
j=1
(
xjlj
)
, equals the number of all distinct reactant

combinations taking part in the reaction i.
To proceed with the stochastic model, we conceptualized Figure 1 into a set of coupled

chemical reactions with an associated propensity. Since all the reactions are first-order, the
propensities are the multiplication of the reaction rate and the reactant concentration [13],
Table 1. Therefore, two random variables defined the state of the system: the counts of
RNA and cDNA strands.
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Table 1. Reactions, propensities and parameter values for the stochastic model.

Reaction Propensities Parameter Value Description

Reverse Transcription

RNA αR→ cDNA + RNA αRRNA αR = 0.6 min−1 Reverse transcription.

RNA
βR→ ∅ βRRNA βR = 1.0 min−1 Degradation of one RNA molecule.

cDNA
βC→ ∅ βCcDNA βC = 0.01 min−1 Degradation of one cDNA molecule.

Polymerase Chain Reaction

cDNA αc→ 2cDNA αC(T)cDNA Equation (5) Synthesis of one cDNA molecule.

cDNA
γ→ cDNA∗ + cDNA γcDNA γ = 10 min−1 Deficient synthesis of one cDNA

molecule

cDNA
βC→ ∅ βCcDNA βC = 0.01 min−1 Degradation of the cDNA.

We formulated the CME for the RT and PCR processes separately, defining the change
in the probability distribution over time for the number of RNA and cDNA molecules.
Both equations are presented as follows:

d
dt p(NRNA, NcDNA, t)

= αRNRNA p(NRNA, NcDNA − 1, t) + βR(NRNA
+1)p(NRNA + 1, NcDNA, t) + βC(NcDNA
+1)p(NRNA, NcDNA + 1, t)
−(αRNRNA + βRNRNA + βC NcDNA)p(NRNA, NcDNA, t),

(3)

d
dt p(NcDNA, t) = αC(NcDNA − 1)p(NcDNA − 1, t) + βC(NcDNA

+1)p(NcDNA + 1, t)− (αC NcDNA + βC NcDNA)p(NcDNA, t),
(4)

2.3. Parameter Values

The reverse transcriptase is the enzyme that carries the conversion from mRNA to
cDNA. Several commercial enzymes have speed ranges from 0.125 kilobases per minute
(Kb/min) to 1.2 Kb/min (according to the manufacturer ThermoFisher). Based on this
speed and considering a generic transcript of 2 kilobases (Kb), we used an activation
parameter (αr) equal to 1.2 Kb ∗min−1/2 Kb = 0.6 min−1. For the RNA degradation rate
(βr), experimental evidence revealed that over a pool of 50 tested genes, almost 80% of
their RNAs have a half-life (τ1/2) of less than two minutes [14]. Taking into account this
observation, we chose an RNA τ1/2 = 0.7 min. Consistently with our estimation, RNAτ1/2
numeric value is in the range of the experimental evidence [14]. Among eukaryotes and
prokaryotes, RNA degradation is considered a first-order reaction [15,16]. Therefore, the
degradation rate was calculated as follows: βr = In2/τ1/2 = 1 min−1. Contrary to RNA,
cDNA is a stable molecule hardly degraded by enzymes. Notwithstanding, cDNAses are
present in the samples. Therefore, to consider a possible cDNA degradation event with
a low rate (βc), we assumed a value of 0.01 min−1. Finally, γ represents the occurence
of an incomplete cDNA synthesis due to external factors such as the abrupt changes in
the temperature. For this parameter, there is no experimental quantification yet, so we
proposed a value of 10 min−1.

2.4. Temperature Considerations

The RT-PCR relies on the temperature change to control reverse transcriptase and
cDNA amplification. The dynamic behavior of the temperature along the process is
shown in Figure 2A. Given the experimental protocols from the New England Biolabs inc®

(https://international.neb.com/, accessed on 15 May 2021), we contemplated the temper-
ature for every step in each phase. For the RT phase, the temperature is constant at 38 ◦C

https://international.neb.com/
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for 30 min, so the RNA template is converted into cDNA by the enzyme reverse transcrip-
tase. Once the cDNA is synthesized, it is amplified in the PCR phase. During this last
step, the temperature changes in a stepwise cyclic fashion of three steps: (1) denaturation,
double-stranded cDNA are heated at 93 ◦C to separate the strand; (2) annealing, in which
single-strand cDNA is heated at 50 ◦C to bind the primers to the target regions; (3) exten-
sion, at 68 ◦C the DNA polymerase extends the primer along the template strands. These
three phases are repeated 25–35 times to amplify the target cDNA exponentially. To con-
sider the dynamic behavior of the temperature into our mathematical model, we adjusted
the DNA polymerase activity (ac) using a piecewise function according to experimental
values, Figure 2B and Equation (5). We took the data from experimental measurements
of the Taq DNA polymerase speed [17]. We used a nonlinear least fitting method with
an exponential model. Thus, the cDNA transcription rate was described by Equation (5),
where T is the temperature and lg is the longitude of the new transcript in the number of
bases. The transcripts segments processed via the RT-PCR are between 0.5 and 2 Kb [18].
Therefore, we selected an arbitrary value of 2 Kb; this is acceptable for different RNA-seq
applications from noncoding to coding RNA.

Figure 2. Temperature dynamic. (A) Temperature profile for the RT and PCR phases. In the PCR, the temperature changes
according to three cyclic values (93, 50, and 68 ◦C). (B) Fitted data to model the DNA polymerase activation speed (αc)
in function of the temperature (R2 = 0.99 using the nonlinear least squares method). The polymerase speed units are
kilobases per minute (Kb/min), and lg is the transcript longitude in number of bases. For each segment, we used a one term
exponential model (AeT/B). Dots represent experimental values [17], and the discontinued lines are the fitted piecewise
function comprising two segments (Equation (5)).

αC(T) =

 f1(T) = 9.88
lg e

T
11.75 T ≤ 80

f2(T) = 2.33
lg e−

T
1.37 T > 80

, (5)

2.5. Deterministic Solution

To statistically characterize the expression of an amplified gene, we calculated the
mean and the variance of the probability distribution described in the CME. As the CME
depicts the change over time of the probability distribution, we took the derivative of the
mean and variance to use the CME according to the following equations:

〈x〉 = ∑∞
i=0 xi p(xi), (6)

d
dt
〈x〉 = ∑∞

i=0 xi
d
dt

p(xi), (7)

Var(x) = ∑∞
i=0 x2

i p(xi)− 〈x〉2, (8)



Mathematics 2021, 9, 2515 6 of 12

d
dt

Var(x) = ∑∞
i=0 x2

i
d
dt

p(xi)− 2〈x〉 d
dt
〈x〉, (9)

where 〈x〉 and Var(x) are the mean and variance of the random variable xi, d
dt p(xi) is the

CME depicted in Equations (2) and (3). In the RT-PCR process, we defined two random
variables: the number of RNA and cDNA strains. The mathematical appendix shows the
exact solution for Equations (7) and (9) for cDNA counts.

2.6. Simulation

Even though the solution of CME allows identifying the first and second moments
of the gene expression distribution, it has limitations when we ask about how the initial
concentration of RNA affects the frequency of dropout events. Therefore, to explore this
last question, we solved the CME of the stochastic model by Gillespie’s algorithm in
python 3. The algorithm idea is to compute two random numbers according to the reaction
propensities. The first number sets the waiting time for the subsequent reaction according to
a random number with an exponential distribution. The second random number chooses
the reaction to occur based on a uniform distribution. Finally, the system is updated
according to the reaction rules [19]. Experimental protocols establish that RNases must be
added to the sample once RT ends to avoid molecule heterogeneity. Consequently, after the
simulation ended the RT step, the number of RNA was zero. We adapted the algorithm to
consider the temperature–time dependency on the reaction rates. The complete algorithm
is explained in Table 2. Simulation time was 76 min over 1000 independent realizations for
every condition.

Table 2. Stochastic simulation algorithm.

1: INPUT: initial time t0, state x0 and final time Tf equal to 76 min;

2: SET: x ← x0 and t← t0 ;

3: WHILE: t less than Tf

4: SET the temperature (T(t)) value according to the Figure 2A profile;

5: IF: t less than 30 min

6: SET: αc and γ equal to zero;

7: ELSE

8: SET αC(T) equal to Equation (5);

9: SET: RNA count equal to zero;

10: END IF

11: DEFINE a as the sum of the propensities;

12: DETERMINE the next jump τ given a;

13: DETERMINE the next reaction to occur given a;

14: UPDATE the system counts (x) and time (t);

15: END WHILE

3. Results

The RNAseq portrays the transcriptome comprising messenger RNA by a single
or a collection of cells under a biological condition. Transcriptome studies decode gene
functions revealing their regulatory and molecular mechanisms. Although the single-cell
RNA-seq portrays the transcriptional landscape, it is subject to errors leading to possible
misinterpretations. One origin of these errors is the low initial RNA counts before the
RT-PCR that induce zero-inflated data. In addition, the RT-PCR is subject to intrinsic
stochasticity affecting the final amplification efficiency. The inherent noise obligated us to
evaluate the fundamental question of whether a lower count reflects a biological condition
or is just an artifact of the method. To elucidate how the different noise sources could
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affect the frequency of dropout events in the RT-PCR, in the following sections, we discuss
the solution of the CME (Equations (3) and (4)) obtained from numerical and analytical
descriptions. As expected, both cases converge and contribute to understanding how noise
modulates gene expression in the single-cell RNA-seq technology.

3.1. Numerical Solution of CME

As we have highlighted previously, the single-cell RNAseq measurements are sparse
and have uncertainty associated. Therefore, it is more practical to take a probabilistic
perspective to study the underlying expression state. Thus, using a stochastic frame-
work, we modeled the RT-PCR as a stochastic process with discrete states (Figure 1 and
Equations (3) and (4)). The observable stochastic effect is the occurrence of dropout events
related to RNA concentrations. Nevertheless, the prior expression distribution cannot be
quantified experimentally. To study the relationship between the dropout occurrence and
RNA initial values, we used six discrete initial RNA values ranging from low to high initial
counts (1, 5, 10, 50, 100, and 500). The CMEs were solved using the Gillespie algorithm for
76 min for the different initial conditions assuming an isogenic cell population (Figure 3A).
To validate the feasibility of the stochastic model, we considered two identical but indepen-
dent cells with the same number of RNA molecules and initial conditions. Thus, we solved
the model for each cell and initial condition over 1000 realizations. By comparing the final
value of cDNA for both cells, we observed two significant characteristics (Figure 3B). First,
as the initial values of RNA increase, the cDNA copies are higher and have less dispersion;
additionally, the cells get more correlated between them, showing an alignment to the
45◦ line. For lower RNA initial values, cells are less correlated, showing more dispersion.
Second, there are vertical and horizontal aligned points with a 0 value for one of the cells.
Therefore, in a borderline condition, one cell successfully amplifies the cDNA while the
other does not. The appearance of these lines is the graphical representation of the dropout
events. In agreement with previous reports [3], our in silico model qualitatively reproduced
the typically funnel expression patterns observed for single-cell RNA-seq data. We took
single-cell data previously reported from an isogenic three-dimensional tumor model to
reinforce the validation further. We carried out the scatter plot for gene expression in two
arbitrary cells [4]. As Figures 3B and 4 show, the expression distribution was qualitatively
reproduced by our computational analysis. Therefore, the number of dropout events seems
to be inversely related to the RNA initial value.

Figure 3. Simulation results. (A) Numerical solution of CME for the number of cDNA copies (Equation (4)) considering the
RT, and PCR phases, the simulation time was 76 min. Each color line stands for a different initial RNA count before the
RT-PCR process. (B) Scatter plot of cDNA copies for two cells that have the same CMEs. For each condition, we performed
200 realizations; the plotted value is the last for the number of cDNA copies at 76 min. The different colors are the initial
cDNA count for every point. The expression values for the transcripts are in reads per million (RPM).

Dropout events portray the technical noise by missing non-zero RNA entries as zero.
To describe the dependence between the dropout occurrence and the RNA initial value,
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we computed the dropout probability (PDO) by the ratio of the number of realizations
that ended in cDNA zero value by the total number of realizations (Figure 5A). Blue dots
represent the PDO values, as the continuous line is the fitted equation (Figure 5A). Therefore,
dropout occurrence decreases as the RNA concentration increases. We observed that PDO
exponentially decays and is practically 0 at an initial value of 10. Consequently, it appears
that amplification can be adequate even for lower RNA initial values.

Figure 4. Data validation. A scatter plot of two isogenic cells from a single-cell study of a breast
cancer tumor model [4]. The cells were arbitrarily chosen given the open-access expression matrix.
The expression values for the transcripts are in reads per million (RPM).

Figure 5. Errors and noise analysis. (A) DropOut probability (PDO) dependency on the RNA initial condition. The computed
PDO values (blue dots) for the different initial conditions; the continuous red line is the exponential fitted equation describing
the observed points. IC stands for the initial RNA value. The legend shows the value of the parameter with an R2 = 0.99,
we used the nonlinear least squares method using an exponential fitting model. (B) Coefficient of variation (CV) for the
different initial conditions.

In addition, we observed a decrease in the dispersion for higher RNA initial values
(Figure 3B). To study the association of the dispersion and the RNA initial values, we
evaluated the dispersion by the coefficient of variation (CV) for every initial condition (IC).
The CV has a similar tendency as the PDO; it decreases as the initial RNA value increases
(Figure 5B). Interestingly, for IC values greater than 10 molecules, the CV asymptotically
reaches a non-zero value. This result implies that there is a limit in the dispersion reduction
based on the IC. It seems that the stochastic nature of the RT-PCR always induces an
inherent amount of variability in the measurement.

3.2. Analytical Description

Simulated results depicted the effect between the initial RNA counts and the cDNA
final values. In addition, we studied the parameter sensitivity of the model relative to
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the dispersion induction. The observable variable at the end of the RT-PCR is the cDNA.
Thus, we deducted the Fano factor for the number of cDNA copies (FcDNA). The Fano
factor measures the dispersion of a probability distribution; it is defined as the ratio of the
variance to the mean. To do so, we analytically solved the CMEs (Equations (3) and (4) for
the mean and variance (Mathematical Appendix)). Equations (10) and (11) describe FcDNA
for the RT and PCR phases, respectively;

FcDNA = e−βR∗t

e−βR∗t−e−βc∗t +
[2−αR N0

R]
βR+βc

e−(βR+βc)t

e−βR∗t−e−βc∗t

+
[2−αR N0

R]
2βc

e−(2βc)t

e−βR∗t− e−βc∗t −
1
βc

e−(2βR)t

e−βR∗t− e−βc∗t

− βC
βR

e−(2βR)t

e−βR∗t− e−βc∗t

(10)

FcDNA = N0
cDNAe−(αc−βR)T − N0

cDNA + αc+βR
αc−βR

− αc+βR
αc−βR

N0
cDNAe−(αc−βR)T

+Var(cDNA)0e−(αc−βR)T .
(11)

where N0
R is the initial value for RNA before the RT phase. NcDNA

0 is the initial value for
cDNA before the PCR phase.

Plotting previous equations exhibit the dispersion dependence on the model param-
eters (Figure 6). For the RT phase, FcDNA exponentially decays to B ∝ 1/(βr + βc). The
decay speed depends on the ratio of the RNA and cDNA degradation rates, βr and βc. As
the ratio increases, the system needs more time to reach its steady-state (Figure 6A). The
presence of a non-zero steady-state is intriguing since variability will prevail. The FcDNA
has similar dynamics regarding the PCR phase but with a more intuitive regulation. The
difference between the amplification rate sets the decay speed (αc) and cDNA degradation
rate (βc) (Equation (11) and Figure 6B). The FcDNA for this phase has an asymptotic value of
1. At the steady-state, the variance is equal to the mean being the lowest possible dispersion
value. Thus, although the noise will always be present, it can be limited. In summary, these
results suggest that the noise-limiting factor is the RNA degradation rate.

Figure 6. (A) Fano factor of the cDNA copies (FcDNA) for the RT phase as described by Equation (10). The discontinuous
line represents the asymptotic value proportional to 1/(βr + βc). The arrow indicates the increase in the decay speed as the
ratio of the degradation rates (βc/βr) increases. (B) FcDNA time dynamics for the PCR phase described by Equation (11).
The decay speed decreases as the difference in the cDNA replication rate and degradation rate (αc − βc) increases (arrow).
The used parameters to draw the FcDNA dynamics are in Table 1.
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4. Discussion

Quantification of RNA among different conditions has turned into a standard to
understand and unravel gene regulation. RT-PCR mimics the basic process of DNA repli-
cation within cells and constitutes an essential component to extract the gene expression
profile in single-cell RNAseq. From the experimental point of view, RT-PCR relies on
temperature cycles to trigger enzymatic chemical reactions to quantify RNA based on its
conversion to cDNA. Although theoretically, the cDNA at least doubles its amount after
each amplification cycle. Data show varying yields and errors suggesting inner random
processes increased at low RNA initial concentrations. Hence, we proposed an RT-PCR
stochastic model portraying the inherent molecular stochasticity and experimental errors.
We focused on the characterization of the dropout events and the variability induction. To
this end, we explored the dropout events dependence within the initial RNA values by
numerically solving the chemical master equation. In addition, we evaluated the limits in
the variability reduction.

Despite our simple RT-PCR stochastic representation, we reproduced expression
patterns from single-cell RNA-seq data observed in different cell types and experimental
conditions [3,4,20]. Notably, we found a threshold that restricts the minimal amount
of processed RNA without bias by zero-inflated data due to dropouts. Based on the
parameters used in this paper, this limit is around 10–50 RNA copies. As intuitively
expected, our model suggests that error events decrease with the initial RNA copy number
increase. Furthermore, quantification of rare transcripts (transcripts with low copies)
pushes the measurements to a point where the output distribution reflects biological
information and noise. However, if those rare transcripts are present in low amounts but
surpass the null dropout occurrence threshold, the data would associate those transcripts
to trustworthy biological processes. Hence, genes with low gene expression can keep their
biological information relative to other genes.

Data correction is a widely used strategy to subtract the dropouts bias. However,
imputation and assuming non-verified prior expression distribution are tools to be used
carefully. Imputation techniques rely on the existence of a reference distribution, and when
there is not one, it is inferred. This circular logic induces false positives and an increase
in the correlation between genes. These problems become apparent for non-characterized
cell populations and cells closely related. In terms of experimental strategies to overcome
dropouts, spike-ins quantify amplification efficiency to perform data correction. Neverthe-
less, despite their accuracy, they can dim genes’ internal expression and vary even between
technical replicates [21,22]. Given our results, dropout reduction is possible by increasing
the RNA initial counts. However, controlling RNA initial values seems a non-feasible
task. In addition, manipulation of the prior RNA expression distribution might induce
bias leading to misinterpretation of the biological scenario. Therefore, we proposed that
instead of modifying RNA initial counts, dropout occurrence can diminish by controlling
the experimental conditions.

Otherwise, it is important to mention that the CME for the PCR phase does not include
the cDNA deficient synthesis portrayed by γ. Initially, we hypothesized that the induced
errors by this reaction restrain the efficiency of the process. Although deficient amplification
does not modify the molecular count or the probability distribution, our results revealed
that degradation processes are the primary error inducer.

Along with the threshold existence, there is a basal variability despite the initial RNA
values. The analytical description showed that the total variability becomes constant as
the RNA values increase. As expected, the total data dispersion comprises two effects: the
inherent stochasticity of the chemical reaction and the errors induced by dropouts. It seems
that variability induction and propagation are inherently immovable. Hence, the biological
variability might be obscured by RT-PCR inherent dispersion, leading to biased results and
relations. This suggests implementing additional considerations to improve the statistical
analysis, further than imputing the dropout variability.
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Instead of performing simulation with changes in the values of model parameters,
we evaluated the parameter sensitivity solving the CMEs analytically. The Fano factor
depicts the effect on the parameters into the dispersion dynamics. In general terms,
stochasticity cannot be eradicated. In every process, it has a non-zero minimum. The
property that can be modified is the decay speed to reach the minimum. Interestingly,
toward the RT phase, the dispersion decay is modulated by the degradation parameters
ratio. The parameter to attend is the RNA degradation rate; it is the most sensitive and
challenging variable to diminish noise. Therefore, this parameter is the limiting factor
for experimental noise propagation and variability induction. RNA degradation rate can
decrease by controlling the presence of RNases. While RNase contamination can result
in a failed experiment, it is difficult to determine the contamination origin. Nevertheless,
there are alternatives to diminish the contamination probability. Experimental protocols
allow removing RNases from plastic, inhibiting RNases by enzymes, getting RNase-free
solutions, and not propagating RNases contamination [23].

For the PCR phase, the decay speed can increase by increasing the cDNA replication
rate. As the experimental techniques evolve, new Taq polymerases arise with higher speed
and replication quality. Therefore, the replication rate is increasing with the technology. The
cDNA degradation rate might not be a relevant variable due to cDNA molecule stability.

We conclude that the RT phase is the most critical step to be susceptible to noise
and consequently the primary source of dropout events in single-cell RNAseq. Therefore,
we propose a synergic strategy based on experimental dropout reduction and posterior
data correction.
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