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Abstract: In this study, a new three-statement randomized response estimation method is proposed
to improve the drawback that the maximum likelihood estimation method could generate a negative
value to estimate the sensitive-nature proportion (SNP) when its true value is small. The Bayes
estimator of the SNP is obtained via using a hierarchical Bayesian modeling procedure. Moreover,
a hybrid algorithm using Gibbs sampling in Metropolis–Hastings algorithms is used to obtain the
Bayes estimator of the SNP. The highest posterior density interval of the SNP is obtained based
on the empirical distribution of Markov chains. We use the term 3RR-HB to denote the proposed
method here. Monte Carlo simulations show that the quality of 3RR-HB procedure is good and that
it can improve the drawback of the maximum likelihood estimation method. The proposed 3RR-HB
procedure is simple for use. An example regarding the homosexual proportion of college freshmen is
used for illustration.

Keywords: Bayesian estimation; Beta-Binominal model; maximum likelihood estimation; respondent
protection; randomized response

1. Introduction

Warner [1] is the pioneer to propose the randomized response (RR) method for evaluat-
ing the sensitive-nature proportion (SNP). An individual in the RR method of [1] is required
to answer “yes” or “no” to either the statement “I am a member of group A” or “I am not a
member of group A” where group A is a sensitive-nature statement. Since the interviewees
do not need to release the selected statement to the interviewer, the interviewees can be
supposed to confide in the interviewer the true answer.

Let θ denote the population SNP and n be the sample size of interviewees. In the
RR survey, Y interviewees answer “yes”. It is trivial to show that Y follows a binomial
distribution with the sample size n and proportion of ω = P(yes) = θps + (1− θ)(1− ps),
where ps denotes the proportion of selecting the sensitive-nature statement. Denote Y ∼
Bin(n, ω) . Warner [1] obtained the maximum likelihood estimator of θ, denoted by θ̂, and
its variance is as follows:

θ̂ =
ps − 1

2ps − 1
+

1
(2ps − 1)

× y
n

(1)

and

Var
(
θ̂
)
=

θ(1− θ)

n
+

1
4n

[
1

(2ps − 1)2 − 1

]
. (2)
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We use the term MLE to denote maximum likelihood estimator/estimate here.
Equations (1) and (2) can be used to construct the confidence interval of θ. The MLE
proposed by [1] is valid only if ps 6= 0.5 and 0 ≤ θ ≤ 1. When the value of θ is small, the
MLE of θ could be negative. This fact makes the method of [1] invalid to infer θ, as its true
value is small.

New RR methods have been proposed after [1]. Greenberg et al. [2] proposed an
unrelated question RR methods. They proposed a theoretical framework to infer the model
parameters for the design of two statements. A new RR procedure was proposed by Mangat
and Singh [3]. Their method used two randomization devices to design the RR strategy.
Mangat and Singh [3] demonstrated that their new strategy was more efficient than the
usual strategy of [1].

Kuk [4] proposed an alternative method to perform an RR survey. The design method
of [4] does not require direct answers from the interviewees, and such a design can enhance
the confidence of interviewees to tell the true answer. The method of [4] can be applied to
both qualitative and quantitative questions. Kuk [4] suggested to collect data for a mixture
distribution, and the problem can reduce to the estimation of a mixture proportion.

Chaudhuri [5] emphasized the protection of the interviewee’s privacy and also studied
the impact of simple random sampling design on the final conclusions. Chaudhuri [5]
illustrated two existing RR devices for indicating how an estimator along with an estimated
measure of its error could be developed when the RR sample may be drawn adopting a
complex survey design involving unequal selection probabilities with or without replacement.

Christofides [6] proposed a generalized RR (GRR) technique to eliminate a major bias
in surveys of the population SNP resulting from an interviewee’s refusal when using the
RR method of [1]. Chang et al. [7] considered a simple generalization for some existing
investigations and suggested suitable selection strategies for design parameters. They also
discussed the superiority of their proposed strategies over the RR strategy of [1].

Hsieh et al. [8] proposed a modified GRR (MGRR) approach for a multi-level at-
tribute using a single sensitive item. The MGRR approach has some merits over the other
counterparts. Hsieh et al. [8] suggested using the Markov chain Monte Carlo (MCMC)
method to obtain the Bayes estimator of the SNP instead of the maximum likelihood
estimation method. We use the term BE to denote Bayes estimator/Bayes estimate here.
Examples about using Bayesian methods for real applications can be found in the book of
Gelman et al. [9].

Bar-Lev et al. [10] presented a Bayesian approach to four RR models. They used
truncated beta distributions in a common conjugate prior structure to obtain the BE of the
SNP. Barabesi and Marcheselli [11] proposed a Bayesian estimation procedure to obtain the
BE of the SNP based on Frankin’s RR procedure. They conducted a simulation study to
evaluate the quality of their proposed method.

Barabesi and Marcheselli [12] proposed a Bayesian method to the joint estimation
of the SNPs and sensitivity level of a stigmatizing attribute via applying a two-stage RR
design. The MGRR method is designed for a multi-level attribute using a single sensitive-
nature statement. Hsieh et al. [8] suggested using the MCMC approach to obtain the BE of
the SNP. The MGRR method is effective to obtain a reliable BE of the SNP. However, the
MGRR method could be too complicated to implement for users.

Bayesian estimation methods are useful for modeling multi-faceted or nonlinear
practical phenomena other than the maximum likelihood estimation method. Among all
popular Bayesian estimation methods, the hierarchical Bayesian (HB) modeling method
can be run with multiple hierarchical levels for estimating the parameters of posterior
distribution. If grouped observations are used in a survey, hierarchical modeling is a
relevant design to obtain the reliable BEs of model parameters.

The example in Section 4 of this study is based on college students from different
groups to study the homosexual proportion in a region during different years. Hence,
the HB modeling method is helpful to obtain the reliable BEs of model parameters. The
HB modeling method has been commonly applied in many different areas when the
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information on several different levels of observational units is available; see [12] for
comprehensive discussions. It is helpful to apply hierarchical analysis forms to understand
multi-parameter problems and design computational strategies.

However, heavy computation loading is a problem to obtain BEs of the model parame-
ters using the HB modeling method. Taking advantage of the recent advances of computer
power, it becomes easier to reduce the impact of computation loading when using HB
modeling methods for data analysis. Some applications using the HB modeling method
other than the RR design can be found in [13–22]. The HB modeling method is not yet
applied for RR design. The implementation of the proposed 3RR-HB modeling method is
discussed in Section 3.

2. Motivation and Organization

The traditional RR methods of [1,2] are simple to use. However, the MLE of the SNP
could be negative when the true value of the SNP is small. In order to make interviewees
more confident to tell the true answer in the survey, it is helpful to use more than one
non-sensitive-nature statement in the RR method. Hence, we extend the traditional RR
design of [2] to a three-statement RR method, which contains one sensitive-nature and two
non-sensitive-nature statements.

To escape the trap of obtaining a negative MLE of the SNP, the HB modeling method
is adopted to improve the drawback of the maximum likelihood estimation method when
the true value of the SNP is small. In order to overcome the complexity of numerical
computation to obtain the BE of the SNP, the hybrid algorithm of using Gibbs sampling
in the Metropolis–Hastings algorithm is proposed to implement the MCMC method to
obtain the BEs of model parameters. The main contribution of this study is to propose a
3RR-HB procedure to obtain the BE of the SNP. Moreover, the highest posterior density
interval (HPDI) of the SNP is constructed. The proposed 3RR-HB procedure can improve
the drawback of using a negative MLE to estimate the population SNP when its true value
is small.

The rest of this paper is organized as follows: In Section 3, we present the data structure
and introduce the proposed 3RR-HB procedure. In Section 4, an example regarding the
homosexual proportion of college freshmen is used to demonstrate the applications of
the proposed 3RR-HB procedure. A Monte Carlo simulation study is also conducted in
Section 4 to study the weakness of maximum likelihood estimation method and evaluate
the quality of the proposed 3RR-HB procedure. Some concluding remarks are given in
Section 5.

3. Materials and Methods

Conducting a RR survey with two non-sensitive-nature and one sensitive-nature
statements as follows: (i) I am in Group A; (ii) I am in Group B; and (iii) I am in Group
C. Group A is a sensitive-nature statement; Group B and Group C are non-sensitive-
nature statements. Interviewees have probabilities ps, p1 and p2 to randomly answers the
Statements (i), (ii) and (iii). In this study, the values of ps, p1 and p2 are pre-assigned.

The interviewees do not need to release which statement they have replied to the
interviewer. Let θ, δ1 and δ2 denote the probabilities of individual answering “yes” under
the Statement (i), (ii) and (iii), respectively and ω denote the probability of answering “yes”
in the sample. It is trivial to shown that ω = P(yes) = psθ + p1δ1 + p2δ2. In this study, the
values of δ1 and δ2 are known in the RR design.

Let the sample size be n, in which Y of them answer “yes”. It can be shown that
Y ∼ Bin(n, ω). The log-likelihood function based on the data (n, y) can be presented as

`(ω | n, y) = y log(ω) + (n− y) log(1−ω). (3)
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The MLE of θ to maximize `(ω | n, y) can be presented by

θ̂ =
Ȳ− (p1δ1 + p2δ2)

ps
, (4)

where Ȳ = y
n . We note that θ̂ is valid only if the working condition of

0 ≤ Ȳ− (p1δ1 + p2δ2)

ps
≤ 1 (5)

is true. Unfortunately, Equation (5) is often violated when the value of θ is small. The fact
makes the maximum likelihood estimation method unreliable for the cases of small θ. We
will show that the failure rate of P(θ̂ < 0) is high via using the Monte Carlo simulation
method in Section 4.

The Bayesian inference method is used to obtain the BE of θ. Let ω be random and
follow the prior distribution of Beta, ω ∼ Beta(α, β):

π(ω | α, β) =
Γ(α + β)

Γ(α)Γ(β)
ωα−1(1−ω)β−1, 0 < ω < 1, (6)

where α > 0 and β > 0 are hyper-parameters. The posterior distribution can be pre-
sented by

π(ω | n, y, α, β) ∝ ωy+α−1(1−ω)n−y+β−1. (7)

In some occasions, we may collect RR samples from k(> 1) different regions or time
periods. One example is to evaluate the homosexual proportions of the freshmen who
enrolled in a university over different years. Since the enrolled freshmen come from
different cities year by year, it is reasonable to assume that the proportion of homosexual
freshmen varies year by year. Therefore, the SNPs are the proportions of homosexual
freshmen in k years, denoted by θ1, θ2, · · · , θk.

These values of θ1, θ2, · · · , θk are different. In this study, we are interested in studying
the trend of the population proportion of the homosexual freshmen in a university over
years. A 3RR-HB method is developed to obtain the BEs of SNPs along with i = 1, 2, · · · , k.
If all SNPs are same; that is, θi = θ for i = 1, 2, · · · , k.

Taking summation to the both sides of the equation ωi = ps,iθ + p1,iδ1,i + p2,iδ2,i for
i = 1, 2, · · · , k, we can obtain ∑k

i=1 ωi = (∑k
i=1 ps,iθ) + (∑k

i=1 p1,iδ1,i) + (∑k
i=1 p2,iδ2,i). Let

ω· = ∑k
i=1 wi, δ1· = ∑k

i=1 p1,iδ1,i and δ2· = ∑k
i=1 p2,iδ2,i, we can obtain

θ =
ω· − δ1· − δ2·

∑k
i=1 ps,i

=
∑k

i=1(ωi − p1,iδ1,i − p2,iδ2,i)

∑k
i=1 ps,i

(8)

Replacing ωi − p1,iδ1,i − p2,iδ2,i in Equation (8) by the ps,i θ̃i based on the ith sub-
sample, the BE of θ can be presented by

θ̃ =
∑k

i=1 ps,i θ̃i

∑k
i=1 ps,i

.

Assume that RR sub-samples were collected from k different regions or time periods
and the values of θ1, θ2, · · · , θk are different. Let (ni, Yi) denote the ith RR sample and Yi ∼
Bin(ni, ωi), where ωi = ps,iθi + p1,iδ1,i + p2,iδ2,i for i = 1, 2, · · · , k. Let N = (n1, n2, · · · , nk)
and Y = (Y1, Y2, · · · , Yk), and the data structure can be simplified as (N, Y). To avoid
subjectively setting up the values of hyper-parameters, the HB modeling method is used to
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develop the proposed Bayesian inference procedure. Let ωi ∼ Beta(α, β) for i = 1, 2, · · · , k.
The density function of ωi can be denoted by

π(ωi | α, β) =
Γ(α + β)

Γ(α)Γ(β)
ωα−1

i (1−ωi)
β−1, 0 < ωi < 1, i = 1, 2, · · · , k. (9)

Using the square loss function for the Bayesian inference, the BE of ω, denoted by
ω̃, is the posterior mean based on the π(ω | n, y, α, β) in Equation (7), and we can present
ω̃ by

ω̃ =
y + α

n + α + β
. (10)

Therefore, the BE of θ can be obtained by

θ̃ =
ω̃− p1δ1 − p2δ2

ps
. (11)

It is trivial that θ̃ > 0 if ω̃ > p1δ1 + p2δ2. It could be subjective to select the values of α
and β for Bayesian inference. Hence, the HB modeling method is used in the proposed
Bayesian estimation procedure to obtain the BEs of model parameters.

To implement the HB modeling method, we need to assume the second layer of prior
distribution. Let α and β follow a hyper-prior distribution with the structure of a product
of two Gamma distributions:

ϕ(α, β) = ϕ1(α)× ϕ2(β), (12)

where

ϕ1(α) =
ξ

η1
1

Γ(η1)
αη1−1e−ξ1α, α > 0, (13)

and

ϕ2(β) =
ξ

η2
2

Γ(η2)
βη2−1e−ξ2β, β > 0. (14)

For simplification, let Θ = (α, β, ω1, · · · , ωk). The full posterior distribution can be
presented by

π(Θ | N, y) ∝
[

Γ(α + β)

Γ(α)Γ(β)

]k
{

k

∏
i=1

ω
yi+α−1
i (1−ωi)

ni−yi+β−1

}
× αη1−1e−ξ1α × βη2−1e−ξ2β.

(15)

Moreover, the conditional posterior of ωi, given α and β can be presented by ωi ∼ Beta(yi +
α, ni − yi + β), i = 1, 2, · · · , k. The value of θi during the MCMC computation can be
updated by

θ̃
(∗)
i =

1
ps,i

[
yi + α

ni + α + β
− (p1,iδ1,i + p2,iδ2,i)

]
, i = 1, 2, ..., k. (16)

Based on the condition of yi+α
ni+α+β − (p1,iδ1,i + p2,iδ2,i) > 0, we can obtain

β <
yi + α

p1,iδ1,i + p2,iδ2,i
− (ni + α).

Given the values of α and (N, Y), we can shown that

Ωβ|α,N,Y = {0 < β < cm(α, N, Y)}, (17)
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where

cm(α, N, Y) = min
{

yi + α

p1,iδ1,i + p2,iδ2,i
− (ni + α), i = 1, 2, ..., k

}
.

The set Ωβ|α,N,Y can be used to guarantee θ̃
(∗)
i > 0 for i = 1, 2, · · · , k. Hence, Ωβ|α,N,Y can

be a reference set to select the hyper-parameter β when a value of α is generated and the
data of (N, Y) are collected.

The proposed hybrid algorithm is constructed as follows: Let Θ−1 = (β, ω1, · · · , ωk)
and Θ−2 = (α, ω1, · · · , ωk) denote the vector of parameters by removing α and β from Θ,
respectively. After algebraic computation, the marginal density distributions of α and β
can be obtained, respectively, by

π(α | Θ−1, N, y) ∝
[

Γ(α + β)

Γ(α)

]k
{

k

∏
i=1

ωα
i

}
× αη1−1e−ξ1α (18)

and

π(β | Θ−2, N, y) ∝
[

Γ(α + β)

Γ(β)

]k
{

k

∏
i=1

(1−ωi)
β

}
× βη2−1e−ξ2β, (19)

In order to overcome the difficulty to update α and β via using Equations (18) and (19) in
the Gibbs sampling procedure, the Metropolis and Hastings algorithm is used to update α
and β. Hence, the proposed hybrid algorithm for implementing the HB modeling method
can be followed based on the following steps:

Step 1: For j ≥ 1, generate α(∗) ∼ q1

(
α(∗) | α(j)

)
and u ∼ U(0, 1), where q1(·) is the

proposal to generate α. Update α(j+1) by α(∗) if u ≤ Ψ(j)
1 , where

Ψ(j)
1 = min

1,
π
(

α(∗) | β(j), ω
(j)
1 , · · · , ω

(j)
k , N, y

)
q1

(
α(j) | α(∗)

)
π
(

α(j) | β(j), ω
(j)
1 , · · · , ω

(j)
k , N, y

)
q1
(
α(∗) | α(j)

)
; (20)

otherwise, α(j+1) = α(j).
Step 2: For j ≥ 1, generate β(∗) ∼ q2

(
β(∗) | β(j)

)
and u ∼ U(0, 1), where q2(·) is the

proposal to generate β. Update β(j+1) by β(∗) if u ≤ Ψ(j)
2 , where

Ψ(j)
2 = min

1,
π
(

β(∗) | α(j+1), ω
(j)
1 , · · · , ω

(j)
k , N, y

)
q2

(
β(j) | β(∗)

)
π
(

β(j) | α(j+1), ω
(j)
1 , · · · , ω

(j)
k , N, y

)
q2
(

β(∗) | β(j)
)
; (21)

otherwise, β(j+1) = β(j).
Step 3: Generate ω

(∗)
i ∼ Beta

(
yi + α(j+1), ni − yi + β(j+1)

)
and evaluate θ

(∗)
i by θ

(∗)
i =

1
ps,i

[
ω
(∗)
i − (p1,iδ1,i + p2,iδ2,i)

]
for i = 1, 2, · · · , k. If 0 ≤ θ

(∗)
i ≤ 1, update θ

(j+1)
i = θ∗i ;

otherwise, θ
(j+1)
i = θ

(j)
i , i = 1, 2, · · · , k.

Step 4: Repeat Step 1 to Step 3 B times, where B is a big positive integer. Perform the
burn-in step by removing the leading B1 Markov chains. The BE of parameter is
obtained via using the remainder (B− B1) Markov chains. Since the square loss
function is considered in this study, the BEs α̃, β̃ and θ̃i, i = 1, 2, · · · , k.

Some proposals with the property of q(τ(j)|τ(∗)) = q(τ(∗)|τ(j)), where τ is the target
parameter for update, can be selected to reduce the computation loading of MCMC—for
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example, the normal or uniform distribution. When such proposals are used to implement
the MCMC approach, Equations (20) and (21) can reduce to

Ψ(j)
1 = min

1,
π
(

α(∗) | β(j), ω
(j)
1 , · · · , ω

(j)
k , N, y

)
π
(

α(j) | β(j), ω
(j)
1 , · · · , ω

(j)
k , N, y

)


= min

{
1,

[
Γ(α(∗) + β(j))Γ(α(j))

Γ(α(j) + β(j))Γ(α(∗))

]{
Πk

i=1

(
ω
(j)
i

)α(∗)−α(j)
}

×
(

α(∗)

α(j)

)η1−1

eξ1(α
(j)−α(∗))


and

Ψ(j)
2 = min

1,
π
(

β(∗) | α(j+1), ω
(j)
1 , · · · , ω

(j)
k , N, y

)
π
(

β(j) | α(j+1), ω
(j)
1 , · · · , ω

(j)
k , N, y

)


= min

{
1,

[
Γ(α(j+1) + β(∗))Γ(β(j))

Γ(α(j+1) + β(j))Γ(β(∗))

]{
Πk

i=1

(
1−ω

(j)
i

)β(∗)−β(j)
}

×
(

β(∗)

β(j)

)η2−1

eξ2(β(j)−β(∗))

,

respectively. In this study, the normal distribution is considered as the proposal for MCMC
approach. Generate α ∼ N(α(j), 1) and β ∼ N(β(j), 1). If α < 0, we do not update α; if
β /∈ Ωβ|α,N,Y , we do not update β. The obtained Markov chains based on the proposed
3RR-HB procedure can also be used to construct the empirical distribution of BE. Then,
the HPDI of the model parameter can be obtained via using the empirical distribution of
BE. The applications of the proposed 3RR-HB procedure and its quality will be studied in
Section 4 via using a real example and Monte Carlo simulations.

4. Applications
4.1. Homosexual College Freshmen Survey Example

A RR survey was first conducted in October of 2019 and repeated in October of 2020
to evaluate the homosexual proportion of freshmen in a university, located in north Taiwan.
College students from different majors were interviewed and asked to answer “yes” or “no”
to one of the following three statements: (i) Is the last code of your ID card even? (ii) Is the
last code of your student ID card even? (iii) Are you homosexual? Clearly, only Statement
(iii) is a sensitive-nature statement.

Each student in the RR survey randomly draw a ball from a urn, which contains five
white, five green and five red balls. If the drawn ball is white, answer Statement (i); if the
drawn ball is green, answer Statement (ii); otherwise, answer Statement (iii). Students do
not need to release the ball’s color to the interviewer. The three-statement RR design can
make students fully confide the true answer in the interviewer.

The samples are n1 = 283, y1 = 101 in 2019 and n2 = 178, y2 = 60 in 2020. It is
trivial to obtain that ps = p1 = p2 = 1/3 and δ1 = δ2 = 1/2. The data set is composed of
N = (283, 178) and Y = (101, 60). The MLEs of θ1 and θ2 can be obtained by θ̂1 = 0.071
and θ̂2 = 0.011 via using Equation (4). We note that the values of θ̂1 and θ̂2 are small and
that these two MLEs could be unreliable. The proposed 3RR-HB procedure in Section 3 is
applied to characterize the data sets and obtain the BEs with B = 100, 000 and B1 = 10, 000.

We need to set up the parameters of ξ1, η1, ξ2, η2 in the hyper-prior distribution. Based
on the sample information of y1/n1 = 101/283 = 0.357 and y2/n2 = 60/178 = 0.337, we
can assume that the expected values E(ω1) = E(ω2) = α/(α + β) is in (0.33, 0.36). Since
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we do not have sufficient information to set up the values of ξ1, η1, ξ2, η2 in Equations (13)
and (14), we would select the proper vales of ξ1, η1, ξ2, η2 to generate large variances of α
and β, and hence the prior distributions of α and β become non-informative to obtain BEs
of the model parameters.

The combinations of ξ1, η1, ξ2 and η2 that satisfy the condition of χ ∈ (0.33, 0.36)
can be selected for simulations where χ = E(α)

E(α)+E(β)
. A simulation study of sensitivity

analysis for the selections of possible values of ξ1, η1, ξ2 and η2 was conducted to show
that our proposed method is less sensitive to the selection of ξ1, η1, ξ2 and η2; that is, the
obtained BEs of model parameters are less sensitive to the selection of ξ1, η1, ξ2 and η2.
Five combinations of ξ1, η1, ξ2 and η2 were selected.

All these combinations can generate a wide range of large to extreme large vari-
ances of α and β. All selected parameters combinations can have similar values of χ; see
Table 1. We label these five combinations as C-I: (ξ1, η1, ξ2, η2) = (0.050, 1.5, 0.050, 2.8),
C-II: (ξ1, η1, ξ2, η2) = (0.040, 1.5, 0.040, 2.8), C-III: (ξ1, η1, ξ2, η2) = (0.035, 1.5, 0.035, 2.8),
C-IV: (ξ1, η1, ξ2, η2) = (0.030, 1.5, 0.030, 2.8) and C-V: (ξ1, η1, ξ2, η2) = (0.025, 1.5, 0.025, 2.8).
Using the normal proposals for the proposed MCMC procedure to generate α ∼ N(α(∗), 1)
and β ∼ N(β(∗), 1). If α < 0, we do not update α; if β /∈ Ωβ|α,N,Y , we do not update β. All
the estimation results are reported in Tables 2 and 3.

Table 1. The parameters in the hyper-prior for simulations.

ξ1 η1 ξ2 η2 E(α) Var(α) E(β) Var(β) χ

C-I 0.050 1.5 0.050 2.8 30 600 56 1120 0.3489
C-II 0.040 1.5 0.040 2.8 38 938 70 1750 0.3989
C-III 0.035 1.5 0.035 2.8 43 1224 80 2286 0.3489
C-IV 0.030 1.5 0.030 2.8 50 1667 93 3111 0.3489
C-V 0.025 1.5 0.025 2.8 60 2400 112 4480 0.3489

Table 2. The obtained BEs and their standard errors (SEs) via using the proposed 3RR-HB method.

ω̃1 ω̃2 θ̃1 θ̃2

BE SE BE SE BE SE BE SE

C-I 0.355 0.027 0.341 0.032 0.092 0.061 0.082 0.061
C-II 0.355 0.026 0.341 0.032 0.090 0.060 0.080 0.061
C-III 0.355 0.026 0.342 0.031 0.091 0.060 0.081 0.061
C-IV 0.355 0.026 0.342 0.031 0.089 0.059 0.078 0.060
C-V 0.352 0.025 0.344 0.028 0.078 0.055 0.070 0.054

Table 3. The acceptance rates for α, β, θ1 and θ2.

α β θ1 θ2

C-I 0.925 0.951 0.789 0.584
C-II 0.937 0.950 0.790 0.596
C-III 0.936 0.951 0.794 0.605
C-IV 0.943 0.948 0.790 0.605
C-V 0.964 0.870 0.771 0.638

In view of Tables 2 and 3, we can find the strength of the proposed 3RR-HB procedure.
Table 2 shows that the obtained BEs based on the proposed 3RR-HB procedure are reliable.
All bias and standard errors (SEs) of BEs based on the proposed 3RR-HB procedure with
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10,000 iterations, where B = 50, 000 and B1 = 10, 000, are small. Moreover, all acceptance
rates in Table 3 are larger than 50%. Since ω

(∗)
i ∼ Beta(yi + α(j+1), ni − yi + β(j+1)), all

the generated values are accepted. Therefore, the acceptance rates of ω1 and ω2 are 100%.
Moreover, the obtained BE of the homosexual proportion of college freshmen in the region
is about 9% in 2019 and 8% in 2020.

The empirical distribution can be constructed based on the obtained Markov chains of
BEs. Using the values of ξ1, η1, ξ2 and η2 of C-III in Table 1, the 90% HPDI of θ1 and θ2 are
(0, 0.174) and (0, 0.168), respectively. Overall, we can conclude that the point homosexual
proportion of college freshmen in the region in 2019 and 2020 was about 9% and 8% and
then up to 17.4% and 16.8%, respectively, under the considering of sampling error with
90% confidence. The length of HPDI is long as the sample size is small. If the confident
coefficient 95% is used instead of 90%, the length of the HPDI of θi will be longer than the
90% HPDI for i = 1, 2.

4.2. Monte Carlo Simulations

A Monte Carlo simulation study was conducted to verify the quality of the proposed
3RR-HB procedure. Referring to the example information in Section 4.1, we let ps = p1 =
p2 = 1/3, δ1 = δ2 = 1/2 and N = (n1, n2) with n1 = n2 = n = 200, 300, 500, 800, 1000
to generate random samples of y1 and y2. For each given value of θi, we generate Yi ∼
Bin(ni, ωi = θi/3 + 1/3) for i = 1, 2.

Let θ1 = θ2 = 0.05 and 0.1. The proposed 3RR-HB procedure with B = 50,000,
B1 = 10,000 is implemented. Moreover, the BEs of θi, i = 1, 2 are obtained based on the
values of ξ1, η1, ξ2, η2 of C-III in Table 1. Repeat each simulation procedure 10,000 times,
and then the bias and mean squared error (MSE) of each BE are evaluated based on the
10,000 runs. All simulation results are reported in Figure 1 and Tables 4–6.

Figure 1. The scatter plot of 1000 MLEs of θ̂1 and θ̂2 for the case of n = 200 and θ1 = θ2 = 0.05.
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Table 4. The sample proportions of the MLEs of θ̂1 > 0 and θ̂2 > 0 based on 10,000 runs.

θ1 = θ2 = 0.05
n = 200 n = 300 n = 500 n = 800 n = 1000

θ̂1 0.702 0.752 0.782 0.837 0.860
θ̂2 0.693 0.751 0.784 0.842 0.863

θ1 = θ2 = 0.10

θ̂1 0.848 0.896 0.940 0.978 0.986
θ̂2 0.840 0.898 0.940 0.976 0.999

Table 5. The bias and MSEs of BEs for θ1 = θ2 = 0.05.

n θ̃1 θ̃2

Bias MSE Bias MSE

200 0.0537 0.0049 0.0574 0.0058
300 0.0409 0.0033 0.0440 0.0039
500 0.0287 0.0021 0.0299 0.0023
800 0.0194 0.0013 0.0200 0.0014

1000 0.0158 0.0011 0.0165 0.0012

Table 6. The bias and MSEs of BEs for θ1 = θ2 = 0.10.

n θ̃1 θ̃2

Bias MSE Bias MSE

200 0.0320 0.0043 0.0347 0.0047
300 0.0222 0.0032 0.0238 0.0034
500 0.0120 0.0022 0.0121 0.0022
800 0.0069 0.0017 0.0061 0.0017

1000 0.0043 0.0015 0.0048 0.0015

Figure 1 displays the scatter plot of the first 1, 000 MLEs of θ̂1 and θ̂2 for n = 200 and
θ1 = θ2 = 0.05. We can see that many pairs of θ̂1 and θ̂2 are in Zones B, C, or D, and those
pairs are invalid MLEs due to θ̂1 < 0 or θ̂2 < 0. Only the pairs of θ̂1 and θ̂2 in Zone A are
valid due to the required conditions θ1 > 0 and θ2 > 0.

We found that 7020 MLEs of θ1 with the proportion of 0.702 and 6,930 MLEs of θ2 with
the proportion of 0.603 in Table 4 were positive when n = 200 and θ1 = θ2 = 0.05. In a
scan of Table 4, we find that the maximum likelihood estimation method has a high risk to
generate invalid values of θ̂1 and θ̂2 if the true values of θ1 and θ2 are closed to zero. The
sample proportions of P(θ̂1 > 0) and P(θ̂2 > 0) are increased as n is increased. However,
as the RR method goes through an interview process, it could be difficult to collect an large
sample to obtain reliable MLEs of θ1 and θ2.

As many negative MLEs were found, the bias and MSE of MLE are not reliable.
Tables 5 and 6 only report the bias and MSE of BE. In view of Tables 5 and 6, we found that
the bias and MSE of BE is declined as n increased. The bias and MSEs of θ̃1 and θ̃2 were
small. Hence, the simulation results indicate that the proposed 3RR-HB procedure can be a
reliable method to evaluate SNP.

5. Conclusions

In this paper, we proposed a 3RR-HB procedure to infer the SNP by considering a
hierarchical structure for the prior distribution in Bayesian modeling. Moreover, the Beta-
Binomial distribution was applied to characterize the RR samples. In order to overcome
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the computation complexity, the hybrid algorithm of using Gibbs sampling in Metropolis–
Hastings algorithm was adopted to update the model parameters during MCMC com-
putation. The proposed 3RR-HB procedure method is simple and minimally subjective
for use.

A data set regarding the homosexual proportion of college freshmen was used to
illustrate the applications of the proposed 3RR-HB procedure. We also conducted Monte
Carlo simulations to study the performance of the proposed 3RR-HB procedure. The
simulation results showed that the proposed 3RR-HB procedure was reliable to obtain the
BEs of model parameters. Moreover, the 3RR-HB procedure can help users to escape the
drawback of using invalid MLE to estimate the SNP.

The design of equal probabilities for the three statements was used to obtain RR
samples. Such a design will reduce the chance of interviewees to select the sensitive-nature
statement. However, such a design can enhance the willing of interviewees to confide in the
interviewer the true answer. The equal-probability design is a trade-off. Practitioners can
use unequal-probability design to obtain RR samples to implement the proposed 3RR-HB
procedure based on their considerations.

We only used one sensitive-nature statement to obtain RR samples. It will be in-
teresting to expand the proposed method for the RR method containing two or more
sensitive-nature statements. How to establish the HB modeling inference procedure for the
RR method with two or more sensitive-nature statements is an open question that can be
studied in the future.
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