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Abstract: The paper presents a review of papers on stochastic polling systems published in 2007–2020.
Due to the applicability of stochastic polling models, the researchers face new and more complicated
polling models. Stochastic polling models are effectively used for performance evaluation, design and
optimization of telecommunication systems and networks, transport systems and road management
systems, traffic, production systems and inventory management systems. In the review, we separately
discuss the results for two-queue systems as a special case of polling systems. Then we discuss new
and already known methods for polling system analysis including the mean value analysis and its
application to systems with heavy load to approximate the performance characteristics. We also
present the results concerning the specifics in polling models: a polling order, service disciplines,
methods to queue or to group arriving customers, and a feedback in polling systems. The new
direction in the polling system models is an investigation of how the customer service order within a
queue affects the performance characteristics. The results on polling systems with correlated arrivals
(MAP, BMAP, and the group Poisson arrivals simultaneously to all queues) are also considered. We
briefly discuss the results on multi-server, non-discrete polling systems and application of polling
models in various fields.

Keywords: polling systems; polling order; queue service discipline; mean value analysis; probability-
generating function method; broadband wireless network

1. Introduction

Due to the applicability of stochastic polling models, researchers face new and more
complicated polling models. Stochastic polling models are effectively used for performance
evaluation, design and optimization of telecommunication systems and networks, trans-
port systems, and road management systems, traffic, production systems and inventory
management systems, etc. (see [1–5]).

Polling systems are a special kind of queuing systems with multiple queues and a
server (probably multiple servers common to all queues). Each queue has its input of
customers. The server visits the queues in a specific manner and serves its customers.
The rule to select the next queue for a visit is called a service order. It can be, e.g., cyclic
polling when the server visits queues in a cyclic manner starting from the first queue to
the last one and then returns to the first queue, or a random polling order where the next
queue to be served is randomly selected.

The queues in a polling system are served accordingly to a service discipline, deter-
mining the number of customers that can be served during a server’s visit to the queue.
The most popular service disciplines are the exhaustive service when customers are served
until the queue becomes empty, the gated service when the server serves only customers
presented in the queue at the polling moment, with the other customers arriving during the
queue service period being served at the next visit, and the limited service where the number
of customers to be served during the server’s visit is limited by a fixed or a random number.
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Theoretical results obtained in the field of the polling system analysis before 1985
were described in detail in a book by Takagi [6]. The further development of theoretical
results in this area published before 1995 is presented in by Borst [7], and the papers
published in 1996–2009 are systematized in a review by Visnevsky and Semenova [8] and
its update [9]. The review [8] is continued in the book by Vishnevsky and Semenova [1],
where we emphasize how polling systems can be applied for design of broadband wireless
networks and present new models describing the functioning of broadband wireless Wi-Fi
and Wi-MAX networks with PCF (Point Coordination Function).

The aim of the present paper is an overview of results published in 2007 through 2020.
We describe the directions of theoretical research development in the area, systematize
the recent results obtained and point out new practical applications of polling systems.
We also note some unsolved theoretical problems and propose to apply the machine-
learning method to solve them. The paper continues reviews [8,9] and a paper by Borst
and Boxma [10] which provides an overview of key research methods for cyclic polling
systems with a single server, sets forth new approximate methods for systems in heavy
load conditions and systems with many queues and discusses several complex unsolved
problems in the field of analysis of polling systems.

The structure of the review is as follows. Section 2 gives a classification of polling
systems and describes the primary polling model. Section 3 presents the results of the
investigation of two-queue systems as a particular case of polling models. Section 4 further
describes new methods and the results obtained by the known methods. In the framework
of this review, we emphasize the mean value analysis and briefly describe its application to
systems in heavy load conditions to obtain the approximated performance characteristics.
The existence of a stationary mode for new polling systems is discussed in Section 5. Next,
we group the publications accordingly to various aspects of polling models, in particular,
a polling order (Section 6), a service discipline (Section 7), the methods to queue arriving
customers (Section 8), and customer feedback (Section 9). In Section 10, we primarily
focus on the papers investigating how the performance characteristics depend on the
customer service order within a queue (Section 10). Systems with correlated arrivals are
discussed in Section 11. The results for polling systems with multiple queues and systems
in heavy load are briefly discussed in Sections 12 and 13. Section 14 observes the results
concerning continuous polling models (systems where arriving customers are placed on a
circle, systems with a denumerable number of queuing places, and fluid models). Please
note that this is a specific and intricate field of research presented by just a few papers.
Conclusions are made in Section 15.

2. Classification of Polling Systems

In this section, we describe the classification of polling systems [8] according to the
number of queues, a polling order, and a queue service discipline.

Polling systems can be discrete (the number of queues is finite or denumerable) and
continuous (the number of queues or the total number of waiting places in the system
is nondenumerable) considering the number of queues in the system. In the latter case,
systems are usually presented by a circle or a two-dimensional region where arriving
customers are placed on. We also refer to fluid polling models where the amount of work
is increased continuously as a fluid level at each queue. The amount of work in a queue
usually means the time the server will spend in the queue while serving the queue load.

Discrete polling systems are characterized by:

– the number of queues and servers (single server or multi-server systems),
– queue parameters (arrival and service processes, service order within a queue),
– parameters of the server switchover between queues,
– service order,
– queue service disciplines
– and, probably, other parameters or the system topology.
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Let the queues be numbered from 1 to N, where N is the number of queues in the
system, (N ≥ 2). The queue number i is denoted by Qi, i = 1, N.

Let us give more details on a polling order and the service disciplines. Polling order is a
rule for the server to select the next queue to visit. The visit to a queue means the polling of
the queue and its further service (if the queue is not empty). Before visiting the queue, the
server usually needs time to leave the previous queue and to prepare for service (to switch,
move, etc.). This time is called the server switchover time between queues. Polling of a queue
means the moment when the server has finished switching and is ready to start service in
the queue. Polling a queue can have different senses depending on the system specifics
(for example, the information on the queue length becomes available only at the polling
moments). In the most polling models, polling times are convenient to be the embedded
points of time to construct the embedded Markov processes. If there are customers in the
queue, the server serves them accordingly to the service discipline prescribed to the queue
(the disciplines will be discussed later in detail) in a customer service order (for example,
First Come–First Served, Last Come–Last Served, random order, etc.). After serving the
queue, the server leaves it and switches to the next queue.

A polling order can be:

1. Cyclic: the server polls queues in a cyclic manner from Q1 to QN and then gets back
to poll Q1. The time the server polls the queues from Q1 to QN is called a cycle.

2. Periodic polling is defined by the polling table T = (T(1), T(2), . . . , T(M)) of size M
(M ≥ N), T(i) ∈ {1, . . . , N}, i = 1, M. The server visits the queues in order QT(1),
QT(2), . . . , QT(M), QT(1), QT(2), . . . , QT(M), . . . . It is assumed that the polling table
contains all queue numbers.
The particular case of the periodic polling is a star polling where one queue is a priority
(say Q1), and the server visits it each time after serving another queue, namely in
order Q1, Q2, Q1, Q3, . . . , Q1, QN . Here we also note an elevator polling where the
queues are visited from the first to the last (up cycle), and then starting from the last
queue, the server visits queues backwards (down cycle).

3. Random polling: the next queue to visit (say Qi) is chosen randomly with probability
pi, i = 1, N, ∑N

i=1 pi = 1. The random polling can be Markovian when the next queue
to visit is Qj given that the server leaves queue Qi with probability pij, i, j = 1, N,
∑N

j=1 pij = 1, i = 1, N.
4. Cyclic adaptive polling: a server polls the queues but skips those of them, which were

empty at their polling moment at the previous cycle.
5. Priority polling, when the queues are of different priority levels, and a queue can be

served only when all higher-priority queues are empty.

Please note that the adaptive cyclic and priority polling order depend on a current
system state, and the server decides which queues to visit at the specific time moments
depending on full or partial information about the system state.

The queue service discipline is the number of customers which can be served during the
server visit to the queue:

1. Exhaustive service, the server serves a queue until it becomes empty.
2. Gated service, the server serves only those customers in the queue which arrived before

the polling moments. It can be presented as a gate in the queue, and all customers
arriving before the polling moment are placed before the gate. At the polling moment,
the gate is closed, and customers arriving during the queue service time are blocked
(placed behind a gate) and will be served during the next visit. The special case of the
gated service is a globally gated service, where all gates are closed simultaneously at
the cycle beginning (usually it is the first queue polling moment).
In case an arriving customer must wait in the queue several cycles before it gets
served, the gated service discipline is called multi-phase gated service. Such discipline
can be interpreted as follows. The queue has k buffers (k gates), and an arriving
customer is placed at buffer k (before gate k, k ≥ 1). At the moment the queue
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is polled, all customers from buffer i are moved to buffer i − 1 ahead. During the
visit time, the server serves customers only from the first buffer. Thus, a customer
consecutively moves through buffers during k cycle until it is served.

3. Limited service: the number of customers that can be served is limited by l (l-limited
service), or the time the server can spend at the queue is limited (T-limited service).
Both disciplines can be exhaustive or gated. With the exhaustive case, the server
leaves a queue if the queue is empty or l customers are served (the time to visit
the queue has expired for T-limited service), whichever occurs first. With limited
gated service, the sentence «queue is empty» is replaced by «all customers before the
gate are served». A special case of l = 1 is sometimes called non-exhaustive service.
T-limited service needs to specify the server behavior when the time to spend at the
queue is expired: the server leaves the queue immediately, and a customer on the
server leaves the system unserved or waits for re-service when the server visits the
queue the next time.
The value l, limiting the number of customers that can be served per visit, can be
fixed or random. The latter case is called the randomly limited service and value
l is defined at every polling moment as a value of a discrete random variable with
distribution {aj, j ≥ 1}, i.e., P{l = j} = aj. In the case of T-limited service, variable
T can have an arbitrary distribution function. An example of a randomly limited
service is a binomial service with l having a binomial distribution with parameters X
and p. X is the queue length at the polling moment, p is a parameter, 0 < p ≤ 1. For
this discipline

aj =
X!

j!(X− j)!
pj(1− p)X−j, j = 1, X,

aj = 0 for j > X. In practice, this discipline is described as follows. At the polling
moment, each customer in the queue is marked with probability p is marked and
will be served during the visit time, and with the additional probability 1− p, it is
marked to stay at the queue until the next marking procedure. This discipline can be
exhaustive or gated. For the binomially exhaustive service, each customer arriving at
the queue during the server visit is marked to be served during the current visit time
or to stay at the queue until the next marking procedure at the next polling moment.
Another example of random service is the Bernoulli discipline, where the first customer
in the queue is served with probability 1, and then the server takes the next customer
with probability p and leaves the queue with probability 1− p. For this discipline we
have aj = (1− p)pj−1, j ≥ 1.

4. l-decrementing service where the server serves the queue in the queue until its length is
l less than it was at the polling moment or until the queue is empty whichever occurs
first, l ≥ 1. In case l = 1 the discipline is called semi-exhaustive.

5. Threshold service, where the server starts serving a queue only if its length is no less
than the specified level (threshold).

If all queues of a polling system have different service disciplines, the polling system
is said to have a mixed service.

The object of study of the most papers on polling systems is the system with a single
server and N (N ≥ 2) queues with an unlimited waiting space. Queue Qi has the Poisson
arrival of customers with parameter λi. The service time of customers in Qi are i.i.d.

with distribution function Bi(t), the mean bi =
∞∫
0

tdBi(t), the second moment b(2)i and the

Laplace Stieltjes transform (LST) B̃i(x) =
∫ ∞

i=0 e−xtdBi(t), i = 1, N. The arrival and service
processes are supposed to be independent. Following to the Kendall’s classification, such
system is called the M/G/1-type polling system.

The server visits the queues at a specific polling order and serves them following to
their service disciplines. The time to switch to queue Qi (prepare for service, etc.) has a
distribution function Si(t), the mean si, the second moment s(2)i and LST S̃i(x), i = 1, N.
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For systems with cyclic or periodic polling of queues, we also denote by s and s(2) the
first and second moments of the total duration of server switching in one cycle:

s =
N

∑
j=1

sj, s(2) = s2 +
N

∑
j=1

(s(2)j − s2
j ).

Denote by ρi = λibi the load of queue Qi, by ρ = ∑N
i=1 ρi is the total system load.

The critical parameter of the cyclic polling system is cycle time. For cyclic (periodic) polling
systems, the cycle is the time required for the server to visit queues from Q1 to QN (from
QT(1) to QT(M)).

For cyclic polling systems, the mean cycle consists of time when the server serves the
queues (it spends a fraction of the time ρ) and the time when it switches between queues
(it spends the average time s per cycle). Thus, C = ρC + s which yields

C =
s

1− ρ
.

3. Two-Queue Polling Systems

In this section, we briefly outline the results of two-queue system analysis as a par-
ticular case of polling systems. Such models are usually considered in the case when
the corresponding systems with an arbitrary number of queues are not provided with an
accurate analysis yet, for example, in case of correlated input or when a polling model
(with two or three queues) has a precise, practical application.

Winands et al. [11] consider the system with two M/G/1-type queues (priority and
non-priority). The priority queue is served exhaustively; the non-priority queue has k-limited
service. The server takes a switchover time to a queue only if the queue is not empty. It is
shown that in the case of the limited-service discipline, it is possible to reduce the cost of the
system operation significantly. The system is analyzed by using the probability-generating
function (PGF) method, and the stationary state probabilities are found as a solution of the
linear equations, which allows obtaining the customer sojourn time.

Boon et al. [12] consider a system of two queues, one of which received two priority in-
puts of customers. The discipline of service is exhaustive, gated, or globally gated. For this
model, the authors obtain the cycle time distribution and the queue length distribution at
the polling moments and provide the waiting time analysis. Vlasiou et al. [13] assume that
the server switchover time to queues and the customer service times are correlated and
describe two ways to correlate the switchover times. For the first way, the switchover times
are defined by the sojourn times of a Markov chain in its states, and the second way is to
use the two-dimensional Laplace distribution. For more information on priority polling
systems, see Section 6.4.

Chernova et al. [14] investigate an M/G/1-type polling system where the first queue
service discipline depends on the second queue state. If the second queue is not empty
at the polling moment, the server serves it exhaustively, and the first queue receives a
1-limited service (the server serves no more than one customer per visit at a queue). In this
case, the polling cycle is called regular. Otherwise, the first queue receives k-limited service,
and the cycle is called modified. The system is investigated by the PGF method, a stability
criterion, and the mean cycle time is obtained.

Dorsman et al. [15] apply the PGF method to a two-queue system with exhaustive service
and a random Markovian polling order and obtain the LST of the waiting times distribution.

Boon and Winands [16] consider a two-queue M/M/1 type system with k-limited
service and zero switchover times. They show that as a load of any queue increases (say,
ρ1 for Q1) and the system becomes critically loaded (ρ = ρ1 + ρ2 → 1) the other queue
behaves as the corresponding M/M/1-type queuing system with server vacations having
the k2-Erlang distribution. It is also shown that the behavior of a queue is independent of
the other’s one.
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The system of two M/M/1 non-symmetric queues is considered by Adan et al. [17].
An arriving customer joins the shortest queue. The stochastic process describing the system
behavior is analyzed by using two approaches: the compensation approach developed by I.
Adan for the nearest-neighbor two-dimensional random walks and the PGF method with a
further reduction to a boundary value problem.

The papers by Gaidamaka and Shorgin et al. [18,19] consider the system of two
M/M/1/R-type queues. If the number of customers in the first queue reaches a criti-
cal level of load, then the arrival parameter of the second queue is reduced. A numerical
method is proposed for calculating the stationary probability distribution of the system
states. Avrachenkov et al. [20] consider the following service policy for an M/M/1/K-type
system. One queue, say Q2, is assigned a threshold, and when the server visits Q1 and the
queue Q2 length exceeds its threshold, the server stops serving Q1 and switches to Q2. The
queue is served until queue length becomes lower than the threshold level, and the server
gets back to queue Q1. This study is continued by Perel and Yechiali [21] for the case k = ∞.

A system with a similar threshold strategy for switching servers between queues is
discussed by Jolles et al. [22]. A threshold is assigned to each queue, and as the queue is
served and its length becomes lower than the threshold, the server decides to continue serv-
ing the queue or leave it and switch to another queue. The authors use a matrix-analytical
approach (see Section 11 to obtain the main performance characteristics). Furthermore,
Perel et al. [23] consider a system where a server selects the longest queue to serve, apply
the PGF method, and provide a comparative analysis to a corresponding M/G/1-type
polling system.

A two-queuing polling system inventory model is presented by Granville and Drekic [5].
In the model, a queue is represented not by customers but by breakdowns of a limited
number of identical machines that are eliminated by a general mechanic.

Here, we also note the papers on the analysis of tree-queue systems. Chernova et al. [24]
establish the stability condition for the three-queue system with limited service. Liu et al. [25]
consider the M/M/1-type system. Queue Q2 has a higher priority than Q3, and Q1 is of
the highest priority. Q1 is served exhaustively, and the server interrupts serving any other
queue each time a customer arrives to Q1. Queue Q2 is also assigned a threshold, and if the
queue length exceeds the threshold at the moment the server visits Q3, the server leaves
Q3 and switches to Q2. The customer service at Q3 resumes only when Q2 length becomes
less its threshold, and queue Q1 is empty.

4. Methods to Study Polling Systems
4.1. Mean Value Analysis

The mean value analysis is a new method to study polling systems proposed by
Winands et al. [26] to calculate the mean queue lengths at an arbitrary time. The mean
can be applied for systems for the mean queue visit period can be calculated. Below we
briefly describe the method. The duration of the server’s visit to a queue is the sum of the
service time of customers in the queue and the previous (for exhaustive) and the following
(for gated service) server switchover time. Since the purpose of the method is to calculate
the performance characteristics at an arbitrary time, it is necessary to know the expected
duration of the queue visit by the server and the expected extra visit time.

The mean residual and passed service times of a customer in queue Qi are equal and

defined as RBi =
b(2)i
2bi

, and the mean residual switchover time to Qi is RSi =
s(2)i
2si

.
Let vi be the mean visit time of the server to Qi and the (i, j) period be the sum of j

consecutive visit times of the server to queues starting from Qi: vi,j = ∑
i+j−1
n=i vn, i, j = 1, N.

The mean fraction qi,j of time the system spends in state (i, j) is defined as qi,j =
vi,j
C . The

mean residual duration of (i, j) period is RVi,j =
v(2)i,j
2vi,j

and is unknown.
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The unknown values RVi,j , i, j = 1, N are related to Li,j, i, j = 1, N (the mean length of
Qi at an arbitrary moment of Qj visit time). For a system with exhaustive service these
relations have the form

N

∑
n=1

qn,1Li,n =
λi

1− ρi

(
ρiRBi +

si
C

RSi + (1− qi,1)(RVi+1,N−1 + si)
)

. (1)

The relation (1) forms the system of N2 linear equations for 2N2 unknowns Li,j and
RVi,j . The rest N2 equations are obtained by analyzing the average residual time of the
period (i, j) and have the form

RVi,j =
qi,1

qi,j

(
RVi,1

∏
j−1
n=1(1− ρi+n)

+
j−1

∑
n=1

si+n + Li+n,ibi+n

∏
j−1
m=n(1− ρi+m)

)
+

(
1− qi,1

qi,j

)
RVi+1,j−1 . (2)

The derivation of (2) is described detail in [26]. The case of gated service requires the
derivation of 2N(N + 1) equations since during the visit period the queue length splits
up two queues (before and behind the gate): the first is the number L̄i,i of customers that
will be served during the current server visit, and the second one is the number L̃i,i of
customers arriving during the server’s visit to the queue and they should wait for the next
cycle to be served at the next server’s visit.

The mean value analysis can be extended to the following polling systems: systems
with a group Poisson input, systems with periodic polling order, discrete-time systems, and
it also can be applied for comparative analysis of various polling models, see, e.g., [27–29].

Van Vuuren and Winands [27] apply the mean value analysis to approximate the
mean waiting times for the limited service. The main idea of approximations is to split
the initial system with N queues into N single-queue systems with server vacations and
k-limited-service discipline. In addition, since it is most likely that a long (short) service
period will be followed by a long (short) intervisit period, it is assumed that the duration
of the intervisit periods is correlated with the number of customers served during the
previous queue visit. The main aim of the analysis is to find the first two moments of the
conditional intervisit period provided that l customers were served in the queue at the
previous service period, as well as to find the intervisit period distribution.

Wierman et al. [30] apply the mean value analysis to the system with exhaustive
or gated service under a variety of the customer service order within a queue: FCFS
(First Come–First Served, as a particular case considered by Winands et al. [26]), LCFS
(Last Come–First Served) and preemptive LCFS, Processor Sharing, Shortest Job First and
Shortest Remaining Processing Time. For an M/G/1-type polling system of with variable
customer arrival parameters depending on the server position, Boon et al. [31] consider the
mean value analysis to obtain the mean waiting times in queues and residual average cycle
time, as well as the LST of the joint number of customers in the system at polling moments,
the waiting time the cycle time distributions.

The mean value analysis is applied by Vishnevsky and Semenova [29] for a system
with adaptive dynamic polling. Adaptive polling assumes that the server skips (does
not poll) the queues that were empty at their polling moments in the previous cycle.
If all queues of the system should be skipped, the server takes a vacation and then starts
polling all queues in the cycle. The analysis is based on an approximate calculation of the
probabilities that the queue will be skipped in a cycle followed by the application of the
mean value analysis to calculate the mean waiting times.

Vishnevsky et al. [32] propose a duplex polling system describing the performance of
the polling systems in high-speed wireless mesh networks. The queues are polled cyclically
by two servers. Some of the queues are available for both servers, and the remaining
queues are polled just by one of the servers.
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4.2. Generating Function Method

The probability-generating function (PGF) method to study cyclic polling systems
with exhaustive, gated and globally gated service is described in detail by Yechiali [33].
The method is widely used for the analysis of various polling systems, and in this section
we list a few papers using this method. The remaining papers are discussed in the other
sections of this review taking into account the specifics of their polling models. For a cyclic
M/G/1polling system, Boxma et al. [34] remove the restrictions on the type of service and
obtain the relations for the PGF of the system states at embedded moments (at the polling
moments, the moments the server starts service and leaves a queue, the moments of a
customer service beginning and completion). Switchover times can be zero and non-zero.
In case of a zero switchover time, it is assumed that when the system becomes empty,
the server stops at the first queue and starts polling the queues again as a new customer
arrives to the system. The main result of this analysis is an expression for the generating
function Q(z) = Q(z1, z2, ..., zN) of the joint queue length distribution at an arbitrary time:

Q(z) =
1
C

N

∑
i=1

Vbi
(z)−Vci (z)

∑N
j=1 λj(1− zj)

zi

(
1− B̃i

(
∑N

j=1 λj(1− zj)
))

zi − B̃i

(
∑N

j=1 λj(1− zj)
) +

Vci (z)−Vbi+1
(z)

∑N
j=1 λj(1− zj)


where the mean cycle time C for zero switchover time is C = s/(1− ρ), and C =

Vb1
(0)

λ(1−ρ)

otherwise, Vbi
(z) is the PGF of the joint queue length at Qi polling moments, Vci (z) is the

PGF of the joint queue length at the moments the server departs from Qi.
The LST of the total amount of work in the system at an arbitrary time is derived from

X̃(ω) =
1
C

N

∑
i=1

Vbi
(B̃(ω))−Vci (B̃(ω))

∑N
j=1 λj(1− B̃j(ωj))

· ωi

∑N
j=1(λj(1− B̃j(ωj))−ωj)

where B̃(ω) = (B̃1(ω1), . . . , B̃N(ωN)).
Please note that the polling system with service disciplines that are not of the branch-

ing type defined by Resing [35] cannot be analyzed by exact methods in the general case.
Such disciplines are described as follows. If the server arrives at Qi and finds ki cus-
tomers there, then during the server’s visit, each of these ki customers will effectively be
replaced in i.i.d. manner by a random population with probability-generating function
hi(z), which can be any N-dimensional probability-generating function. In particular, for
the exhaustive service

hi(z) = θi

(
∑
j 6=i

λj(1− zj)

)
where θi(s) is the LST of the busy period generated by a customer in queue Qi which
defined as a solution of the functional equation θi(s) = B̃i(s + λi(1− θi(s))). In case of the
gated service

hi(z) = B̃i

(
N

∑
j=1

λj(1− zj)

)
,

and for the binomially exhaustive and binomially gated service, respectively,

hi(z) = (1− pi)zi + piθi

(
∑
j 6=i

λj(1− zj)

)
, hi(z) = (1− pi)zi + pi B̃i

(
N

∑
j=1

λj(1− zj)

)
.

The limited-service disciplines are not of the branching type, since for example
1-limited service implies hi(z) = B̃i

(
∑N

j=1 λj(1− zj)
)

for the first customer at the queue
and hi(z) = zi for all other customers. However, some individual cases allow obtaining
the generating functions Vbi

(z) and Vci (z) of the joint queue length at the moments of the
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visit beginning and the server departure Qi, respectively, e.g., the two-queue system with
exhaustive service for Q1 and k-limited service for Q2, see Winands et al. [11].

A modified PGF method for the comparative analysis of the individual queue charac-
teristics for an M/G/1 polling system was proposed by Guan and Zhao [36]. A queue, say
Qi, is analyzed separately, and the other queues are considered to be the whole queue Qi ∑.
The further analysis implies derivation of the relations between the PGFs of the number of
customers in Qi and Qi ∑ at the polling moments.

Saffer and Telek [37] present the unified analysis for a BMAP/G/1 type polling
system with exhaustive or gated service. Each queue has BMAP arrival of customers
(Batch Markovian Arrival Process, see Dudin et al. [38]) described by the matrix generating
function D̂i(z) = ∑∞

k=0 Di,kzk for queue Qi, i = 1, N. The methodology of this study
is based on the division of the analysis into two parts: dependent and independent of
service discipline. Equations are obtained for the system for vector generating functions of
the average number of customers in queues, which are valid for a wide class of queuing
disciplines and for zero and non-zero switchover times. These equations can be numerically
solved as a system of linear algebraic equations.

In the part of the analysis independent of a service discipline, the authors establish the
dependence of the vector generating function q̂i(z) of the number of customers in queue
Qi on the vector generating functions f̂i(z) and m̂i(z) of the stationary state distribution
of the queue length at the moments the server starts visiting and departs from the queue
respectively, within one cycle

q̂i(z)D̂i(z)
(
zI − Âi(z)

)
= λi(1− ρs

i )(z− 1)
f̂i(z)− m̂i(z)

f (1)i −m(1)
i

Âi(z)

where
Âi(z) =

∫ ∞

0
eD̂i(z)tdBi(t)

is the PGF of the number of customers arrived during a customer service time in queue Qi,
f (1)i (m(1)

i ) is the mean length of Qi at the moments the server starts (finishes) service of
a customer, ρs

i = λs
i bi where λs

i is the mean intensity of BMAP during the queue service
period in Qi.

The following describes the dynamics of the system in a particular service discipline
through multi-dimensional dependent random variables describing the system state at the
visit beginnings and completions. A stationary relation

q̂s
i (z)− f̂d

i (z) =
1
gi

f̂i(z)− m̂i(z)

is obtained for the vector generating function of the stationary distribution of the number of
customers in Qi where q̂s

i (z) (q̂d
i (z)) is the PGF of the queue length at the service beginning

(completion), gi is the average stationary number of customers served in Qi during a cycle
(it is assumed that the polling order can be non-cyclic).

Van Ommeren et al. [39] consider a polling model with self-ruling service. A server
can decide to leave a queue independent of the queue length and the number of served
customers. The last service of the server’s visit to a queue may differ from the other service
times with respect to a service time distribution function. The PGF method is applied
to derive the joint probability-generating function of the number of customers and the
Laplace transform of the workload in the queues at an arbitrary time.

4.3. Other Methods

This section also includes the functional calculation approach. This method was intro-
duced by Hirayama et al. [40]. Its purpose is to find the functional dependencies for
the performance characteristics of a cyclic M/G/1-type polling system with gated or ex-
haustive service. Unlike other methods of polling system analysis, this method allows
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investigation of the system in a transition state. The method considers the expected wait-
ing time of a customer conditioned on the system state at the customer arrival moment.
The mean waiting time is considered to be a function of the system states. Furthermore,
Hirayama [41] generalizes this model to the case of a Markov feedback and obtain the
linear functional relations for the mean waiting times given that the system is in a stationary
state. Then Hirayama [42] considers an M/G/1-type polling system with a random polling
order and a mixed (gated or exhaustive) service discipline.

An analysis of polling systems using theory of decomposable semiregenerative processes is
described in detail by Rykov [43]. The polling order is supposed to be periodic. The LST of
the PGFs of the queue lengths with different types of customers (exhaustive, gated, and
limited) are obtained on a separate period of the system performance. Van der Mei [44]
proposes the other method to study the polling systems based on the theory of branching
processes with migration. The method allows obtaining the approximate expressions for
the LSTs of the queue lengths and the waiting times for a wide class of polling systems
whose behavior can be described by a branching process.

For the practical application of poling system models, it becomes necessary to numer-
ically implement the methods of polling system analysis to calculate their performance
characteristics. Semenova and Bui [45] present a software package to calculate the per-
formance characteristics of polling systems with various types of a polling order (cyclic,
adaptive cyclic, random), a wide class of service disciplines (gated, exhaustive, globally
gated, limited, threshold and random). The customer input is considered to be Poisson, of
the phase type or a correlated MAP. The software package is presented by a simulation
module and an analytical calculation module implementing the formulas for calculating
the performance characteristics for polling systems that allow the exact analysis. Please
note that models of polling systems with correlated input (MAP and BMAP ) are of high
practical importance [38] (for more details on such polling systems, see Section 11). The cur-
rently known analytical results of their research for an arbitrary number of queues [37,46]
pose an additional problem for the numerical implementation of these results, and this
problem is not solved by the authors. Therefore, in the software package, such polling
systems can be analyzed by using the simulation.

Vishnevsky et al. [47] propose to use the machine-learning method based on the
artificial neural networks to calculate the performance characteristics of polling systems.
Machine-learning results are presented for the M/M/1 and MAP/M/1-type cyclic polling
systems and for an M/M/1-type system with adaptive cyclic polling. Horng and Lin [48]
use machine learning to solve the optimization problem for the limited-service discipline
in a G/G/1/K-type polling system with k-limited service. Please note that this area
of research is new and there are few papers applying machine learning in the field of
queuing theory [49,50]. However, as the results of calculations show, the method opens
new possibilities to study the polling models which analysis is cumbersome or seems to be
impossible by the exact or approximated methods of the theory of random processes.

5. Stability Conditions for Polling Systems

In this section, we note some papers dealing with stability conditions in polling
systems. Saffer and Telek [51] establish stability conditions for a system with periodic
polling, BMAP input of customers and a mixed service discipline, and generalize the
results obtained in their earlier works. They note that there are three possible types of
stability of a polling system:

1. Whole stability: all queues in the system are stable;
2. Partial stability : one or more queues with limited-service discipline are unstable, and

the other queues are stable;
3. Instability: all queues are instable, and the limiting mean cycle time is infinite.

A queue in a polling system is stable if there exists its stationary state probability
distribution (without considering the states of the other queues in the system), and the
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entire polling system is stable if there exists the stationary state probability distribution at
the polling moments and the mean cycle time is finite.

The stability criteria for queue Qi is gi < gmax
i where gi = limm→∞ gi(m) and gi(m) is

the mean number of customers served in queue Qi at cycle m during all visits (called stages)
of the server to queue Qi within this cycle, gmax

i is the maximal number of customers the
server can serve at the queue during a cycle. For example, gmax

i = ∞ for the gated service
and gmax

i = l for l-limited service.
The queue service discipline at the current visit is called unlimited if the average

number of customers that can be served during one visit is unlimited given that the
queue contains an infinite number of customers at the polling moment (such disciplines
include exhaustive, gated, binomial-gated and binomial-exhaustive service). Otherwise,
the queue service discipline is called limited (non-exhaustive, semi-exhaustive, k- and
T-limited disciplines).

A queue is said to be of unlimited (limited) type if at least at one stage (at all stages)
in a cycle, it has unlimited (limited) service discipline. The queue service stage in a cycle
means a separate visit period for this queue (starting from the polling moment to the
moment the server leaves it). In the case of periodic polling, they can have several visit
stages during a cycle.

The limited type queue Qi is stable if and only if

N

∑
k=i

ρi +
λi

gmax
i

(
s +

i−1

∑
k=1

gmax
k bk

)
< 1

where s is the total mean switchover time of the server during a cycle.
The unlimited type queue Qi is stable if and only if

ρU = ∑
k∈U

ρk < 1

where U is the set of the numbers of unlimited type queues.
Let Q1 be the limited type queue then the stability criterion has the form

• whole stability: ρ +
(

λ1
gmax

1
r
)
< 1;

• partial stability: ρ +
(

λ1
gmax

1

)
r ≥ 1 and ρu < 1;

• instability: ρu ≥ 1;

Also, it is worth noting the paper by Vis et al. [52] analyzing the cycle time of a polling
system with gated and globally gated service in non-stationary mode. The first and second
moments and the correlation coefficient between two different cycles are obtained (given
that the distribution of the first cycle duration is known).

As mentioned in Section 3, Chernova et al. [24] study a three-queue system with
limited service by using a fluid model. They show that the stability conditions for such a
system cannot be obtained in the closed-form expressions relating to the first moments of
the system parameters. They also assume that the stability region may depend on the type
of the distributions of service times, switchovers, and interarrival to the queues.

6. Queue Polling Order

This section systematizes the results on the polling system analysis concerning the
polling orders. Here we group the papers investigating a random order, a star polling, and
cyclic adaptive polling.

6.1. Random Order

Remind that a two-queue system with a random polling order is considered by
Dorsman et al. [15]. Then, Dorsman et al. [53] obtain a system of functional equations
for the stationary state distribution of an M/G/1-type polling system with an arbitrary
number of queues.
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Hirayama [54] and Fiems and Altman [55] consider the random Markovian polling
order (after the server departs from queue Qi it switches to queue Qj with probability pij)
and customer feedback. Feedback means that a customer finishing its service can return to
the system to repeat its service (see Section 9). In [55], the feedback is described by a semi-
linear random process. Hirayama [54] considers the case when a queue can have customers
of different priorities. A customer, upon finishing its service, can return to its queue to be
served again, change its priority, or transit to another queue. The switchover times are
assumed to be zero. In the paper, the various performance characteristics are obtained.

MacPhee et al. [56] consider a polling system with the regeneration of parameters,
i.e., every time the server leaves a queue, the queue service, and arrival parameters can
change. In this model, only two queues in the system are open at the same time; that
is, they are available to accept arriving customers. The other queues do not accept the
arriving customers who are lost. Let queue Qk be open. After the server finishes the queue
service, it switches to the next open queue, say Qi. Then queue Qk is closed for its arrivals,
and the next queue to be opened is Qj with probability pij. At the moment the queue
service is finished, the arrival and service parameters in open queues are regenerated. The
main aim of [56] is to establish the stability conditions for such a system. The case of an
arbitrary number of simultaneously opened queues is further investigated by MacPhee at al.
in [57]. They consider an M/M/1-type polling system with zero switchover times, feedback,
and parameter regeneration, as described above. In this regeneration model, not only the
customer arrival and service parameters are regenerated, but so do the feedback parameters,
i.e., the probabilities that a customer after completing its service stays at the queue. The
authors obtain the conditions for any order moments to a system busy period to exist.

Lee [58] considers an M/PH/1/1-type polling system with a random polling order
and server breakdowns. The server fails only during customer service. It stops service,
waits for the repair, and then continues the interrupted customer service.

6.2. Star Polling Order

Remind that for the star polling, the server polls queues in order Q1, QH , Q2, QH , ...,
QN , QH . Guan et al. [59] consider the discrete-time polling system is considered where QH
is served exhaustively and the other queues get 1-limited service when the server serves
no more than one customer from a queue per visit. The analysis provides the mean cycle
and the mean queue lengths. Guan and Zhao [36] consider the model of Guan et al. [59]
in the case of zero switchover times. The star polling system with gated service for all
queues is analyzed by Yang and Ding [60] by the PGF method to obtain the mean number
of customers in queues at polling moments.

The star polling system of four G/G/1-type queues with exhaustive service of the
main queue and 3-phase gated service for other queues is investigated by Bao et al. [61].

6.3. Cyclic Adaptive Polling

Cyclic adaptive polling in polling systems was first considered Vishnevsky et al. [62,63].
With such a polling procedure, the server does not poll a queue (skips it) in the current
cycle if the queue was polled in the previous cycle and found empty at the polling moment.
We assume that in the case when the server polls N queues sequentially, and all of them are
empty (starting from any queue) it stops and takes vacation with a distribution function
H(t) with the first and the second moments β and β(2) and the LST H̃(s). As the vacation
finishes, the server starts polling the next queue, and the polling procedure is repeated.
All queues that the server skips in the current cycle will be polled in the next cycle. Such
a model was first analyzed in [62] by decomposition of the polling system into N single-
queue systems with server vacations the distribution of which depends on whether the
queue was empty at its polling moment or not. The system is studied in a more general
form when the input of customers is BMAP (the Batch Markovian Arrival Process), see,
e.g., Dudin et al. [38]. Then, the results of [62] are applied to the case of an M/G/1-type
polling system where the server vacations for a queue are considered to be the time the
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server spends while visiting the other queues, see Vishnevsky et al. [63]. An approximate
algorithm for calculating the main performance characteristics has been developed.

The study of adaptive polling systems is continued by Semenova and Bui [64] and
Vishnevsky et al. [65] where the queue length distribution at an arbitrary polling moment
is obtained by the PGF method.

The stability condition for an adaptive cyclic polling system is ρ = ∑N
i=1 ρi < 1 where

ρi = λibi is the load of Qi. The average cycle time for such a system is given by the formula

C =
∑N

i=1 siui + β ∏N
i=1(1− ui)

1− ρ
(3)

where ui is the probability that Qi is polled at an arbitrary cycle. This probability is
calculated as

ui =
1

1 + e−λiC
, i = 1, N. (4)

Equations (3) and (4) provide the system for calculating the mean cycle and proba-
bilities ui, i = 1, N. Using the PGF method described in detail by Yechiali [33] we get the
functional equations for PGFs Fi(z), z = (z1, z2, ..., zN) of the queue length distributions at
the polling moments in case of the gated service:

Fi(z) = uiM
(0)
i+1(z) + (1− ui)ui−1M(1)

i+1(z) + ...+ (1− u1) · · · (1− uN−1)uNM(N−1)
i+1 (z)+

+ (1− u1) · · · (1− uN)M
(N)
i+1 (z)

where

M(l)
i+1(z) = Fi−l

(
z1, z2, ..., zi−l , B̃i−l

(
N

∑
j=1

λj(1− zj)

)
, zi−l+2, ..., zN

)
×

× S̃i−l+1

[
N

∑
j=1

λj(1− zj)

]
, l = 0, N − 1,

M(N)
i+1 (z) = Fi−N

(
z1, z2, ..., zi−N , B̃i−N

(
N

∑
j=1

λj(1− zj)

)
, zi−N+2, ..., zN

)
×

× S̃i−N+1

[
N

∑
j=1

λj(1− zj)

]
H̃

(
N

∑
j=1

λj(1− zj)

)
.

And thus, going over the partial derivatives at the point z

fi(j) = M
[

X j
i

]
=

∂Fi(z)
∂zj

∣∣∣∣∣
z=1

,

fi(j, k) = M
[

X j
i Xk

i

]
=

∂2Fi(z)
∂zj∂zk

∣∣∣∣∣
z=1

, fi(i, i) = M
[

Xi
i(Xi

i − 1)
]
=

∂2Fi(z)
∂z2

j

∣∣∣∣∣
z=1

where 1 = (1, ..., 1) we get a system of linear equations to calculate the first and second
moments of the queue lengths at the polling moments.

Similar results for exhaustive service are obtained by Vishnevsky et al. [65]. The mean
waiting time Wi in queue Qi is calculated as

Wi =
fi(i, i)− fi

2λi fi
(1 + ρi), i = 1, N,

see Yechiali [33] for details.
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The similar adaptive polling scheme with skipping the empty queues is considered in
a discrete-time polling model by He et al. [4] describing the wireless body area networks,
WBANs. In the model, a queue is presented by a wearable wireless sensor or implantable
sensor nodes which are used to forward the body signals to a personal server located
in intra-WBAN. Each wireless body sensor with no data to transmit and the personal
server with no response from all sensors can turn into the inactive state for the energy
saving. The PGF method is used to find the stationary state distribution at the moments of
sensor polling, while sensors that do not have data to transmit are not polled in a cycle.
The average waiting times in the queues, the average cycle time, and other characteristics
are obtained.

6.4. Priority Polling

In Section 3, we mentioned that the priority polling order in polling systems is con-
sidered by Winands et al. [11], Boon et al. [12], Liu et al. [25] for systems of two or three
queues in the system.

The priority in polling systems can be used in the following directions:

1. Using of a polling table (the order to visit the queues) so that the higher-priority
queues get more visits by the server in the cycle than the lower-priority queues.

2. Using different queue service disciplines.
3. Varying the customer service order within a queue.

Boon and Adan [66] use a mixed gated and exhaustive service discipline as a com-
bination of the last two prioritization methods. They consider a polling system with
M/G/1-type queues each with two priority inputs of customers. Priority customers are
served exhaustively, and non-priority ones receive the gated service. If the server serves
a non-priority customer and a priority customer arrives in the queue, the service is not
interrupted, and the server starts serving the priority customer only after the current
non-priority service is completed. Thus, this system can be considered to be a system of
2N queues Q1H , Q1L, Q2H , Q2L, ... where QiH are the higher-priority queues and QiL are
the lower-priority queues. It is also assumed that the time to switch between Q1H and Q1L
is zero. When the server serves QiL customers do not arrive to QiH , i.e., λ∗iH = 0, and the
LST of lower-priority customers in the queue Q∗iL is

β∗iL(ω) = βiL(ω + λiH(1− πiH(ω)))

where βiL(ω) the LST of lower-priority customers in Qi, λiH is the lower-priority customer
arrivals to queue Qi, πiH(ω) is the busy period distribution for the queuing system corre-
sponding to queue Qi given that all arrivals are of the higher priority (with parameter λiH).
Thus, the service period of a lower-priority customer in QiL involves the service times of
all higher-priority customers arrived during the service of lower-priority one.

Let the PGFs Vb∗iH
(z) and Vc∗iL

(z) be the joint queue length distribution at polling
moments of Qi and at the moments of server’s departure from the queue,

Vc∗iH
(z) = Vb∗iH

(z1H , z1L, ..., hiH(z), ziL, ..., zNH , zNL)

where z = (z1H , z1L, ..., zNH , zNL),

hiH(z) = πiH(αi(z)), α(z) = λiL(1− ziL) + ∑
j 6=i

(
λjH(1− zjH) + λjL(1− zjL)

)
,

Vc∗iL
(z) = Vb∗iH

(z1H , z1L, ..., hiH(z), hiL(z), ..., zNH , zNL)

where hiL(z) = β∗iH(αi(z)), β∗iH(ω) = βiL(ω + λiH(1− πiH(ω))).
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Please note that Vc∗iH
(·) = Vb∗iL

(·) since the switchover times between queues Q∗iH and
Q∗iL are zero but switchovers between Qi and Qi+1 are non-zero, thus

Vb∗
(i+1)H

(z) = Vc∗iL
(z)σi

(
N

∑
j=1

(
λjH(1− zjH) + λjL(1− zjL)

))
(5)

where σi(ω) is the LST of the switchover times between queues Qi and Qi+1.
Boon and Adan [66] note that (5) allows the recursive expression of Vb∗

(i+1)H
(z) through

Vb∗iH
(z) and with further differentiating the derived relations the joint distribution of the

queue lengths can be obtained.
The cycle time LST for queue Qi has the form γi(ω) = Ṽbi

(
1, 1− ω

λiL

)
where Ṽbi

(x, y) =
Vbi

(1, ..., 1, x, y, 1, ..., 1), with x and y are on positions 2i − 1 and 2i corresponding to the
higher and lower-priority arrivals to queue Qi.

The LST of the period when the server does not visit queue Qi during a cycle (the
period from the server’s departure from the queue until its next polling moment) has the
form Ĩi(ω) = Ṽbi

(
1− ω

λiH
, 1
)

with the expectation E(Ii) = (1− ρi)C.
The LST of the queue visit time distribution has the form

E
(

e−ωVi
)
= Ṽbi

(πiH(ω), β∗iL(ω)).

And finally, the LST of the waiting time distribution for Qi is obtained by

E
(

e−ωWiH
)
=

(1− ρiH)ω

ω− λiH(1− βiH(ω))

[
ρiL

1− ρiH

1− βiL(ω)

ωbiL
+

1− ρi
1− ρiH

1− Ĩi(ω)

ω(1− ρi)C

]
for higher-priority customers, biH is their mean service time,

E
(

e−ωWiL
)
=

Ṽbi
(πiH(ω), βiL(ω + λiH(1− πiH(ω))))− Ṽbi

(
πiH(ω), 1− ω

λiL

)
(ω− λiL(1− βiL(ω + λiH(1− πiH(ω)))))C

for lower-priority customers. The paper by Boon et al. [67] generalizes the results of Boon
and Adan [66] to the case of general number of the priority levels at each queue.

7. Queue Service Disciplines

Shapira and Levy [68] analyze the fairness of the service disciplines in polling systems
(both for discrete polling systems with a finite number of queues and for continuous polling
systems). They consider the following disciplines: gated, exhaustive, binomially gated,
two-phase gated and globally gated service. For an arbitrary customer, the fairness F is the
ratio of the average number of customers served before this customer to the total average
number of customers the customer sees in the system upon its arrival. It is shown that the
fairest customer service order within a queue is the FIFO order (first come–first-served),
in this case F = 1. The LIFO (last come–first-served) is the most unfair order, F = 0.
A random choice of customers for service gives F = 0.5. In the case of discrete polling
systems, F is calculated by an algorithmic approach described in the paper for the five
considered queuing disciplines. It is shown that for polling systems with many queues, the
values of F for gated and exhaustive service becomes close, and for the multi-phase gated
service F → 1 as the number of phases increases. A globally gated service is fairer than
an exhaustive or gated service but less fair than any multi-phase service. The most unfair
service order considered is the binomially gated.
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In case of a continuous polling system, F = 2/3 for both exhaustive and gated service,
F = 8/9 for two-phase gated service, F = 6k−4

6k−3 for the k-phase gated service and

F =
∑∞

n=0(1− p)n
(

3−p
12−6p + n

2

)
∑∞

n=0(1− p)n(1/2 + n)

for the binomially gated service with parameter p, and if 0 < p ≤ 1 we have 1/2 ≤ F ≤ 2/3.
Below, we overview the results obtained for the limited service, multi-phase gated

service and other service disciplines.

7.1. Limited Service

As noted above, the two-queue M/M/1-type polling system with k-limited service is
analyzed by Boon and Winands [16]. Van Vuuren and Winands [27] apply the mean value
analysis to the M/G/1-type polling system with limited-service discipline (see Section 4.1).

Boon et al. [69] detail describe two unsolved problems in the theory of polling sys-
tems: analysis of a system with two queues, one with gated service and the other with
the 1-limited service, as well as analysis of a system with deterministic, infinitely large
switchover times between queues. The paper provides a detailed review in this field and
highlights the problems of the limited-service discipline analysis. The latter problem is
discussed also by Winands [70] for systems with the branching-type service discipline
defined by Resing [35] (see Section 4.2). The paper proposes an asymptotic analysis of the
stationary state probability distributions for such systems.

Hanbali et al. [71] consider the model with an autonomous server and T-limited
service for an MK/G/1-type polling system with group customer arrivals. Remind that for
T-limited service, the server serves the queue until its time has expired (this time is also
called a timer) or until the queue is empty whichever occurs first. The autonomous server
should stay at a queue until the timer expires regardless of whether the queue is empty or
not. These two methods of visiting the queue by the server are not of the branching-type
disciplines and this fact makes it difficult to provide an accurate analysis for such systems,
see Boxma and Groenendijk [72]. The authors propose an iterative scheme to calculate the
joint distributions of the queue length at the polling moments. De Haan et al. [73] analyze
two types of preemptive time-limited polling system, the so-called pure and exhaustive
time-limited disciplines. They derive a direct relation for the joint queue length behavior
during a visit time to a queue. Leonovich and Ferng [74] deal with a T-limited service for
an M/G/1/K-type polling system.

In paper [46] a BMAP/G/1-type polling system with Batch Markovian Arrivals to
queues and binomially gated or binomially exhaustive service. The paper generalizes
the results of Saffer and Telek [37]. Please note that under the binomially gated service
each customer presenting in Qi at the queue polling moment is marked for service during
the current server visit to the queue with probability pi or is ignored with probability
1− pi and stays at the queue until the next marking procedure (the next polling moment).
Under the binomially exhaustive service, customers are marked in a similar way and the
marking procedure also involves customers arriving during the queue service time. Such a
system was investigated by the PGF method and functional equations were obtained for
the stationary state probabilities at the polling moments and moments when the server
leaves a queue. It is noted that these equations can be solved numerically.

De Haan et al. [75] consider an M/G/1 -type polling system with T-limited pre-
emptive service. The timer is exponentially distributed. As in Hanbali et al. [71], the
server is supposed to be autonomous. It is shown that the stability criteria have the form
ρi < ζi where

ρi = λi
1− B̃i(ξi)

ξi B̃i(ξi)
, ζi =

1/ξi

∑N
j=1(1ξ j + sj)

,
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ξi is the mean queue Qi service period, ζi is the fraction of time the server spends at queue
Qi during a cycle.

Next the system is investigated by the method of the embedded Markov chains.
An approximate analysis of the system is also provided by decomposing it into single-
queue systems with the server vacations. Distributions ωi(z), πi

?(z) and πi(z) of the
number of customers at the moments of service beginning, service interruption and the
successful service completion, respectively, are related as

πi(z) =
1
λ

B̃i(ξi)

(
N

∑
j=1

λj B̃j(ξ j)

)
X̌i((z)

ωi(z)
zi

,

πi
?(z) = (1− B̃i(ξi))

(
N

∑
j=1

λj

B̃j(ξ j)
− λj

)
X?

i (z)ω
i(z)

where

X̌i((z) =
B̃i(ξi + ∑N

j=1 λj(1− zj))

B̃i(ξi)
,

X?
i (z) =

ξi

(ξi + ∑N
j=1 λj(1− zj)

·
1− B̃i(ξi + ∑N

j=1 λj(1− zj))

1− B̃i(ξi)
.

Then, the distributions ai(z), bi
?(z) and bi(z) of the number of customers at the

moments of the server visit beginning, the service preemption and at the end of the server
idle time at the queue are related as

bi(z) = Ǐi(z)ziai(z), bi
?(z) = Ǐi(z)ai(z)

where Ǐi(z) =
Ĩi(ξi+∑j 6=i λj(1−zj))

Ĩi(ξi)
, and Ĩi(s) is the LST of the interarrival time distribution for

queue Qi.
A polling system with G/G/1/K-type queues and k-limited service is considered by

Horng and Lin [48]. The system parameters are symmetric (independent of the queue
number) except the input flow parameters. The authors consider the optimization problem
of ki values (the maximal number of customers that can be served per one visit of the server
to the queue) that minimize the cost function (the average cost of waiting for a customer in
the system per unit time and the penalty for the loss of customers arriving to the queue
if the queue buffer is full). The optimization problem is solved by constructing a neural
network, and all performance characteristics are calculated using simulations.

7.2. Multi-Phase Gated Service

The multi-phase gated service as a generalization of the gated discipline was first
introduced by van der Mei and Roubos [76]. A customer arriving to queue Qi must wait
ki cycles before its service, i = 1, N. As the authors note, the goal of such a discipline
is to prevent the monopolization of the server by more loaded queues by choosing the
appropriate levels ki. The problem is to find the optimal values of ki for all i = 1, N
minimizing the weighted sum of the mean waiting times in the queues. As noted in the
paper, this problem becomes non-trivial in the heavy load conditions and for this case an
asymptotic distribution of the waiting times is obtained to calculate the approximate values
of the moments and tail of the distribution of waiting times under normal load. Another
ki, i = 1, N optimization problem is solved by van Wijk [77]. The goal is to maximize the
pairwise difference between the average waiting times in queues (the so-called fairness of
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service) and at the same time maintain efficiency as a weighted sum of average waiting
times, i.e., the cost criterion has the form

γ(α) = (1− α) max
i,j=1,N

(
E[Wi]− E[Wj]

)
+ α

N

∑
i=1

ρiE[Wi]

for some parameter α ∈ (0, 1) which allow taking into account the desired relationship
between the fairness and the efficiency.

Remerova et al. [78] use the fluid model for a system with multi-phase gated ser-
vice, an asymptotic analysis of a random process describing the length of an individual.
Bao et al. [61] and Ling et al. [79] consider the case of three-phase gated service.

7.3. Other Service Disciplines

Vishnevsky et al. [80] consider a system with the exhaustive threshold polling. A queue
can be served if its length exceeds a given threshold. If all queues are not full enough to
be served the server stops polling the queues and resumes it as the number of customers
at some queue reaches the necessary level. Threshold service disciplines have also been
considered for two-queue polling systems by Avrachenkov et al. [20] and Jolles et al. [22]
and for tree-queue systems by Liu et al. [25] (see Section 3).

For a multi-dimensional branching process with migration operating in a random
environment and producing a final product, Vatutin [81] obtains the tail of the distribution
of the product volume produced during the process lifetime. Using this result, the tail
distribution of the busy period of polling systems with random polling which are of the
branching type, see Resing [35].

8. Queue Scheduling Method

This section lists the papers investigating the various ways to queue (or to group)
customers arriving to polling systems. One of methods may include retrial customers. In a
retrial system, a customer (initial customer) arriving at the moment when the server is
busy goes to the so-called orbit and becomes retrial customer. Then it tries to occupy the
server after the random time regardless of other customers in the orbit. If the attempt failed,
the customer returns to the orbit again. In the model by Abidini et al. [82] each queue of
the polling system is a retrial queue. After the server has switched to the queue it begins
a waiting period (or preparation for service) which has a fixed duration. If during this
period the primary customer arrives to the queue or a retrial one tries to occupy a place
in the queue it is accepted to the queue and at the end of the waiting period the server
starts serving customers accumulated in such a way. When all customers accepted to the
queue are served, the server leaves the queue. At any other time (out of the server waiting
period) the newly arrived customers are not accepted to the queue and become retrials. An
addition to Abidini et al. [82] is the paper by Kim and Kim [83] where the PGF method is
applied to derive the LST of the waiting time of an arbitrary customer.

Adan et al. [17] consider a symmetric two-queue polling system and arriving cus-
tomers join the shortest queue.

Next, we note the papers investigating models with group customer service and
various methods to form the groups. Dorsman et al. [84] describe a G/G/1-type polling
system with an internal and external parts where customers (products) can are served
by groups. Type i customers arrive to the external system first and are accumulated in
a group of type i. As soon as Di customers are accumulated, the entire group is sent to
queue i of the internal system and then it is served as a whole customer. The groups that
entered queue Qi queue in the internal part of the system are then served in the order
they were received the next time the server visits the queue. The approximate method
by Boon et al. [85] is used to find the weighted sum of the mean waiting times since such
a model cannot be analyzed accurately. The problem is to optimize the sizes of groups
Di, i = 1, N minimizing the weighted sum of the mean waiting times and this problem is
solved numerically.
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Jiang et al. [86] investigate the polling model where all customers in the queue are
served as a group (without limiting the group size). The system operates in a random
environment and consists of two areas: service and waiting areas. A customer arriving to
the system joins one of the existing groups with some probability or creates a new group
(no more than M groups in the system are allowed) and with an additional probability
the customer enters the waiting area. Customers in the waiting area form a common
queue. As soon as the service of some group ends, the first customer in the waiting area
moves to the service area and can form its own group of customers. The system operates
in a random multi-phase environment controlled by a Markov chain with a finite state
space. If the random environment is in state i then customers arrive from a Poisson input
with parameter λi and their service times are distributed exponentially with parameter
µi. The random environment stays in state i during time exponentially distributed with
parameter θi. Then the environment state can be changed into the neighboring one (i− 1 or
i + 1). For such a system, the stability conditions are obtained, and the model is analyzed by
the matrix-analytical approach to find the stationary state probabilities (see Section 11). The
average number of service groups and the LST of the waiting time distribution are obtained.

9. Feedback of Customers

In some system models, it is assumed that at the end of the service, the customers may
not leave the system but return to a queue to be served again or go to another queue. As
with priority polling systems, a customer can change its priority as, e.g., in Hirayama [54].
This procedure is sometimes called a feedback of customers.

A polling system with negative customers is considered by Shomrony and Yechiali [87].
A negative customer is a special type of customers that affects the system performance
(remove one or more ordinary customers). For such a system, the LSTs of the queue length
distributions and the waiting time distributions are obtained by the PGF method.

Shomrony and Yechiali [88] consider a polling system with two types of breakdowns:
a customer service breakdown and a queue service breakdown which can be considered to
be negative customers of two types. The first type breakdown happens during a customer
service forcing the customer to leave the system partially served. In this case, r = the
breakdown does not affect the server which immediately takes the next customer for
service. If the server is not connected to the queue the first type breakdown removes the
first customer in the queue. The second type breakdown happens during the server’s visit
to the queue. In this case, the server interrupts its visit, leaves the queue and start switching
to the next queue.

Fiems and Altman [55] describe a feedback by a semi-linear random process, and the
polling order is random Markovian. They have shown how the behavior of the system
can be described using semi-linear stochastic recursive equations in a random Markovian
environment and obtain the first and second moments of the number of customers in the
system at the polling moments and for the mean number of customers in the system at
an arbitrary time. Here a feedback process is described by the amount of work generated
by a departing customer rather than the number of customers generated at the departure
moment. The service process of a queue is modeled by a semi-linear process.

The stability conditions for an M/M/1-type polling system with 1-limited service
and a feedback are derived by Zorine [89]. The author assumes that the input flows are
controlled by a random environment.

The polling system with impatient customers is considered by Boon [90]. An impatient
customer waiting in a queue may leave the system unserved as its waiting time defined
by a random variable expires. However, in contrast to most of the queuing systems with
impatient customers where customers may leave the system at an arbitrary moment, the
model by Boon [90] allows leaving the system only at the moments the server departs
from the queue or at the polling moments. A customer leaves the queue with a probability
depending on two parameters: the number of the queue and the number of the queue
the server is visiting. This way to leave the system is called synchronized, and impatient
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customers are called smart customers. The main difficulty of such a system is that customers
leave the system in groups. Using the generalized Little’s law in the form of distribution,
the distributions of the cycle time, waiting time and the queue lengths are obtained.

A polling system with impatient customers is considered also by Granville and
Drekic [91]. The system is presented by two M/PH/1/b-type queues with k-limited
service. The system states are described by the birth-and-death process, and the stationary
state distribution is obtained by using the matrix-analytical approach by Neuts [92] (see
Section 11), and the distribution of the waiting time in the system queues is also obtained.

10. Customer Service Order

In this section, we discuss the papers considering how the order of customer service
within a queue affect the system performance and the waiting time in particular.

Boxma et al. [93] discuss an M/G/1-type polling system with various types of a
customer service order within a queue: LCFS (Last Come–First Served, inverse order of
service), PS (Processor Sharing), random order, SJF (Shortest Job First, the server chooses
the customer with the shortest service time) and others.

The LST of the cycle time distribution for the polling system with a branching-type
service discipline [35] is defined as

E
(

e−ωC|Xi = mi, i = 1, N
)
=

N

∏
i=1

σ(ψi,N(ω))θmi
i (ψi,N(ω))

where Xi is the number of customers in queue Qi at its arbitrary polling moment, θi(ω) is
the LST of the queue visit time by the server if the queue had a single customer. For the
gated service θi(ω) = βi(ω), for the exhaustive service θi(ω) = πi(ω), i.e., this is the LST
of the distribution of the busy period generated by a customer. The functions ψi(ω) and
ψi,j(ω) are defined as

ψi(ω) = ω + λi(1− θi(ω)), i = 1, N,

ψi,N(ω) = ψi+1(ψi+2(...(ψN(ω)))), i = 1, N, ψ(N, N)(ω) = ω.

The LST of the waiting time distribution in case of gated service has the form

E
(

e−ωDFCFS
)
= 1− E(RC)(1 + ρi)ω +

1
2

[
λiE(B2

i )E(RC) + M(R2
C)(1 + ρi + ρ2

i )
]
ω2 + o(ω3),

E
(

e−ωDLCFS
)
= 1− E(RC)(1 + ρi)ω +

1
2

[
λiE(B2

i )E(RC) + M(R2
C)(1 + ρi)

2
]
ω2 + o(ω3)

at ω ↓ 0, and the first two moments of are calculated by the formulas

E(DFCFS) = E(DLCFS) = (1 + ρi)M(RC),

E(D2
FCFS) = λiE(Bi)E(RC) + E(R2

C)(1 + ρi + ρ2
i ),

E(D2
LCFS) = λiE(Bi)E(RC) + E(R2

C)(1 + ρi)
2.

A random order of service is defined as follows: each customer arriving to a queue is
marked by value of a random variable uniformly distributed in [0, 1]. Then, at the polling
moment all customers waiting for service are arranged in the increasing order of their
marks, and the customer with the smallest mark is served first.

The LST of the sojourn time distribution for a customer with mark x in Qi has the form

E
(

e−ωT(x)
)
=

β1(ω)

ωE(C)

[
E
(

e−λix(1−β1(ω))C
)
− E

(
e−(ω+λix(1−β1(ω)))C

)]
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and the unconditional moments can be computed by integrating out x with respect to a
uniform density on [0, 1].

E(T) = E(Bi) + E(RC)(1 + ρi),

E(T2) = E(T2
FCFS) +

ρi
2

= E(B2
i ) + E(RC)(2(1 + ρi)E(Bi) + λiE(B2

i ))+

+ E(R2
C)

(
1 + ρ2

i +
3
2

ρi

)
.

It follows that for the second moments of the mean waiting time for the considered
service disciplines it holds

E(T2
LCFS) > E(T2

ROS) > E(T2
FCFS).

For a general distribution function Bi(t), Processor Sharing and Shortest Job First
disciplines make it cumbersome to find the LST of the waiting time distribution in a closed
form. However, in case of the exponential distribution, the LST for PS coincides with one
for a random service order. Let a customer with length x (its service time) arrives to Qi then

E(TPS(x)) = x + E(RC)[1 + 2λiE(min(Bi, x))]

and the LST of its waiting time is

E
(

e−ωDPS(x)
)
= 1− E(RC)(1 + 2E(min(Bi, x)))ω+

+

[
λiE(min2(Bi, x))E(RC) +

E(R2
C)

2

(
1 + 3E(min(Bi, x)) + 3E2(min(Bi, x))

)]
ω2 + o(ω3)

at ω ↓ 0 then

E(DPS(x)) = E(RC)(1 + 2E(min(Bi, x))),

E(DPS(x)) = 2λiE(min(Bi, x))E(RC) + E(R2
C)
(

1 + 3E(min(Bi, x)) + 3E2(min(Bi, x))
)

.

In case of SJF we have

E
(

e−ωDSJF(x)
)
= e−ωx

E
(

e−λi(1−φ(ω,x))C
)
− E

(
e−(ω+λi(1−φ(ω,x)))C

)
ωC

where φ(ω, x) = E
(

e−ωBi1(Bi≤x)
)

and 1(A) is an indicator function of A, 1(A) = 1 if A is
true and 1(A) = 0 otherwise.

Next, the LST of the waiting time distribution is analyzed for a globally gated service.
Please note that Boxma et al. [93] consider only gated-type service disciplines which are
more convenient for analyzing the system since the sojourn time of customers waiting for
service in the current cycle does not depend on customers arriving during the cycle or the
server’s visit to a queue. In the case of exhaustive service such an analysis seems to be
much more complicated.

Bekker et al. [94] study how a customer service order within a queue affects the wait-
ing time distribution in heavy load conditions for the gated and globally gated service.
It is known that when customers are served in the order of their arrival, the asymptotic
distribution of the waiting time has the form of a product of the uniform and gamma
distribution. It is shown that in case of the random service order, the uniform distribution
changes to a trapezoidal one, and in case of PS and SJF it changes to a generalized trape-
zoidal distribution. It is also shown how the choice of the customer service order in each
queue affects the behavior of the entire system. Methods to approximate the mean waiting
times are developed.
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Vis et al. [95] continue the study of Bekker et al. [94] for polling systems with exhaus-
tive service and various types of the customer service order within a queue including LCLS,
priority order and others. It is shown that the asymptotic distribution of the cycle time
has the form of a gamma distribution with parameters α = sδ

σ2 and µ = δ
σ2 where σ2 = b(2)

b ,
δ = ∑N

i=1 ρ̂i(1− ρ̂i), ρ̂i is the value of load ρi at queue i at ρ = 1,

b(k) =
N

∑
i=1

λib
(k)
i

λ

and b(k)i is the kth moment of the customer service time in queue Qi.
The LST of the asymptotic distribution of the waiting time in queue Qi in case of

FCFS is

W∗i (x) =
1

(1− ρ̂i)sx

[
1−

(
µi

µi + x

)α]
where µi =

δ
(1−ρ̂i)σ2 .

In case of LCLS (both preemptive and non-preemptive service) this distribution has
the form

W∗i (x) = ρ̂i + (1− ρ̂i)
1
sx

[
1−

(
µ

µ + x

)α]
where µ = δ

σ2 . The formulas for the other service orders can be found in [95].
Kim and Kim [96] consider an M/G/1-type polling system where one of queues has

the processor sharing service discipline and the phase-type service time distribution, and
customers in other queues are served in FCFS order.

11. Systems with Correlated Input and the Matrix-Analytical Approach

In the present Section, we overview the papers investigating polling systems with
correlated arrival of customers. The most commonly used model of a correlated input is
a BMAP, Batch Markovian Arrival Process, see Dudin et al. [38], allowing description of
the properties of the real data streams in modern telecommunication networks. BMAP
flow is not stationary, ordinary and the interarrival intervals are correlated. BMAP input is
governed by an irreducible non-periodic Markov chain with continuous time and a finite
state space. Customers arrive in groups (batches) at the moments the governing process
change its states. The transition intensities of the process and a batch size are described
by matrices Dk, k ≥ 0. Matrix D0 (Dk) defines the transition intensities of the governing
process with no customer arrival (with arrival of size k batch of customers, k ≥ 1). BMAP
description has the matrix form and models with BMAP input need to apply a matrix
theory and the special matrix theory-based methods to analyze the multi-dimensional
stochastic processes necessarily arising while describing the behavior of such systems. The
most suitable method in this case seems to be a matrix-analytical approach by Neuts [92].
Below we briefly describe the key points of the method. This approach is used for systems
whose states are described by a multi-dimensional Markov random process

ξt = (it, x1t, x2t, ..., xNt), t ≥ 0

with x1t,′ , xNt having a finite state space and in having finite or denumerable state space,
xkt ∈ {1, ..., Mk}, k = 1, N, it ≥ 0. The process ξt, t ≥ 0 can be either continuous time or a
discrete-time process. Here we consider the case of a continuous time process. The states
of process x1n, x2n, ..., xNn are numbered in lexicographical order and, thus, we get a two-
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dimensional process ξ̃n = (in, x̃n), n ≥ 0 where x̃n ∈ {1, ..., ∏N
i=1 Mi} and its infinitesimal

generator Q̃ has a block structure

Q̃ =



B0 A0
B1 A1 A0

A2 A1 A0
A2 A1 A0 . . .

A2 A1 . . .
...

...


.

It is assumed that the structure of Q̃ is irreducible and (B0 + A0)1 = (B1 + A1 + A0)1 =
(A0 + A1 + A2)1 = 0 where 1 is a column vector consisting of 1’s, 0 is a zero row vector.

Then let ß be the vector of the stationary state probabilities for generator A = A0 +
A1 + A2, i.e., ßA = 0. Then the process ξ̃n, n ≥ 1 has a stationary state distribution
x = {x0, x1, ...} if and only if

ßA21 > ßA01.

The ith entry of vector x is vector xi of the stationary state distribution of the process
ξ̃n = (in, x̃n), n ≥ 0 given that in = i. Vectors xi, i ≥ 1 are obtained in the form

xi = x0Ri, i ≥ 1

where matrix R is the minimal nonnegative solution of the matrix equation R2 A2 + RA1 +
A0 = O and x0 is the unique solution of the system

x0(B0 + RB1) = 0,

x0(I − R)−11 = 1.

For systems whose behavior is described by the random processes with infinitesimal
generators of a more complex form (for example, when the block structure depends on the
level i) there are modifications of the matrix-analytical approach which can be found in
Dudin et al. [38] in more details.

Remind that a generalized analysis of a BMAP/G/1-type polling system with a gated
or exhaustive service is presented by Saffer and Telek [37] (see Section 4.2) where the
relations for the vector generating functions of the mean queue lengths are obtained which
are valid for a wide class of queuing disciplines and for both zero and non-zero switchover
times. These equations can be numerically solved as a system of linear algebraic equations.

Cao et al. [3] consider a system of two BMAP/PH/1-type queues with a limited
number of waiting space. The input flows are BMAPs and the customer service time
distribution is of the phase type. This model describes the features of modern video
compression standards. The first queue gets the gated service and the second one has
T-limited service depending on the state of Q1 at the moment the server departs from
Q1. The joint queue length probability distribution is obtained by using the embedded
Markov chain method and the matrix-analytical approach described above. The stability
conditions for such system in the case of an unlimited number of waiting places in queues
are obtained by Cao and Xie [97].

Chen [98] considers polling systems where customers arrive in groups and simulta-
neously to all queues. The interarrival time is exponentially distributed and the size of
customer groups is defined by the random vector K = (k1, k2, .., kN) with a probability-
generating function k(z) = k(z1, z2, ...zN). Since the average waiting time in queues
depends on the type of distribution functions of service time, interarrival time and server
switchover times only through their first two moments, the author suggests applying the
pseudo-transformation of the initial distributions by the generating function of moments
which allows reducing the number of required calculations in comparison with the classical
PGF method for polling systems.
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We also note here the papers investigating polling models with uncorrelated input
but using a matrix-analytical approach to find the stationary state probability distribu-
tions. More details on these models a reader can find in other sections of the review.
Jolles et al. [22] apply a matrix-analytical approach for the two-queue system with a thresh-
old server switching strategy. Perel et al. [23] consider a system where a server chooses the
longest queue to serve.

Jiang et al. [86] consider the polling system where all customers in a queue are served
as a whole group (with no limits on the group size). The system operates in a random
multi-phase environment controlled by a Markov chain with a finite state space that
determines the parameters of input flows and service. Granville and Drekic [91] apply
the matrix-analytical approach to the analysis of an M/PH/1/b-type polling system with
two queues, k-limited service and impatient customers. Suman and Krishnamurthy [99]
analyze a tandem of two M/M/1-type polling systems with two queues.

12. Multi-Server Polling Systems

Antunes et al. [100] consider a multi-server polling system assuming that the number
of servers that can simultaneously visit the same queue is limited. Servers visit the queues
independently of each other in a random order. For such a system, the stability conditions
for a system with unlimited type queue service disciplines are obtained. Recall that the
service discipline is of unlimited type if the number of customers the server can serve during
one visit to a queue is unlimited. We should also note the paper by Vishnevsky et al. [32]
studying the polling model with a duplex queue polling where the queues are polled by
two independent servers. Some of the queues are common for both servers and the others
are assigned to one of servers. The system analysis is based on the mean value analysis.

Boxma et al. [101] investigate a polling system with an unlimited server resource
(all customers waiting in the queue at the polling moment are simultaneously served).
Such a system can also be represented as a system with an unlimited number of servers
visiting the queues simultaneously. The system is analyzed by the PGF method to obtain
the waiting time distribution. A similar system with T-limited service was investigated
in [102]. As the timer of the server to visit a queue expires the service is interrupted and
customers on servers will be served again at the next visit to the queue. For such a system,
the LST of the sojourn time distribution is obtained.

13. Polling Systems with Heavy Traffic

This section presents the main results on the polling system analysis in heavy load
conditions when ρ→ 1. For some polling systems, it is possible to obtain the approximate
formulas to calculate the performance characteristics by considering ρ as a variable, and
the parameters describing the system are presented as the functions of ρ.

Van der Mei and Winands [103] analyze a polling system with gated service where
the input of customers to a queue is represented by a recovery process with parameters
λi, i = 1, N. The load ρ is increased in such a way that only the input flow parameters
increase, and the service time distribution and the fraction of the queue load share ρi

ρ keep
the same. As the system load ρ increases, all queues in the system become unstable, and
the average waiting times E[Wi] in queues tend to infinity for all i = 1, N. Thus, E[Wi] as a
function of ρ has a first-order pole at the point ρ = 1 (see van der Mei and Levi [104]), i.e.,

E[Wi] =
ωi

1− ρ
+ o((1− ρ)−1), ρ ↑ 1, i = 1, N

where ωi is the mean asymptotically normalized waiting time in queue Qi, the value ωi is
the rate for E[Wi] to grow infinitely as ρ ↑ 1.
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Parameters ωi are defined as

ωi =
(1 + ρ̂i)

2

(
σ2

∑N
i=1 ρ̂j(1 + ρ̂j)

+ r

)

where σ2 = ∑N
i=1 λ̂i(D[Bi] + ρ̂2

i D[Âi]), D[Bi] is the service time variance, λ̂i =
1

E[Âi ]
and

D[Âi] are the parameter and variance of the queue Qi interarrival times at ρ = 1, respec-
tively, ρ̂i = λ̂ibi.

Dorsman et al. [105] consider a polling system with the arbitrary interarrival time
distribution functions under heavy load conditions and analyze by using the results of
Boon et al. [85]. A G/G/1-type polling system in heavy load conditions was considered
by Boon et al. [106] and analyzed by using the corresponding fluid model. Van der Mei
and Winands [28] propose a new approach to the approximate analysis of polling systems
with gated or exhaustive service in heavy load based on the mean value analysis by
Winands et al. [26] which allow obtaining the linear system of equations for the mean
values Li,j of the number of customers in Qi at an arbitrary time when the server visits
queue Qj. Considering the system in heavy load as ρ→ 1, all parameters describing the
system (input flows, service and switchover times) are considered to be functions of ρ. The
value of parameter x at ρ = 1 is denoted as x̂. Let also M[L∗i,j] = limρ↑1(1− ρ)M[Li,j] then
for the exhaustive service it holds

M[L∗i,i] = cλ̂i(1− ρ̂i),

M[L∗i,i+n] = cλ̂i

(
2

n−1

∑
m=1

ρ̂i+m + ρ̂i+n

)
, i = 1, N, n = 1, N − 1

where c = 1+βδs
2βδ , β = b

b(2)
, δ = 1−∑N

i=1 ρ̂2
i and for the exhaustive service it holds

M[L̂∗i,i] = cλ̂i, M[L̃∗i,i] = cλ̂i ρ̂i,

M[L̃∗i,i+n] = cλ̂i

(
2

n−1

∑
m=1

ρ̂i+m + ρ̂i+n

)
, i = 1, N, n = 1, N − 1

where L̂i,i and L̃i,i mean the queue length before the gate (customers to be served during
the server’s visit to Qi) and behind the gate (customers to be served at the next visit),
respectively.

The asymptotical mean values (scaled for 1− ρ) of the waiting times are given by
M[W∗i ] = c(1− ρ̂i) for exhaustive service and by M[W∗i ] = c(1 + ρ̂i) for gated service,
respectively.

Paper [44] shows that for Xi,i+n (Yi,i+n) denoting the number of customers in queue
Qi at the beginning (at the end) of an arbitrary visit period of the server to queue Qi+n
it holds

(1− ρXi,i+n)→d dλ̂i

(
n−1

∑
m=1

ρ̂i+m

)
Γ(α, 1),

(1− ρYi,i+n)→d dλ̂i

(
n−1

∑
m=1

ρ̂i+m + ρ̂i+n

)
Γ(α, 1), i = 1, N, n = 1, N − 1

where→d is the convergence in distribution, d is the known constant, Γ(α, 1) is Gamma
distribution with parameter α independent of i and i + n.

Remind that a system with two M/M/1-type queues and a limited-service discipline in
heavy load conditions was investigated by Boon and Winands [16] (see Section 3). This sec-
tion also includes the paper by Meyfroyt et al. [107] considering a symmetric polling system
with many queues and branching-type service disciplines [35]. It is shown that as the number
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of queues grows infinitely large and the total system load keeps the same value, the random
variables describing the queue lengths become independent in the limit, and this shows
how the behavior of a single queue can be described in terms of the single-queue system
with the server vacations which simplifies the analysis of the queue length and waiting time
distributions. A flexible k-limited-service discipline has also been introduced to reduce the
mean queue lengths and the mean cycle time for delay-sensitive applications.

14. Non-Discrete Polling Systems and Polling Networks

Non-discrete polling models (networks) means systems where arriving customers are
placed on a circle, systems with denumerable number of queuing places and the fluid.

Kavitha and Combes [108] provides a generalized analysis of discrete polling systems
(with a finite number of queues) and continuous systems. Such systems in the paper are
called mixed polling systems. It is also assumed that customers, having finished their
service, can move to other queues (or change their location in the case of a continuous
polling system). For a continuous system, the authors present the method of the system
discretization and obtain the average amount of virtual work, i.e., the average time that the
server will work while serving all customers in the system at a given time, as well as the
residual service time if the server is currently busy.

Boxma et al. [109] consider a cyclic polling system with a mixed service discipline
in which queue load (the amount of work that needs to be processed by the server) is
controlled by a positively incremented N-dimensional Levy process. Such a process means
the dependence of incoming flows in the queue. A stationary distribution of the amount of
work in the system at embedded and at arbitrary moments of time is obtained.

Leskela and Unger [110] and Kavitha and Altman [111] consider models where ar-
riving customers are placed on a circle. Leskela and Unger [110] assume that the server
serves customers located in the vicinity of the server’s current position, and the server
selects the closest customer to serve. The classical stability condition where the service
rate must exceed the arrival rate is proved by Kavitha and Altman [111]. For the system
considered, the server moves along a circle at a constant speed and some customers are
served according to the globally gated discipline, and the others are served according to
the exhaustive rule. The main idea of the paper is to use a discrete polling model with a
finite number of queues in which the average virtual load of the system is obtained as the
limit of the average virtual load of a discrete polling system with a mixed service discipline
for which the pseudo-conservation law can be applied.

We also mention here paper by Beekhuizen et al. [112] analyzing the polling network.
Polling networks consist of several polling systems and customers transit between nodes.
Having received service in a queue of one node, a customer moves to another node (another
polling system), joins a queue and waits for its service. The polling network has a tree
structure where customers served at a network node moves to the neighboring node and so
on until it reaches the root node and then leaves the network. It is shown how the behavior
of a polling network can be described in terms of a single (root) node.

The fluid model of the polling system is presented by Matveev et al. [113]. A queue is
interpreted as the fluid level which decreases when the server serves the queue. The service
speed can vary depending on the liquid level according to the selected speed control strategy.

Saffer et al. [114] discuss a fluid model of a gated service polling system. The increase
in the amount of work in the queue is controlled by a continuous time Markovian process
and it decreases at a constant speed when the queue is served. The necessary conditions for
the existence of a stationary regime are obtained, as well as relations for the Laplace vector
transformations of stationary fluid levels in the system queues at the polling moments, the
moments the server leaves the queue, and at an arbitrary time, as well as other stationary
distributions that characterize the behavior of the system. It is shown that the average cycle
time for such a model has the classical form C = s/(1− ρ).

In Yechiali and Czerniak [115], the polling system consists of N fluid-queuing systems
and a single server. Service disciplines are exhaustive, gated or globally gated. The order of
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polling queues is cyclic or random. The LST of the fluid level distribution in the queues at
the time of the server polls the queues and at an arbitrary moment is obtained. In addition,
the procedure for finding the optimal probabilistic order of polling queues is described.

For a system with multi-phase gated service Remerova et al. [78] provide an asymptotic
analysis of a random process that describes the length of a single queue using a fluid model.
A feedback G/G/1-type polling system is considered by Boon et al. [106]. Chernova et al. [24]
obtain the stability condition for a system with three queues and adaptive polling. Czer-
niak et al. [116] propose an analysis of the polling system with queues represented by fluid
models with cyclic and random polling order to describe the TCP protocol.

A tandem of two polling systems each consisting of two M/M/1-type queues with
cyclic polling and exhaustive service is studied by Suman and Krishnamurthy [99]. Af-
ter completing the service in the first system, a customer moves to the corresponding queue
of the second tandem system. The following policies for servicing queues are considered:
servers cyclically serve queues independently of each other, synchronously switch to the
queues with the same numbers (one of the servers may be idle) or synchronously switch to
queues with different numbers. The paper investigates the impact of these service policies
on waiting time using a matrix-analytical approach.

15. Conclusions

In the paper, we proposed a review of papers published from 2007–2020 in the field of
polling systems. In contrast to the recent review by Borst and Boxma [10] where the main
focus is placed on cyclic polling systems with a single server and new approximations for
systems in heavy load and systems with a large number of queues, we tried to provide the
possibly full range of models and methods presented in the recent literature in the field of
polling systems. We described the directions of theoretical research development in the
area and pointed out new practical applications of polling systems. We also noted some
unsolved theoretical problems and proposed to apply the machine-learning method to
solve new polling models which analysis is cumbersome or imply no closed-form solution.
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