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Abstract: This study is concerned with robust synchronization for master–slave chaotic systems
with matched/mismatched disturbances and uncertainty in the control input. A robust sliding
mode control (SMC) is presented to achieve chaos synchronization even under the influence of
matched/mismatched disturbances and uncertainty of inputs. A proportional-integral (PI) switching
surface is introduced to make the controlled error dynamics in the sliding manifold easy to analyze.
Furthermore, by using the proposed SMC scheme even subjected to input uncertainty, we can force the
trajectories of the error dynamics to enter the sliding manifold and fully synchronize the master–slave
systems in spite of matched uncertainties and input nonlinearity. As for the mismatched disturbances,
the bounds of synchronization errors can be well estimated by introducing the limit of the Riemann
sum, which is not well addressed in previous works. Simulation experiments including matched and
mismatched cases are presented to illustrate the robustness and synchronization performance with
the proposed SMC synchronization controller.

Keywords: chaos synchronization; sliding mode control; mismatched disturbance; Riemann sum

1. Introduction

Chaotic phenomena exist frequently in many nonlinear engineering systems; the chaos
dynamic behavior is unstable but bounded and contains infinite non-periodic trajectories
in strange attractors. In particular, its state response is very sensitive to the initial values of
states, and this is the well-known butterfly effect. Owing to its distinguished advantages
in various research fields, chaos control and synchronization has increasingly received
attention [1,2]. Particularly, its application to communication security is one of the most
important topics in the research of chaos synchronization. By realizing chaos synchroniza-
tion, the communication system can simultaneously obtain dynamical and random chaotic
numbers at the transmitting and receiving ends, and then it becomes possible to further
design the chaotic ciphers [3]. Hence, many different synchronization control approaches
have been reported in the literature, such as time-varying delay feedback control [4], sliding
mode control [5–7], linear state feedback control [8], fuzzy sliding mode control [9–11],
H-infinity stabilization [12,13] and adaptive control [14,15]. For controlled systems, there
always exist unknown external perturbations or uncertainties, including unmodeled sys-
tem dynamics and control input uncertainty due to the component nonlinearities and
external disturbances. These disturbances often cause degradation or even failure of the
control performance. Therefore, designing a robust control scheme to asymptotically sup-
press or eliminate the influence of unknown disturbances is a very important issue when
discussing synchronization control for chaotic systems [16], and some research works
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have been proposed by studying the effects of input uncertainties [17–19]. By considering
the uncertainties for control inputs, the state synchronization controller for two identical
n-dimensional chaotic systems was proposed in [17], and the robust adaptive finite-time
controller was reported for synchronization in [18]. For second-order chaotic systems, the
synchronization controller was proposed by the adaptive sliding mode control [19]. To
design a control system, sliding mode control (SMC) is an outstanding method due to the
good transient performance, fast response and the robustness to uncertain system parame-
ters or external disturbances, especially when the matching condition is satisfied [20,21].
By surveying the above-mentioned papers, it was found that the works [2–4,6,8,15,20] only
considered some special classes of chaotic systems, and the unavoidable uncertainty in
control input was not considered. The reports in [5–7,11,21] introduced the SMC approach
to achieve robust synchronization. However, the perturbations of parameters were often
considered only with the matched condition, and their approaches cannot cope with mis-
matched disturbances. In [12,13], the authors considered the synchronization for systems
with mismatched disturbances, and the influence of mismatched disturbances was eval-
uated in the sense of H-infinity control. However, the uncertainty in the control input is
not considered. In [17–19], researchers took into account the effects of input uncertainties
for synchronization controller design. However, only special types of chaotic systems
and matched disturbances were considered. Furthermore, for the case of mismatched
disturbances, the individual performances for every error state between master and slave
systems could not be estimated in their works.

Based on the aforementioned, we aim to discuss the design of robust SMC controllers
for synchronization between master and slave chaotic systems. In comparison with the
past studies mentioned above, the advantages of the proposed SMC controller are not
only that it achieves synchronization for generalized classes of chaotic systems even with
input uncertainty and mismatched disturbances, but also that it gives a clear evaluation of
synchronization performance for every error state. Furthermore, a proportional-integral (PI)
switching function is introduced to avoid the reduced-order property in the traditional SMC
such that it becomes easy to estimate the synchronization performance between master–
slave systems in sliding manifold for mismatched disturbances. This proposed SMC can
always drive the trajectories of the controlled dynamics to hit and enter the sliding mode
and fully synchronize the master–slave systems in spite of matched uncertainties and input
nonlinearity. As for the mismatched disturbances, the bounds of synchronization errors can
be well estimated by utilizing the limit of the Riemann sum. Two simulation experiments
including matched and mismatched cases are given to demonstrate the effectiveness of the
proposed SMC design method.

Notations: In is the identity matrix of n × n, and MT represents the transpose for
a matrix or vector. ‖x‖ =

√
xTx denotes the Euclidean norm of the vector x ∈ Rn.

λi(A), i = 1, 2, . . . , n is the eigenvalues of matrix A ∈ Rn×n. ‖A‖ =
[
λTmax[]

1
2
]

is the

matrix norm of A. Sign(S) =
[

sign(s1) sign(s2) . . . sign(sm)
]T ∈ Rm and sign(s) is

the sign function of s, if s > 0, sign(s) = 1; if s = 0, sign(s) = 0; if s < 0, sign(s) = −1.

2. System Definition and Problem Statement

The goal of this study is to design an SMC to solve the robust synchronization problem
of master–slave chaotic systems even with mismatched disturbances and uncertainty in the
control. We consider a general form in (1), which can describe many chaotic systems, such
as four-dimensional generalized Lorenz–Stenflo system, the unified chaotic system, Sprott
system, Rossler system, Lorenz system, Duffing oscillator, Chua’s circuit, etc. A general
form for master chaotic systems is described by

Master chaotic system:

.
xm(t) = Axm(t) + B f (xm(t), t) (1)
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and the slave chaotic system with undesired input uncertainty and matched/mismatched
is described as follows.

Slave chaotic system:

.
xs(t) = Axs(t) + B( f (xs(t), t) + ∆ f (xs(t), t) + u(t) + ∆u(t))

+Bωω(t)
(2)

where A ∈ Rn×n, B ∈ Rn×m are system matrices. The matrix pair (A, B) is controllable,
meaning that the controllability matrix R =

[
B AB . . . An−1B

]
has full row rank

(i.e., Rank(R) = n). Bω ∈ Rn×r represents the mismatched matrix of systems, xm(t) ∈ Rn,
xs(t) ∈ Rn, u(t) ∈ Rm, ∆u(t) ∈ Rm, f (xm(t), t) ∈ Rm, f (xs(t), t) ∈ Rm, ∆ f (xs(t), t) ∈ Rm

and ω(t) ∈ Rr are the state vector of master systems, the state vector of slave systems, the
input vector, the unknown but bounded input perturbation, the master system nonlinear
vector, the slave system nonlinear vector, the unknown but bounded nonlinear disturbance
of the slave system and the mismatched disturbance vector, respectively. Besides the
unknown disturbance satisfies ∆ f (xs(t), t) = ∆ f1(xs(t), t) + ∆ f2(t) and is assumed to
be bounded by ‖∆ f1(xs(t), t)‖ ≤ α1‖xs(t)‖, ‖∆ f2(t)‖ ≤ α2. The unknown ω(t) is also
bounded by ‖ω(t)‖ ≤ αω, and the input uncertainty satisfies |∆ui(t)| ≤ αui|ui(t)|, i =
1, 2, . . . , m and αu = max

i
αui < 1.

Considering (1) and (2), we have the following error state equation.

.
e(t) = Ae(t) + B( f (xs(t), t)− f (xm(t), t) + ∆ f (xs(t), t) + u(t)

+∆u(t)) + Bωω(t)
(3)

where e(t) = xs(t)− xm(t).
Here the control goal is to present a design procedure of SMC controller robust to

bounded input uncertainty and to solve the chaos synchronization problem. To complete
this synchronization controller design, two steps are included. First, it is necessary to choose
an appropriate switching surface such that the error dynamics in the sliding manifold can
be easily analyzed and the error bounds for matched/mismatched disturbances can be
estimated. Second, a robust SMC is necessary to guarantee the hitting condition and keep
the system trajectories in the sliding manifold even under the influence of input uncertainty.
In the following section, we will discuss the designs of a switching surface and robust SMC
controller.

3. Switching Surface Design and Performance Estimation in the Sliding Manifold

To complete the above design steps, we first introduce a PI sliding surface that can
avoid the reduce order property in the traditional SMC and make it easy to estimate and
analyze the error dynamics when the controlled system is driven to the sliding manifold.
We choose the PI switching surface, which is defined as follows

S(t) = σe(t)−
∫ t

0
(σA− K)e(τ)dτ (4)

where σ = B† = (BT B)−1BT is the generalized inverse satisfying σB = Im, K is the control
gain matrix selected such that the eigenvalues λi, i = 1, 2, . . . , n of matrix (A− BK) are
different real numbers and satisfy λi < 0, i = 1, 2, . . . , n.

Differentiating (4), we obtain
.
S(t) = σ(Ae(t) + B( f (xs(t), t)− f (xm(t), t) + ∆ f (xs(t), t) + u(t) + ∆u(t)) + Bωω(t))

−σAe(t) + Ke(t)
(5)

Assume the system is in the sliding manifold for t ≥ ts (ts is the hitting time), i.e.,
S(t) = 0 and

.
S(t) = 0, the equivalent control ueq(t) can be obtained from (5) with

.
S(t) = 0

as
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ueq(t) = − f (xs(t), t) + f (xm(t), t)− ∆ f (xs(t), t)− ∆u(t)
−σBωω(t)− Ke(t)

(6)

Substituting (6) into (3), we can have the synchronization error dynamics in the sliding
manifold as

.
e(t) = Ãe(t) + ω̃(t) (7)

where Ã = A− BK, ω̃(t) = (I − Bσ)Bωω(t).
As is well known, since matrix pair (A, B) is controllable, we can easily obtain a

specified matrix K by using the pole assignment approach such that all eigenvalues of
Ã = A− BK satisfy λi(A− BK) < 0, i = 1, 2, . . . , n. Solving (7), one has the solution of e(t)
for t ≥ ts (ts is the hitting time) as

e(t) = eÃ(t−ts)e(ts) +
∫ t

ts
eÃ(t−τ)ω̃(τ)dτ (8)

Next, selecting a matrix P =
[

p1 p2 . . . pn
]
∈ Rn×n to transform the matrix Ã

to be diagonal and satisfy P−1 ÃP = Λ, Λ = diag(λ1, λ2, . . . , λn), where pi ∈ Rn×1 is the
independent eigenvector corresponding to eigenvalue λi of matrix Ã.

From (8), by introducing the fact of eÃt = PeΛtP−1, one has

e(t) = PeΛ(t−ts)P−1e(ts) +
∫ t

ts
PeΛ(t−τ)P−1ω̃(τ)dτ (9)

The solution of every ei(t), i = 1, 2, . . . , n can be individually obtained as

ei(t) = φie(t)

= φiPeΛ(t−ts)P−1e(ts) + φi
∫ t

ts
PeΛ(t−τ)P−1ω̃(τ)dτ

= φiPeΛ(t−ts)P−1e(ts) + φi
∫ t

ts
PeΛ(t−τ)P−1(I − Bσ)Bωω(τ)dτ

(10)

where φi is i -row of In.
According to (10), we have

|ei(t)| ≤
∣∣∣φiPeΛ(t−ts)P−1e(ts)

∣∣∣+ ∣∣∣∣φi

∫ t

ts
PeΛ(t−τ)P−1(I − Bσ)Bωω(τ)dτ

∣∣∣∣ (11)

Next, introducing the limit of the Riemann sum [22], the term of φi
∫ t

ts
PeΛ(t−τ)P−1

(I − Bσ)Bωω(τ)dτ in (11) can be described as below

φi

∫ t

ts
PeΛ(t−τ)P−1(I − Bσ)Bωω(τ)dτ = φi lim

n→∞

n

∑
j=1

PeΛ(t−t∗)P−1(I − Bσ)Bωω(t∗)∆τ (12)

where ∆τ = t−ts
n > 0, n→ ∞ and t∗ = ts + ∆τ · j. Thus, we have∣∣∣φi
∫ t

ts
PeΛ(t−τ)P−1(I − Bσ)Bωω(τ)dτ

∣∣∣
=

∣∣∣∣∣φi lim
n→∞

n
∑

j=1
PeΛ(t−t∗)P−1(I − Bσ)Bωω(t∗)∆τ

∣∣∣∣∣
=

∣∣∣∣∣φiP( lim
n→∞

n
∑

j=1
eΛ(t−t∗)∆τ)P−1(I − Bσ)Bωω(t∗)

∣∣∣∣∣
≤ ‖φiP( lim

n→∞

n
∑

j=1
eΛ(t−t∗)∆τ)P−1(I − Bσ)Bω‖‖ω(t∗)‖

≤ ‖φiP
∫ t

ts
eΛ(t−τ)dτP−1(I − Bσ)Bω‖max

t≥ts
‖w(t)‖

(13)
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By substituting (13) into (11), the bound of every ei(t), i = 1, 2, . . . , n for t ≥ ts can be
estimated by

|ei(t)| ≤
∣∣∣φiPeΛ(t−ts)P−1e(ts)

∣∣∣
+‖φiP

∫ t
ts

eΛ(t−τ)dτP−1(I − Bσ)Bω‖max
t≥ts
‖w(t)‖

≤
∣∣∣φiPeΛ(t−ts)P−1e(ts)

∣∣∣+ αw‖φiP · diag(−1
λ1

+ eλ1(t−ts)

λ1
, . . . , −1

λn
+ eλn(t−ts)

λn
)P−1(I − Bσ)Bω‖

(14)

Since λi < 0 is specified, we can estimate the bounds ρi of ei(t) as

ρi = lim
t→∞
|ei(t)|

≤ lim
t→∞

∣∣∣φiPeΛ(t−ts)P−1e(ts)
∣∣∣

+ lim
t→∞

αw‖φiP · diag
(
−1
λ1

+ eλ1(t−ts)

λ1
, . . . , −1

λn
+ eλn(t−ts)

λn

)
P−1(I − Bσ)Bω‖

≤ αw‖φiP · diag
(
−1
λ1

, . . . , −1
λn

)
P−1(I − Bσ)Bω‖

(15)

Remark 1. If the uncertain slave system (2) is only subjected to matched uncertainties (i.e., the
matrix Bω can be represented as Bω = BB1 for some matrix B1), then we have (I − Bσ)Bω = 0.
According to (15), one can conclude that when the controlled system is with matched uncertainties
and disturbances, the synchronization errors can fully converge to zero, i.e., ρi = 0, i = 1, 2, . . . , n.

From above discussion, we can estimate the individual bound of synchronization
errors in the sliding manifold for matched/mismatched disturbances. However, the bounds
are obtained for the systems in the sliding manifold. Therefore, we still need to propose an
SMC controller robust to input uncertainty to guarantee the sliding motion of S(t) = 0.

4. Robust SMC Controller Design

Before continuing the SMC controller design, the following hitting condition based on
the Lyapunov stability theorem is presented to ensure the existence of the sliding manifold.

Lemma 1. The trajectory of the error dynamics (3) always converges to the sliding surface S(t) = 0,
if the following hitting condition is satisfied

ST(t)
.
S(t) < 0 (16)

Proof. According to Lyapunov stability theory, we select a Lyapunov function V(t) =

0.5ST(t)S(t) > 0 for all S(t) 6= 0. Obviously, condition (16) implies that
.

V(t) = ST(t)
.
S(t) <

0. Therefore, V(t) as well as the switching function S(t) can converge to zero.

For satisfying the hitting condition (16), the SMC control input subjected to bounded
uncertainty is proposed as

u(t) = −ξψ(t)sign(S(t)), ξ > (1− αu)
−1 (17)

where ψ(t) = ‖ f (xs(t), t)− f (xm(t), t) + Ke(t)‖+ α1‖xs(t)‖+ (α2 + αω‖σBω‖). �

Theorem 1. Consider the uncertain error dynamics (3) with bounded input uncertainty, the system
trajectory controlled by the SMC controller (17) can asymptotically converge to the sliding manifold
S(t) = 0.

Proof. By introducing (3) and the SMC controller (17) into ST(t)
.
S(t), we obtain
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ST(t)
.
S(t) = ST(t)( f (xs(t), t)− f (xm(t), t) + ∆ f (xs(t), t) + u(t) + ∆u(t) + σBωω(t)) + Ke(t)

≤ ‖S(t)‖(‖( f (xs(t), t)− f (xm(t), t) + Ke(t)‖+ α1‖xs(t)‖+ (α2 + αω‖σBω‖))
+ST(t)(u(t) + ∆u(t))

(18)

Since |∆ui(t)| ≤ αui|ui(t)|, i = 1, 2, . . . , m for the input uncertainty, we have

|∆ui(t)ui(t)| = |∆ui(t)||ui(t)| ≤ αui|ui(t)||ui(t)| = αuiu2
i (t) (19)

From (19), we have −αuiu2
i (t) ≤ ∆ui(t)ui(t) ≤ αuiu2

i (t) and

− αu

m

∑
i=1

u2
i (t) ≤ uT(t)∆u(t) =

m

∑
i=1

ui(t)∆ui(t) ≤
m

∑
i=1

αuiu2
i (t) ≤ αu

m

∑
i=1

u2
i (t) (20)

Therefore, we can obtain

− αuuT(t)u(t) ≤ uT(t)∆u(t) ≤ αuuT(t)u(t) (21)

By substituting (17) into (21), we have

−αuξψ(t)signT(S(t))sign(S(t)) ≤ −signT(S(t))∆u(t) ≤ αuξψ(t)signT(S(t))sign(S(t))

⇒ −αuξψ(t)
m
∑

i=1
sign2(si(t)) ≤ −

m
∑

i=1
sign(si(t))∆ui(t) ≤ αuξψ(t)

m
∑

i=1
sign2(si(t))

(22)

Multiplying s2
i (t) into (22) yields

− αuξψ(t)
m

∑
i=1

sign2(si(t))s2
i (t) ≤ −

m

∑
i=1

sign(si(t))s2
i (t)∆ui(t) ≤ αuξψ(t)

m

∑
i=1

sign2(si(t))s2
i (t) (23)

By using the fact of si(t)sign(si(t)) = |si(t)|, we have

− αuξψ(t)
m

∑
i=1

s2
i (t) ≤ −

m

∑
i=1
|si(t)|si(t)∆ui(t) ≤ αuξψ(t)

m

∑
i=1

s2
i (t) (24)

From (24), we can conclude

ST∆u(t) =
m

∑
i=1

si(t)∆ui(t) ≤ αuξψ(t)
m

∑
i=1
|si(t)| (25)

Hence, from (18) and (25), we have

ST(t)
.
S(t) ≤ ‖S(t)‖ψ(t)− ξψ(t)ST(t)sign(S(t)) + ST(t)∆u(t)

≤ ‖S(t)‖ψ(t)− (1− αu)ξψ(t)
m
∑

i=1
|si(t)|

(26)

Furthermore, since ‖S(t)‖ =
√

m
∑

i=1
s2

i (t) ≤
m
∑

i=1
|si(t)| and ξ > (1− αu)

−1 are selected,

we have

ST(t)
.
S(t) ≤ ψ(t)

m

∑
i=1
|si(t)| − (1− αu)ξψ(t)

m

∑
i=1
|si(t)| ≤ (1− ξ(1− αu))ψ(t)

m

∑
i=1
|si(t)| < 0 (27)

Thus, according to Lemma 1, one can conclude that the system trajectory asymptotically
converges to the sliding manifold S(t) = 0. �
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Remark 2. From the theoretical point of view, the discontinuous sign function in control input (17)
may cause chattering. To reduce the chattering resulted from the discontinuous sign function, we
can introduce the continuous saturation function described by

sat(si(t)) =
si(t)

|si(t)|+ εi
, (28)

where εi > 0 is sufficiently small.

Obviously, when εi is sufficiently small, then sign(si(t)) can be approximated by
sat(si(t)) and the control input u(t) can be modified as the following control law [23].

u(t) = −ξψ(t)sat(S(t)) (29)

where sat(S(t)) =
[

s1(t)
|s1(t)|+ε1

, s2(t)
|s2(t)|+ε2

, . . . , sm(t)
|sm(t)|+εm

]T
.

Obviously, the continuous controller (29) with a sufficiently small value of εi can
approach the discontinuous controller (17) very closely.

Remark 3. According to the above discussion, we can systematize the design procedure for robust
chaos synchronization as follows.

Step 1: Construct the master–slave systems as (1), (2) and check the controllability of matrix
pair (A, B).

Step 2: With the controllable matrix pair (A, B), using any available pole assignment approach
to calculate the gain matrix K such that the eigenvalues λi, i = 1, 2, . . . , n of matrix
Ã = (A− BK) in (7) are all different and satisfy λi < 0, to guarantee a stable sliding
manifold.

Step 3: construct the PI type-switching function S(t) by (4).
Step 4: Find independent eigenvectors corresponding to eigenvalue λi of matrix Ã and construct

the transform matrix P.
Step 5: According to (15), calculate the error bounds.
Step 6: Obtain the SMC synchronization controller from (17) or (29).

5. Numerical Simulation Results

In this section, we give two examples to demonstrate the availability of the pro-
posed robust SMC synchronization controller for the Sprott chaotic circuit [24] and four-
dimensional generalized Lorenz–Stenflo systems [25].

Example 1. In this example, we show that the proposed SMC controller can synchronize chaotic
systems only using a single input. We consider the Sportt chaotic system [24] described by

.
x1(t) = x2(t)
.
x2(t) = x3(t)

.
x3(t) = β1x1(t) + β2x2(t)− β3x3(t) + 2β4sign(x1(t))

(30)

where xi, i = 1, 2, 3, are the state variables and βi, i = 1, 2, 3, 4 are system parameters.

System (30) exhibits chaotic strange attractors, as shown in Figure 1 when β1 = −1.2,
β2 = −1, β3 = −0.6 and β4 = 2.8. Obviously, we can rewrite (30) in the form of (1).
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.
x(t) = Ax(t) + B( f (x, t)) (31)

where A =

 0 1 0
0 0 1
−1.2 −1 −0.6

, B =

 0
0
1

, g(x, t) = 5.6sign(x1(t)).

According to Remark 3, we construct the master–slave systems as:
Master chaotic system:

.
xm(t) = Axm(t) + B f (xm, t) (32)

Slave chaotic system:

.
xs(t) = Axs(t) + B( f (xs(t), t) + ∆ f (xs(t), t) + u(t) + ∆u(t)) + Bωω(t) (33)

Moreover, the matched and mismatched disturbances and uncertain uncertainty in
control input are given as

∆ f (xs(t), t) = 0.2xs1(t) + 0.2 cos(6t), ∆u(t) = 0.3 sin(xs1(t))u(t), ω(t) = 0.3 sin(8t) (34)

We can easily check that the pair (A, B) is controllable.

From (34), we have α1 = 0.2, α2 = 0.2, αu = 0.3, αω = 0.3.

According to Step 2 in Remark 3, we can easily select the gain matrix K = [4.8 10 5.4]
such that λ1 = −1, λ2 = −2, λ3 = −3 to result in a stable sliding mode. And we can design
the switching function S(t) with σ =

[
0 0 1

]
as

S(t) =
[

0 0 1
]
e(t) +

∫ t

0

[
6 11 6

]
e(τ)dτ (35)

And eigenvector matrix P corresponding to eigenvalues of matrix Ã is obtained as

P =

 −0.5774 0.2182 −0.1048
0.5774 −0.4364 0.3145
−0.5774 0.8729 −0.9435


In the following, according to the matrix Bω , we split it into mismatched and matched

conditions to discuss.
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(i) Mismatched condition:

Now we examine the mismatched case by assuming Bω =
[

0.2 0.5 0.6
]T . The

proposed SMC u(t) is utilized to synchronize the master–slave systems given in (32) and
(33). To reduce the chatting phenomenon, we replace the sign function with the saturation
function (29). Therefore, the sliding mode control with saturation function is given as

u(t) = −ξψ(t)sat(S(t)), ξ = 1.5 > (1− αu)
−1 (36)

sat(S(t)) = S(t)
|S(t)|+0.01

ψ(t) = ‖5.6(sign(xs1(t))− sign(xm1(t)) +
[

4.8 10 5.4
]
e(t)‖

+0.2‖xs(t)‖+ 0.8

(37)

The simulation results with the initial values of
[

xm1(0) xm2(0) xm3(0)
]T

=[
3 −3 6

]T and
[

xs1(0) xs2(0) xs3(0)
]T

=
[

5 −5 4
]T . The upper bound

|ei(t)| of every synchronization error state can be estimated according to (15) and obtained
as ρ1 ≤ 0.26, ρ2 ≤ 0.06 and ρ3 ≤ 0.15. Then, the synchronization error responses with
estimated bounds, the time response of SMC controller and the sliding surface are presented
in Figures 2 and 3, respectively.
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(ii) Matched condition:

We continue to simulate the matched case by assuming Bω =
[

0 0 0.5
]T . In the

simulation, we also use the same conditions as those in case (i). The synchronization error
trajectories for every ei(t) are presented in Figure 4. Observing Figure 4, the synchronization
errors with matched disturbances exactly converge to zero as concluded in Remark 1.
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Example 2. A four-dimensional generalized Lorenz–Stenflo system [25] is considered as follows

.
x1(t) = a(x2(t)− x1(t)) + sx3(t)
.
x2(t) = cx1(t)− dx2(t)− x1(t)x4(t)
.
x3(t) = −x1(t)− rx3(t)
.
x4(t) = x1(t)x2(t)− bx4(t)

(38)

where xi, i = 1, 2, 3, 4, are the state variables and a, b, c, r, s, d are positive parameters.

System (38) exhibits hyperchaotic strange attractors, as shown in Figure 5 with a =
19.42, b = 1.91, c = 29.45, r = 2.86, s = 0.23, d = 9.64.
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System (38) can be also rewritten by the general form as

.
x(t) = Ax(t) + B f (x, t) (39)

where A =


−a a s 0
c −d 0 0
−1 0 −r 0
0 0 0 −b

, B =


0 0
1 0
0 0
0 1

, f (x, t) =
[
−x1(t)x4(t)
x1(t)x2(t)

]
.

We can easily check that (A, B) is controllable with a = 19.42, b = 1.91, c = 29.45,
r = 2.86, s = 0.23, d = 9.64.

According to Remark 3, we construct the master–slave systems as
Master chaotic system:

.
xm(t) = Axm(t) + B f (xm, t) (40)

Slave chaotic system:

.
xs(t) = Axs(t) + B( f (xs(t), t) + ∆ f (xs(t), t) + u(t) + ∆u(t)) + Bωω(t) (41)

In addition, for simulation, the following terms are given as

∆ f (xs(t), t) =
[

0.2 sin(2t)xs1(t)
0.3xs2(t) + 0.2 cos(3t)

]
, ∆u(t) =

[
0.1 sin(t) cos(3t)u1(t)

0.2 sin(4t)u2(t)

]
, ω(t) =

[
0.4 sin(8t) 0.2|sin(2t)|

]T
(42)

From (42), we have α1 = 0.3, α2 = 0.2, αu = 0.2, αω = 0.4.
According to Step 2 in Remark 3, we can obtain the gain matrix

K =

[
38.2330 −9.5100 −6.5180 0

0 0 0 3.0900

]
such that λ1 = −6, λ2 = −4, λ3 = −3, λ4 =

−5 to result in a stable sliding mode. We can also design the switching function S(t) with

σ =

[
0 1 0 0
0 0 0 1

]
as

S(t) =
[

0 1 0 0
0 0 0 1

]
e(t)−

∫ t

0

([
−8.730 6.6500 6.5180 0

0 0 0 −5

]
e(τ)

)
dτ (43)
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And eigenvector matrix corresponding to eigenvalues of matrix Ã is obtained as

P =


0.8463 −0.8140 0.7970 0
0.5120 −0.5392 0.5311 0
0.1467 −0.2159 0.2877 0

0 0 0 1


(i) Mismatched condition:

Now we check the mismatched case by assuming

Bω =


0.3 0
0 0.4
0 0.3

0.2 0.1


In order to reduce the chattering, we also use the saturation function (29) to replace

the discontinuous sign function. Therefore, u(t) with continuous saturation function can
be obtained as

u(t) = −ξψ(t)sat(S(t)), ξ = 1.5 > (1− αu)
−1 (44)

sat(S(t)) =
[

s1(t)
|s1(t)|+0.05

s2(t)
|s2(t)|+0.05

]T

ψ(t) = ‖
[
−xs1(t)xs4(t) + xm1(t)xm4(t)
xs1(t)xs2(t)− xm1(t)xm2(t)

]
+

[
−171.1936 −28.8164 0

0 0 −29.8030

]
e(t)‖

+0.3‖xs(t)‖+ 0.3664

(45)

The simulation results are obtained with the initial values of [xm1(0) xm2(0) xm3(0) xm4(0)]
=
[
−6 2 2 0

]
;
[

xs1(0) xs2(0) xs3(0) xs4(0)
]
=
[
−2 1 3 1

]
. As described

above, the bounds of every synchronization error state |ei(t)| can be predicted as ρ1 ≤
0.1042, ρ2 ≤ 0.0713, ρ3 ≤ 0.0699 and ρ4 = 0. Then, the synchronization error responses
with predicted bounds, the time response of SMC controller and the sliding surface are
presented in Figures 6 and 7, respectively.
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(ii) Matched condition:

Now we continue to study the matched case. The matrix Bω is given as

Bω =


0 0

0.3 0
0 0
0 0.3


In the simulation, we use the same conditions as those in case (i) except the disturbance

matrix Bw. Then, the synchronization error trajectories of every ei(t) are presented in Figure 8.
Observing Figure 8, the synchronization error under matched disturbances can converge to
zero as discussed.
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Obviously, according to the simulation results illustrated in Examples 1 and 2, it
reveals that the presented robust SMC controller can not only robustly suppress the syn-
chronization errors for matched disturbances, but also predict the synchronization error
bounds for mismatched disturbances. The chattering is also reduced by the saturation
function. However, a slight influence due to the replacement of the sign function by the
saturation function can be observed, but the results are acceptable.
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6. Conclusions

A robust chaos synchronization control design for chaotic systems with matched/
mismatched disturbances and uncertainty in the input is proposed in this paper. A robust
SMC scheme is presented to achieve chaos synchronization even under the influence of
matched/mismatched disturbances and nonlinear uncertainty of inputs. The introduced PI
type switching surface makes the controlled synchronization error in the sliding manifold
easy to analyze. The proposed SMC has great potential in synchronizing uncertain master–
slave systems even with mismatched uncertainties as well as input nonlinearity. Moreover,
as for the mismatched disturbances, the synchronization errors can also be robustly sup-
pressed to predictable bounds. The design procedure for robust chaos synchronization has
been systematized and the numerical simulation results have demonstrated the robustness
and validity of the proposed chaos suppression controller.
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