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Abstract: A finite difference/Galerkin spectral discretization for the temporal and spatial fractional
coupled Ginzburg–Landau system is proposed and analyzed. The Alikhanov L2-1σ difference
formula is utilized to discretize the time Caputo fractional derivative, while the Legendre-Galerkin
spectral approximation is used to approximate the Riesz spatial fractional operator. The scheme is
shown efficiently applicable with spectral accuracy in space and second-order in time. A discrete form
of the fractional Grönwall inequality is applied to establish the error estimates of the approximate
solution based on the discrete energy estimates technique. The key aspects of the implementation
of the numerical continuation are complemented with some numerical experiments to confirm the
theoretical claims.

Keywords: generalized fractional coupled Ginzburg–Landau system; Alikhanov difference formula;
Galerkin spectral scheme; discrete fractional Grönwall inequality
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1. Introduction

The 2003 Nobel prize winning Ginzburg–Landau model in the field of physics is
widely used in superconductors, superfluids, and condensation processes of Bose–Einstein
type. As a low-temperature superconducting model [1], the Ginzburg–Landau model was
first introduced by physicists Ginzburg and Landau in the 1950s. A wide variety of phenom-
ena can be described by the Ginzburg–Landau equation starting from second-order phase
transitions to nonlinear waves, and from Bose-Einstein condensation, superconductivity
and superfluidity to strings in field theory and liquid crystals [2]. The concept of the frac-
tional Ginzburg–Landau equation, which can be used to describe the dynamical processes
in a medium with fractal dispersion was first derived by Tarasov in [3]. The variational
Euler-Lagrange equation for fractal media was the generator of the fractional generalization
of Ginzburg–Landau equation. A coupled Ginzberg-Landau system was used to describe a
class of nonlinear optical fiber materials with active and passive coupled cores [4,5].

The well-posedness was discussed globally, and the long-time dynamics for the
nonlinear complex Ginzburg–Landau equation involving fractional Laplacian was tackled
in [6]. The dynamics and well-posedness of the coupled fractional Ginzburg–Landau
equation, which describes a class of nonlinear optical fiber materials with active and
passive coupled cores, was discussed in [7].
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Motivated by their vast applications, numerical methods dealing with Ginzberg-
Landau problems have gained attention due to the difficulty of obtaining exact solutions
for the fractional order form of Ginzberg-Landau models. Armed by that, Galerkin spectral
methods of Legendre type would be one of the most appropriate numerical methods
for handling this kind of problem well. The Galerkin spectral method is a valuable tool
for solving partial differential equations [8] and has been successfully applied to solving
various types of fractional-order models [9–14].

The authors have already made some contributions to numerically solving various
kinds of time-space fractional order problems based on the ideas of Legendre Galerkin
spectral and finite difference schemes. In [15], semi-implicit spectral approximations were
proposed to solve nonlinear time-space fractional diffusion–reaction equations with smooth
and nonsmooth solutions. A combination of the Legendre Galerkin spectral approximation
and the L1 difference approximation formulae over graded and uniform meshes was pro-
posed. The work in [16] was concerned with a numerical treatment of nonlinear fractional
Schrödinger equations with Riesz space-and Caputo time-fractional derivatives. The L1
finite difference approximation was used for the discretization of the Caputo fractional
derivative and the Legendre-Galerkin spectral method was used for the spatial approxi-
mation. The contribution in [17] was devoted to coupled nonlinear time-space fractional
Schrödinger equations with non-smooth solutions in the time direction. The method com-
bined the L1 scheme with temporal nonuniform mesh and the Galerkin-Legendre spectral
approximation. The convergence and the stability estimates were performed using energy
estimates and discrete forms of Grönwall inequalities [18–20]. More recently, a numerical
algorithm was proposed for the time–space fractional Ginzburg–Landau equation by a high-
order difference/Galerkin spectral scheme. For the temporal approximation, the smooth
Alikhanov difference formula was used to discretize the time fractional derivative of Ca-
puto type, while for the spatial discretization, we hinged on the Legendre–Galerkin spectral
method [21]. In [22], a graded mesh finite difference/Galerkin spectral method was used
to numerically solve a coupled system of time and space fractional diffusion equations.

In this paper, we propose a high order Alikhanov Legendre-Galerkin spectral method
for solving the following nonlinear coupled fractional Ginzburg–Landau equations:

C
0 Dβ

t ψ− (ν1 + iη1)
∂αψ

∂|x|α +
(
(k1 + iζ1) |ψ|2 + (ε1 + iµ1) |φ|2

)
ψ− γ1 ψ = 0, x ∈ Ω, t ∈ I, (1a)

C
0 Dβ

t φ− (ν2 + iη2)
∂αφ

∂|x|α +
(
(k2 + iζ2) |ψ|2 + (ε2 + iµ2) |φ|2

)
φ− γ2 φ = 0, x ∈ Ω, t ∈ I, (1b)

with the initial conditions

ψ(x, 0) = ψ0(x), φ(x, 0) = φ0(x), x ∈ Ω, (1c)

and the homogeneous boundary conditions

ψ(a, t) = ψ(b, t) = φ(a, t) = φ(b, t) = 0, t ∈ I, (1d)

such that Ω = (a, b) ⊂ R and I = (0, T] ⊂ R. The parameters νi, ηi, ki, ζi, εi, µi and
γi, i = 1, 2 are given real constants, and φ(x) is a given smooth function. The temporal
fractional derivative is defined in Caputo sense [23]:

C
0 Dβ

t Ψ(x, t) :=


1

Γ(1− β)

∫ t

0

1
(t− r)β

∂Ψ(x, r)
∂r

dr, 0 < β < 1,

∂Ψ(x, t)
∂t

, β = 1.
(2)
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The spatial fractional operator of Riesz type of order α with respect to a ≤ x ≤ b,
namely, ∂αΨ

∂|x|α , is defined as [23]

∂αΨ
∂|x|α = −cα

(
aDα

xΨ(x, t) + xDα
b Ψ(x, t)

)
, cα =

1
2 cos πα

2
, 1 < α < 2,

where aDα
xΨ(x, t) is the left-sided Riemann–Liouville derivative and xDα

b Ψ(x, t) is the
right-sided Riemann–Liouville derivative of order α with respect to x ∈ (a, b), defined as

aDα
xΨ(x, t) =

1
Γ(n− α)

∂n

∂xn

∫ x

a
(x− τ)n−1−αΨ(τ, t)dτ, (3)

xDα
b Ψ(x, t) =

(−1)n

Γ(n− α)

∂n

∂xn

∫ b

x
(τ − x)n−1−αΨ(τ, t)dτ. (4)

There exists a wide variety of numerical methods which deal with space and/or
fractional differential equations [24–31]. The coupled space fractional Ginzburg–Landau
system was numerically investigated in [32]. A linearized semi-implicit difference scheme
is proposed with unconditional stability and fourth order of convergence. In [33], a discrete
difference scheme based on the implicit midpoint in time and a weighted and shifted Grün-
wald difference scheme with respect to space. The scheme is uniquely solvable, and the
numerical solutions are bounded and unconditionally convergent. For the strongly coupled
fractional Ginzburg-Landau system, a linearized three time level semi-implicit finite dif-
ference scheme in [34] was proposed to solve it. The difference scheme is unconditionally
stable, fourth-order accurate in space, and second-order accurate in time.

The main concern of this work is to first design a combined numerical scheme for
a coupled system (1) of Ginzburg-Landau with the time Caputo fractional derivative
and the Riesz space fractional Laplacian operator. That scheme combines the Alikhanov
L2-1σ differentiation formula [35] with Legendre Galerkin spectral approximation. Error
estimates and unconditional convergence of the proposed scheme based on discrete energy
estimates are detailed here. Accordingly, the manuscript is organized as follows. The next
section is devoted to some preliminaries. The numerical scheme and its implementation are
illustrated in the third section. The fourth section focuses on the convergence analysis of
the proposed scheme in both semi and full discretized styles. Some numerical experiments
are done in the penultimate section while the manuscript ends with a section for conclusion
and remarks.

2. Preliminaries

Some spaces of fractional derivatives are recalled below, see [36]. The notation (·, ·)0,Ω
denotes the inner product on the space L2(Ω) with the L2-norm ‖·‖0,Ω and the maximum
norm ‖·‖∞. C∞

0 (Ω) denotes the space of non-singular functions with compact support in
Ω. Hr(Ω) and Hr

0(Ω) are Sobolev spaces with the norm ‖·‖Hr and semi-norm |·|Hr . We
denote PN(Ω) the space of polynomials. The approximation space V0

N is defined as

V0
N = PN(Ω) ∩ H1

0(Ω).

Additionally, IN is the interpolation operator of Legendre-Gauss-Lobatto type,
IN : C(Ω̄)→ VN ,

Ψ(xk) = INΨ(xk) ∈ PN , k = 0, 1, . . . , N.

Definition 1 (Left fractional derivative space). We define the semi-norm and the norm for
η > 0, respectively as

|Ψ|Jη
L(Ω) =

∥∥∥aDη
x Ψ
∥∥∥

0,Ω
, ‖Ψ‖Jη

L(Ω) =
(
|Ψ|2Jη

L
(Ω) + ‖Ψ‖2

0,Ω

)1/2
,
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such that Jη
L is defined as the closure of C∞(Ω) with respect to ‖·‖Jη

L
.

Definition 2 (Right fractional derivative space). We define the semi-norm and the norm for
η > 0, respectively as

|Ψ|Jη
R(Ω) =

∥∥∥xDη
b Ψ
∥∥∥

0,Ω
, ‖Ψ‖Jη

R(Ω) =
(
|Ψ|2Jη

R(Ω)
+ ‖Ψ‖2

0,Ω

)1/2
,

such that Jη
R is defined as the closure of C∞(Ω) with respect to ‖·‖Jη

R
.

Definition 3 (Symmetric fractional derivative space). We define the semi-norm and the norm
for η 6= n− 1

2 , n ∈ N, respectively as

|Ψ|Jη
s (Ω) =

∣∣∣∣(aDη
x Ψ, xDη

b Ψ
)

0,Ω

∣∣∣∣1/2
, ‖Ψ‖Jη

s (Ω) =
(
|Ψ|2Jη

s (Ω)
+ ‖Ψ‖2

0,Ω

)1/2
,

and denote Jη
s as C∞(Ω) closure with respect to ‖·‖Jη

s
.

Definition 4 (Fractional Sobolev space). The Sobolev space Hη(Ω) for η > 0, is given as

Hη(Ω) =
{

Ψ ∈ L2(Ω) : |ω|ηF (Ψ̃) ∈ L2(R)
}

,

endowed with the semi-norm and norm respectively as

| Ψ |Hη(Ω)=
∥∥ | ω |η F (Ψ̃)

∥∥
0,R, ‖Ψ‖Hη(Ω) =

(
| Ψ |2Hη(Ω) +‖Ψ‖

2
0,Ω

)1/2
,

such that Hη
0 (Ω) is the closure of C∞

0 (Ω) with respect to ‖·‖Hη(Ω). Also, F (Ψ̃) is the Fourier
transformation of the function Ψ̃ and the zero extension of Ψ outside Ω denoted by Ψ̃.

Lemma 1 (Adjoint property). By choosing 1 < η < 2, then ∀Ψ ∈ Hη
0 (Ω) and ν ∈ Hη/2

0 (Ω),
we deduce(

aDη
x Ψ, ν

)
0,Ω

=
(

aDη/2
x Ψ, xDη/2

b ν
)

0,Ω
,
(

xDη
b Ψ, ν

)
0,Ω

=
(

xDη/2
b Ψ, aDη/2

x ν
)

0,Ω
.

3. Numerical Scheme

Here, the discretization of problem (1) is done by using the L2-1σ approximation differ-
ence formula for the Caputo time fractional operator side by side to the Legendre-Galerkin
spectral method for the Riesz spatial-fractional operator. A detailed implementation of the
proposed scheme is proposed here.

3.1. Discretization

We partition the temporal domain I by tj = jτ, j = 0, 1, . . . , M with τ = T/M. Denote
tj+σ = (j + σ)τ = σtj+1 + (1− σ)tj, for j = 0, 1, . . . , M − 1. Take Ψj+σ = Ψj+σ(·) =
Ψ(·, tj+σ).

Definition 5. Let 0 < β < 1 and σ = 1− β
2 . Define

a(β,σ)
s =

{
σ1−β, s = 0,
(s + σ)1−β − (s− 1 + σ)1−β, s ≥ 1,

(5)

b(β,σ)
s = 1

2−β

[
(s + σ)2−β − (s− 1 + σ)2−β

]
− 1

2
[
(s + σ)1−β + (s− 1 + σ)1−β

]
, s ≥ 1, (6)
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and

C(j,β,σ)
s =


a(β,σ)

0 , s = j = 0,
a(β,σ)

0 + b(β,σ)
1 , s = 0, j ≥ 1,

a(β,σ)
s + b(β,σ)

s+1 − b(β,σ)
s , 1 ≤ s ≤ j− 1,

a(β,σ)
j − b(β,σ)

j , 1 ≤ s = j.

(7)

Lemma 2 (see [35]). The high order Alikhanov L2-1σ difference formula under the assumption
Ψ(t) ∈ C3[0, tj+1], 0 ≤ j ≤ M− 1, formulated as

0Dβ
tj+σ

Ψ =
τ−β

Γ(2− β)

j

∑
r=0

C(j,β,σ)
j−r δtΨr +O(τ3−β), 0 < β < 1, (8)

where δtΨr = Ψr+1 −Ψr.

It can be rewritten as

0Dβ
tj+σ

Ψ =
τ−β

Γ(2− β)

j

∑
r=0

d(j,β,σ)
r Ψr +O(τ3−β), (9)

where d(0,β,σ)
1 = −d(0,β,σ)

0 = σ1−β ∀ j = 0, and ∀ j ≥ 1,

d(j,β,σ)
s =


−C(j,β,σ)

j , s = 0,

C(j,β,σ)
j−s+1 − C(j,β,σ)

j−s , 1 ≤ s ≤ j,

C(j,β,σ)
0 , s = j + 1.

(10)

Definition 6. Let j ∈ Z[0,M−1], Alikhanov L2-1σ difference formula at the node tj+σ is defined as

0Dβ
τ Ψj+σ =

τ−β

Γ(2− β)

j+1

∑
r=0

d(j,β,σ)
r Ψr, 0 < β < 1. (11)

The following identity holds directly by Taylor’s theorem.

Lemma 3. The following identity holds:

Ψ(·, tj+σ) = σΨ(·, tj+1) + (1− σ)Ψ(·, tj) +O(τ2). (12)

Starting from the L2-1σ Formula (11) for the discretization of the time Caputo fractional
derivative of (1a), this leads to

0Dβ
τ ψj+σ−(ν1 + iη1)

∂αψj+σ

∂|x|α + (k1 + iζ1) |ψj+σ|2ψj+σ+

(ε1 + iµ1) |φj+σ|2ψj+σ − γ1 ψj+σ = 0, x ∈ Ω,
(13a)

0Dβ
τ φj+σ − (ν2 + iη2)

∂αφj+σ

∂|x|α + (k2 + iζ2) |ψj+σ|2φj+σ

+ (ε2 + iµ2) |φj+σ|2φj+σ − γ2 φj+σ = 0, x ∈ Ω.
(13b)

By aid of Lemmas 2 and 3, this semi-scheme is of second order accuracy. Let us
introduce the parameters

ξ
(β,σ)
j,r =

 d(j,β,σ)
j+1

τβΓ(2− β)
− γrσ

−1

,
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d̃(j,β,σ)
i,r =


ξ
(β,σ)
j,r d(j,β,σ)

i

τβΓ(2−β)
, 0 ≤ i ≤ j− 1,

ξ
(β,σ)
j,r d(j,β,σ)

j

τβΓ(2−β)
− γr(1− σ)ξ

(β,σ)
j,r , i = j, r = 1, 2.

The semi-scheme (13) has following equivalent form:

ψj+1 − (v1 + iη1)σξ
(β,σ,γ)
j,1

∂αψj+1

∂|x|α
= (v1 + iη1)(1− σ)ξ

(β,σ,γ)
j,1

∂αψj

∂|x|α

−
j

∑
i=0

d̃(j,β,σ)
j,1 ψi − σ(k1 + iζ1)ξ

(β,σ,γ)
j,1

∣∣∣ψj+1
∣∣∣2ψj+1

− σ(ε1 + iµ1)ξ
(β,σ,γ)
j,1

∣∣∣φj+1
∣∣∣2ψj+1 − (1− σ)(k1 + iζ1)ξ

(β,σ,γ)
j,1

∣∣∣ψj
∣∣∣2ψj

− (1− σ)(ε1 + iµ1)ξ
(β,σ,γ)
j,1

∣∣∣φj
∣∣∣2ψj,

(14a)

φj+1 − (v2 + iη2)σξ
(β,σ,γ)
j,2

∂αφj+1

∂|x|α
= (v2 + iη2)(1− σ)ξ

(β,σ,γ)
j,2

∂αφj

∂|x|α

−
j

∑
i=0

d̃(j,β,σ)
j,2 φi − σ(k2 + iζ2)ξ

(β,σ,γ)
j,2

∣∣∣ψj+1
∣∣∣2φj+1

− σ(ε2 + iµ2)ξ
(β,σ,γ)
j,2

∣∣∣φj+1
∣∣∣2φj+1 − (1− σ)(k2 + iζ2)ξ

(β,σ,γ)
j,2

∣∣∣ψj
∣∣∣2φj

− (1− σ)(ε2 + iµ2)ξ
(β,σ,γ)
j,2

∣∣∣φj
∣∣∣2φj.

(14b)

And so, the full discrete Alikhanov L2-1σ Galerkin spectral scheme for (14) is to get
ψ

j+1
N , φ

j+1
N ∈ V0

N , j ≥ 0, ∀ν ∈ V0
N such that

(
ψ

j+1
N , ν

)
−(v1 + iη1)σξ

(β,σ,γ)
j,1

(
∂αψ

j+1
N

∂|x|α
, ν

)

= (v1 + iη1)(1− σ)ξ
(β,σ,γ)
j,1

(
∂αψ

j
N

∂|x|α
, ν

)

−
j

∑
i=0

d̃(j,β,σ)
j,1

(
ψi

N , ν
)
− σ(k1 + iζ1)ξ

(β,σ,γ)
j,1

(
IN

∣∣∣ψj+1
N

∣∣∣2ψ
j+1
N , ν

)
− σ(ε1 + iµ1)ξ

(β,σ,γ)
j,1

(
IN

∣∣∣φj+1
N

∣∣∣2ψ
j+1
N , ν

)
− (1− σ)(k1 + iζ1)ξ

(β,σ,γ)
j,1

(
IN

∣∣∣ψj
N

∣∣∣2ψ
j
N , ν

)
− (1− σ)(ε1 + iµ1)ξ

(β,σ,γ)
j,1

(
IN

∣∣∣φj
N

∣∣∣2ψ
j
N , ν

)
,

(
φ

j+1
N , ν

)
−(v2 + iη2)σξ

(β,σ,γ)
j,2

(
∂αφ

j+1
N

∂|x|α
, ν

)

= (v2 + iη2)(1− σ)ξ
(β,σ,γ)
j,2

(
∂αφ

j
N

∂|x|α
, ν

)

−
j

∑
i=0

d̃(j,β,σ)
j,2

(
φi

N , ν
)
− σ(k2 + iζ2)ξ

(β,σ,γ)
j,2

(
IN

∣∣∣ψj+1
N

∣∣∣2φ
j+1
N , ν

)
− σ(ε2 + iµ2)ξ

(β,σ,γ)
j,2

(
IN

∣∣∣φj+1
N

∣∣∣2φ
j+1
N , ν

)
− (1− σ)(k2 + iζ2)ξ

(β,σ,γ)
j,2

(
IN

∣∣∣ψj
N

∣∣∣2φ
j
N , ν

)
− (1− σ)(ε2 + iµ2)ξ

(β,σ,γ)
j,2

(
IN

∣∣∣φj
N

∣∣∣2φ
j
N , ν

)
,

ψ0
N = PNψ0, φ0

N = PNφ0,

(15)
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where PN is a suitable projection operator. Its related features are illustrated in Section 4.

3.2. Algorithmic Implementation

Via the hypergeometric function, Jacobi polynomials can be presented for α, β > −1
and x ∈ (−1, 1) [8]:

Jα,β
i (x) =

(α + 1)i
i! 2F1

(
−i, α + β + i + 1; α + 1;

1− x
2

)
, x ∈ (−1, 1), i ∈ N, (16)

such that the notation (·)i represents the symbol of Pochhammer. Armed by (16), we get
the equivalent three-term recurrence relation

Jα,β
0 (x) = 1,

Jα,β
1 (x) =

1
2
(α + β + 2)x +

1
2
(α− β),

Jα,β
i+1(x) =

(
âα,β

i x− b̂α,β
i

)
Jα,β
i (x)− ĉα,β

i Jα,β
i−1(x), i ≥ 1,

(17)

where

âα,β
i =

(2i + β + α + 1)(2i + β + α + 2)
2(i + 1)(i + β + α + 1)

,

b̂α,β
i =

(2i + β + α + 1)(β2 − α2)

2(i + 1)(i + β + α + 1)(2i + β + α)
,

ĉα,β
i =

(2i + β + α + 2)(i + α)(i + β)

(i + 1)(i + β + α + 1)(2i + β + α)
.

(18)

The Legendre polynomial Li(x) is a special case of the Jacobi polynomial, this means

Li(x) = J0,0
i (x) = 2F1

(
−i, i + 1; 1;

1− x
2

)
. (19)

The weight function which makes the orthogonality of Jacobi polynomials occur is
given as ωα,β(x) = (1− x)α(1 + x)β, namely,∫ 1

−1
Jα,β
i (x)Jα,β

j (x)ωα,β(x)dx = γ
α,β
i δij, (20)

where δij is the Dirac Delta symbol, and

γ
α,β
i =

2(α+β+1)Γ(1 + i + β)Γ(1 + i + α)

i!(α + 2i + β + 1)Γ(α + β + i + 1)
. (21)

Lemma 4 (see for example [37]). For α > 0, one has

−1Dα
x̂ Lr(x̂) =

Γ(r + 1)
Γ(r− α + 1)

(1 + x̂)−α Jα,−α
r (x̂), x̂ ∈ [−1, 1],

x̂Dα
1 Lr(x̂) =

Γ(r + 1)
Γ(r− α + 1)

(1− x̂)−α J−α,α
r (x̂), x̂ ∈ [−1, 1].

(22)

We introduce the following rescale functions:

∧ : [a, b]→ [−1, 1] : x 7→ 2x− (a + b)
b− a

∧−1 : [−1, 1]→ [a, b] : t 7→ (b− a)t + a + b
2
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and we write ∧(x) as x̂. The basis functions selected for the spatial discretization are given
by [9,38]:

ϕn(x) = Ln(x̂)− Ln+2(x̂) =
2n + 3

2(n + 1)
(1− x̂2)J1,1

n (x̂), x ∈ [a, b]. (23)

The function space V0
N can be specified as follows:

V0
N = span{ϕn(x), n = 0, 1, . . . , N − 2}. (24)

The approximate solutions ψ
j+1
N and φ

j+1
N are shown as

ψ
j+1
N (x) =

N−2

∑
i=0

ψ̂
j+1
i ϕi(x), φ

j+1
N (x) =

N−2

∑
i=0

φ̂
j+1
i ϕi(x), (25)

where ψ̂
j+1
i and φ̂

j+1
i are the unknown expansion coefficients to be determined. Choosing

v = ϕi, 0 ≤ i ≤ N− 2, the matrix representation of the Alikhanov L2-1σ Legendre-Galerkin
spectral scheme has the following representation:[

M + (v1 + iη1)σcαξ
(β,σ,γ)
j,1

(
S + ST

)]
Ψj+1 = Rj

1

− (k1 + iζ1)σξ
(β,σ,γ)
j,1 H j+1

11 − (ε1 + iµ1)σξ
(β,σ,γ)
j,1 H j+1

12 ,[
M + (v2 + iη2)σcαξ

(β,σ,γ)
j,2

(
S + ST

)]
Φj+1 = Rj

2

− (k2 + iζ2)σξ
(β,σ,γ)
j,2 H j+1

21 − (ε2 + iµ2)σξ
(β,σ,γ)
j,2 H j+1

22 ,

(26)

where

Ψj = (ψ̂
j
0, ψ̂

j
1, . . . , ψ̂

j
N−2)

T , Φj = (φ̂
j
0, φ̂

j
1, . . . , φ̂

j
N−2)

T ,

sij =
∫

Ω
aD

α
2
x ϕi(x)xD

α
2
b ϕj(x)dx, S =

(
sij
)N−2

i,j=0,

mij =
∫

Ω
ϕi(x)ϕj(x)dx, M =

(
mij
)N−2

i,j=0,

hj
11,i =

∫
Ω

ϕi(x)IN |ψ
j
N |

2ψ
j
Ndx, H j

11 = (hj
11,0, hj

11,1, . . . , hj
11,N−2)

T ,

hj
12,i =

∫
Ω

ϕi(x)IN |φ
j
N |

2ψ
j
Ndx, H j

12 = (hj
12,0, hj

12,1, . . . , hj
12,N−2)

T ,

hj
21,i =

∫
Ω

ϕi(x)IN |ψ
j
N |

2φ
j
Ndx, H j

21 = (hj
21,0, hj

21,1, . . . , hj
21,N−2)

T ,

hj
22,i =

∫
Ω

ϕi(x)IN |φ
j
N |

2φ
j
Ndx, H j

22 = (hj
22,0, hj

22,1, . . . , hj
22,N−2)

T ,

K j
1 =

j

∑
i=0

d̃(j,β,σ)
i,1 MΨi, K j

2 =
j

∑
i=0

d̃(j,β,σ)
i,2 MΦi,

Rj
1 = −cα(v1 + iη1)(1− σ)ξ

(β,σ,γ)
j,1

(
S + ST

)
Ψj − (k1 + iζ1)(1− σ)ξ

(β,σ,γ)
j,1 H j

11

− (ε1 + iµ1)(1− σ)ξ
(β,σ,γ)
j,1 H j

12 − K j
1,

Rj
2 = −cα(v2 + iη2)(1− σ)ξ

(β,σ,γ)
j,2

(
S + ST

)
Φj − (k2 + iζ2)(1− σ)ξ

(β,σ,γ)
j,2 H j

21

− (ε2 + iµ2)(1− σ)ξ
(β,σ,γ)
j,2 H j

22 − K j
2.

(27)

Lemma 5 (see [8,9]). The elements of the stiffness matrix S are given by

sij = aj
i − aj+2

i − aj
i+2 + aj+2

i+2 , (28)
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where

aj
i =

∫
Ω

aD
α
2
x Li(x̂)xD

α
2
b Lj(x̂)dx

=

(
b− a

2

)1−α Γ(i + 1)Γ(j + 1)
Γ(i− α

2 + 1)Γ(j− α
2 + 1)

N

∑
r=0

v
− α

2 ,− α
2

r J
α
2 ,− α

2
i

(
x−

α
2 ,− α

2
r

)
J−

α
2 , α

2
j

(
x−

α
2 ,− α

2
r

)
,

(29)

and
{

x−
α
2 ,− α

2
r , v

− α
2 ,− α

2
r

}N

r=0
are Jacobi-Gauss points and their weights with weight function

ω−
α
2 ,− α

2 . The mass matrix M is symmetric and its nonzero elements are given as

mij = mji =


b−a
2j+1 + b−a

2j+5 , i = j,

− b−a
2j+5 , i = j + 2.

(30)

Monitoring H j+1,r
pq = H j+1

pq (ψ
j+1,r
N , φ

j+1,r
N ), p, q = 1, 2, r ≥ 0, the linear system (26) can

be solved by the iteration Algorithm 1:

Algorithm 1: Iterative algorithm for the problem (1).

Set Ψj+1,0 = Ψj, ψ
j+1,0
N =

N−2
∑

i=0
ψ̂

j+1,0
i ϕi(x), Φj+1,0 = Φj, φ

j+1,0
N =

N−2
∑

i=0
φ̂

j+1,0
i ϕi(x) ;

for r = 0 : K do

Solve



[
M + (v1 + iη1)σcαξ

(β,σ,γ)
j,1

(
S + ST)]Ψj+1,r+1 = Rj

1

−(k1 + iζ1)σξ
(β,σ,γ)
j,1 H j+1,r

11 − (ε1 + iµ1)σξ
(β,σ,γ)
j,1 H j+1,r

12 ,[
M + (v2 + iη2)σcαξ

(β,σ,γ)
j,2

(
S + ST)]Φj+1,r+1 = Rj

2

−(k2 + iζ2)σξ
(β,σ,γ)
j,2 H j+1,r

21 − (ε2 + iµ2)σξ
(β,σ,γ)
j,2 H j+1,r

22 ,

to get Ψn,r+1 and Φn,r+1;

Compute ψn,r+1
N =

N−2
∑

j=0
ψ̂n,r+1

j ϕj(x) and φn,r+1
N =

N−2
∑

j=0
φ̂n,r+1

j ϕj(x);

if
∥∥∥ψn,r+1

N − ψn,r
N

∥∥∥ ≤ ε &
∥∥∥φn,r+1

N − φn,r
N

∥∥∥ ≤ ε then
break;

end
end
Set Ψn = Ψn,r+1 and Φn = Φn,r+1.

4. Convergence Analysis

We will present the convergence analysis of the Alikhanov L2-1σ Galerkin spectral
scheme for the generalized fractional coupled Ginzburg–Landau system in both semi and
full discretized forms. Any C represents a generic positive constant which can differ from
one inequality to the another and is independent of τ, N and n.

Lemma 6 (see [10]). ∀Ψ ∈ H
α
2
0 (Ω) ∩ Hs(Ω), there exists PN such that:

‖Ψ− PNΨ‖ ≤ CN−s‖Ψ‖s, α 6= 3
2

, (31)

‖Ψ− PNΨ‖ ≤ CNε−s‖Ψ‖s, α =
3
2

, 0 < ε <
1
2

, (32)

where ε and s are real numbers satisfying s > α
2 .

The interpolation operator IN achieves the following property:



Mathematics 2021, 9, 183 10 of 22

Lemma 7 (see [8]). Suppose that Ψ ∈ Hs(Ω) (s ≥ 1), then

‖Ψ− INΨ‖l ≤ CNl−s‖Ψ‖s, 0 ≤ l ≤ 1,

and C > 0 is a constant has no dependence on N.

Lemma 8 (see [35]). Assume the existence of an absolute continuous function Ψ(t) in [0, T], then

Ψ(t) 0Dβ
t Ψ(t) ≥ 1

2
Dβ

t Ψ2(t).

Lemma 9 (Grönwall inequality [23,39]). Let Ψ(t) ≥ 0 be a non-negative function is a local inte-
grable function on [0,+∞] such that 0Dβ

t Ψ(t) ≤ λΨ(t) + b. Then, we have
Ψ(t) ≤ Ψ0Eβ(λtβ) + bt βEβ,1+β(λtβ), such that the Mittag-Leffler function Eβ(z) and the
generalized Mittag-Leffler function Eβ1,β2(z) are defined by

Eβ(z) =
∞

∑
k=0

zk

Γ(1 + βk)
, Eβ1,β2(z) =

∞

∑
k=0

zk

Γ(β2 + β1k)
, β1, β2 > 0, z ∈ C.

Lemma 10 (see [23,39]). For 0 < β1 < 2, and β2 ∈ R, we assume that µ such that
πβ1/2 < µ < min(π, πβ2). Then there exists a constant C = C(β1, β2, µ) such that
|Eβ1,β2(z)| ≤

C
1+|z| , for µ ≤ |arg(z)| ≤ π. In addition, if β1 ∈ (0, 1), we have the follow-

ing properties

Eβ1(t) = Eβ1,1(t) > 0,
d
dt

Eβ1,β1(t) > 0.

Denote,

A(ψ, Ψ) = cα

[(
aDα/2

x ψ, xDα/2
b Ψ

)
+
(

xDα/2
b ψ, aDα/2

x Ψ
)]

. (33)

For 1 < α ≤ 2, the semi-norm and the norm are given as

|Ψ|α/2 =
√

A(Ψ, Ψ), ‖Ψ‖α/2 = (‖Ψ‖2 + |Ψ|2α/2)
1
2 . (34)

Also, if there exist positive constants C1, C2 such that for any u, v ∈ Hα/2
0 (Ω), we get

A(ψ, Ψ) ≤ C1‖ψ‖α/2‖Ψ‖α/2, A(ψ, ψ) ≥ C2‖ψ‖2
α/2. (35)

The orthogonal projection operator PN : H
α
2
0 (Ω)→ V0

N satisfies

A(ψ− PNψ, Ψ) = 0, ∀Ψ ∈ V0
N .

The next lemma gives the relation between the Lp-norms and the fractional Sobolev
norms [40].

Lemma 11. If 0 ≤ µ0 ≤ µ ≤ 1, 1
2 −

1
P < µ0 ≤ 1 and 2 ≤ P ≤ +∞, there exists Cµ0 > 0,

such that

‖u‖LP ≤ C‖u‖
µ0
µ

Hµ‖u‖1− µ0
µ .

Lemma 12 (see [35]). Let Ψ(t) be any function defined on Ω and 0 < α < 1.
If Ψ(σ) = σΨj+1 + (1− σ)Ψj then

Ψ(σ)
0Dα

tj+σ
Ψ(t) ≥ 1

2 0Dα
j+σΨ2(t). (36)
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Lemma 13 (L2-1σ discrete fractional form of Grönwall inequality [18,20]). Suppose that the
non-negative sequences {ω j, gj|j = 0, 1, 2, ...} satisfy 0Dβ

τ ω j+σ ≤ λ1ω j+1 + λ2ω j + gj, then
there exists a positive constant τ∗ such that

ω j+1 ≤ 2

ω0 +
tβ

j

Γ(1 + β)
max

0≤j0≤n
gj0

Eβ(2λtβ
j ), (37)

whenever τ ≤ (τ∗)β = 1/(2Γ(2− β)λ1) and

λ = λ1 +
λ2

c(β,σ)
0 − c(β,σ)

1

. (38)

4.1. Semi-Discrete form Convergence Analysis

Theorem 1. Let {0 < β < 1, 1 < α < 2, s ≥ 1}. Assume that {ψ, φ} and {ψN , φN} are the

solutions of (1) and (13), respectively, satisfying {ψ, φ} ∈ H1(I; H
α
2
0 (Λ) ∩ Hs(Λ)). Then, we get

‖ψN − ψ‖+ ‖φN − φ‖ ≤ CN−s, α 6= 3
2

,

‖ψN − ψ‖+ ‖φN − φ‖ ≤ CNµ−s, α =
3
2

, 0 < µ <
1
2

.

Proof. The variational formulation comes by taking the inner product of (1a) with v1,

( 0Dβ
t ψ, v1)− (ν1 + iη1)

(
∂αψ

∂|x|α , v1

)
+ (k1 + iζ1)

(
|ψ|2ψ, v1

)
+ (ε1 + iµ1)

(
|φ|2ψ, v1

)
− γ (ψ, v1) = 0. (39)

Let e = ψ − ψN , ζe = ψ − PNψ and ηe = PNψ − ψN , we get e = ζe + ηe. Also, let
E = φ− φN , ζE = φ− PNφ and ηE = PNφ− φN , we get E = ζE + ηE. We get the following
estimate in the case of α 6= 3

2 by using Lemma 6,

‖e‖ ≤ ‖ζe‖+ ‖ηe‖ ≤ CN−s‖ψ‖s + ‖ηe‖, (40)

‖E‖ ≤ ‖ζE‖+ ‖ηE‖ ≤ CN−s‖φ‖s + ‖ηE‖. (41)

Subtract (39) from (15), then we obtain

( 0Dβ
t e, v1)− (ν1 + iη1)

( ∂αe
∂|x|α , v1

)
+ (k1 + iζ1)

(
IN |ψN |2ψN − |ψ|2ψ, v1

)
+ (ε1 + iµ1)

(
IN |φN |2ψN − |φ|2ψ, v1

)
− γ (e, v1) = 0. (42)

The orthogonality of PN , yields

( 0Dβ
t e, v1) = (Dβ

t ηe, v1), (43)

(aDα
xe, v1) = (ζ, xDα

b v1) + (aDα/2
x ηe, xDα/2

b v1) = (aDα/2
x ηe, xDα/2

b v1). (44)
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Taking the inner product of (42) with ηe. Choosing the real part of the resulting
equation, we get

( 0Dβ
t e, ηe)− ν1

( ∂αe
∂|x|α , ηe

)
+ Re

[
(k1 + iζ1)

(
IN |ψN |2ψN − |ψ|2ψ, ηe

)
+ (ε1 + iµ1)

(
IN |φN |2ψN − |φ|2ψ, ηe

)]
− γ (e, ηe) = 0. (45)

Invoking (33), (43) and (45). Using Lemma 8, we obtain

1
2 0Dβ

t ‖ηe‖2 + ν1C2‖ηe‖2
α/2 + Re

[
(k1 + iζ1)

(
IN |ψN |2ψN − |ψ|2ψ, ηe

)
+ (ε1 + iµ1)

(
IN |φN |2ψN − |φ|2ψ, ηe

)]
= γ ‖ηe‖2. (46)

Define G(ψ) = |ψ|2ψ, and by the use of Cauchy-Schwarz inequality, we deduce

(ING(ψN)− G(ψ), ηe) ≤
1
2
‖ING(ψN)− G(ψ)‖2 +

1
2
‖ηe‖2,

(
IN |φN |2ψN − |φ|2ψ, ηe

)
≤ 1

2

∥∥∥IN(|φN |2ψN)− |φ|2ψ
∥∥∥2

+
1
2
‖ηe‖2.

By Lemma 7, we have

‖ING(ψN)− G(ψ)‖ ≤ ‖IN(G(ψN)− G(ψ))‖+ ‖ING(ψ)− G(ψ)‖ (47)

≤ C‖G(ψN)− G(ψ)‖+ CN−s‖ψ‖s. (48)

We get as in [40] depending on Lemma 11 that

‖ING(ψN)− G(ψ)‖ ≤ CN−s‖ψ‖s + ‖ηe‖. (49)

Also,

∥∥∥IN(|φN |2ψN)− |φ|2ψ
∥∥∥ =

∥∥∥|φ|2(INψN − ψ) +
(

IN |φN |2 − |φ|2
)

INψN

∥∥∥
≤‖φ‖2

s
(

N−s‖ψ‖s + ‖ηe‖
)
+ c1(‖φ‖s + c2)

(
N−s‖φ‖s + ‖ηE‖

)
≤Ĉ
(

N−s + ‖ηe‖+ ‖ηE‖
)
.

(50)

Hence, we get the following estimate

0Dβ
t ‖ηe‖2 + C2ν1‖ηe‖2

α/2 ≤ C̃
(

N−2s + ‖ηe‖2 + ‖ηE‖2
)

. (51)

Simultaneously, by taking the inner product of each part of (1b) with v2 and following
the same steps as before, we also get

0Dβ
t ‖ηE‖2 + C2ν1‖ηE‖2

α/2 ≤ C̄
(

N−2s + ‖ηe‖2 + ‖ηE‖2
)

. (52)

Then adding (51) and (52) leads to

0Dβ
t

(
‖ηe‖2 + ‖ηE‖2

)
≤ 2 max{C̄, C̃}

(
N−2s + (‖ηe‖+ ‖ηE‖)2

)
. (53)

By Lemma 9, we obtain
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‖ηe‖2 + ‖ηE‖2 ≤
(∥∥η10

∥∥+ ∥∥η20
∥∥)2Eβ(2 max{C, C̃}tβ)

+ 2 max{C̄, C̃}N−2stβEβ,1+β(2 max{C̄, C̃}tβ). (54)

Lemma 10 implies now that tβEβ,1+β(C̃tβ) ≤ C. Finally we can see that
‖ηe‖2 + ‖ηE‖2 ≤ 2C max{C, C̃}N−2s. The other inequality of the conclusion can be
achieved in a similar fashion if α = 3

2 and 0 < µ < 1
2 .

4.2. Full-Discrete form Convergence Analysis

Theorem 2 (Convergence of the uniform L2-1σ – Galerkin spectral scheme). Let {ψ, φ}
and {ψn

N , φn
N} be solutions of (1) and (13), respectively, and suppose that the unique solution

{ψ, φ} ∈ L∞([0, T; H
α
2
0 (Ω) ∩ Hs(Ω)) is sufficiently regular in temporal and spatial directions

and ∂βψ

∂tβ , ∂βφ

∂tβ ∈ L∞([0, T; H
α
2
0 (Ω) ∩ Hs(Ω)). Then, a positive constant τ∗ is existed such that

when 0 < τ ≤ τ∗ , the Galerkin spectral scheme (13a)–(13b) admits a unique solution {ψn
N , φn

N}
satisfying

‖ψn
N − ψ(x, tn)‖+ ‖φn

N − φ(x, tn)‖ ≤ C
(

τ2 + N−s
)

, if α 6= 3
2 , (55)

‖ψn
N − ψ(x, tn)‖+ ‖φn

N − φ(x, tn)‖ ≤ C
(

τ2 + Nµ−s
)

, if α = 3
2 and 0 < µ <

1
2

, (56)

such that the C is a positive has no dependence on n, τ and N.

Proof. The next variational formula is derived by taking the inner product of (1a) with v1,

(Dβ
t ψj+σ, v1)− (ν1 + iη1)

(
∂αψj+σ

∂|x|α , v1

)
+ (k1 + iζ1)

(
|ψj+σ|2ψj+σ, v1

)
+ (ε1 + iµ1)

(
|φj+σ|2ψj+σ, v1

)
− γ (ψj+σ, v1) + (O(τ2), v1) = 0, (57)

Let e = ψ− ψN , ζe = ψ− PNψ and ηe = PNψ− ψN , we get ej+σ = ζ
j+σ
e + η

j+σ
e . Also,

let E = φ− φN , ζE = φ− PNφ and ηE = PNφ− φN , we get Ej+σ = ζ
j+σ
E + η

j+σ
E . Using

Lemma 6, in case of α 6= 3
2 , we get∥∥∥ej+σ

∥∥∥ ≤ ∥∥∥ζ
j+σ
e

∥∥∥+ ∥∥∥η
j+σ
e

∥∥∥ ≤ CN−s
∥∥∥ψj+σ

∥∥∥
s
+
∥∥∥η

j+σ
e

∥∥∥, (58)∥∥∥Ej+σ
∥∥∥ ≤ ∥∥∥ζ

j+σ
E

∥∥∥+ ∥∥∥η
j+σ
E

∥∥∥ ≤ CN−s
∥∥∥φj+σ

∥∥∥
s
+
∥∥∥η

j+σ
E

∥∥∥. (59)

Subtract (39) from (15 ), then we obtain

(Dβ
t ej+σ, v1)− (ν1 + iη1)

(∂αej+σ

∂|x|α , v1

)
(60)

+ (k1 + iζ1)
(

IN |ψ
j+σ
N |2ψ

j+σ
N − |ψj+σ|2ψj+σ, v1

)
+ (ε1 + iµ1)

(
IN |φ

j+σ
N |2ψ

j+σ
N − |φj+σ|2ψj+σ, v1

)
(61)

− γ (ej+σ, v1) + (O(τ2), v1) = 0. (62)

The orthogonality of the operator PN , causes

(Dβ
t ej+σ, v1) = (Dβ

t η
j+σ
e , v1), (63)

(aDα
xej+σ, v1) = (ζ j+σ, xDα

b v1) + (aDα/2
x η

j+σ
e , xDα/2

b v1) = (aDα/2
x η

j+σ
e , xDα/2

b v1). (64)

After taking the inner product of (42) with η
j+σ
e , choose the real part of the resulting

equation to obtain
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(Dβ
t ej+σ, η

j+σ
e )− ν1

(∂αej+σ

∂|x|α , η
j+σ
e

)
+ Re

[
(k1 + iζ1)

(
IN |ψ

j+σ
N |2ψ

j+σ
N − |ψj+σ|2ψj+σ, η

j+σ
e

)
(65)

+ (ε1 + iµ1)
(

IN |φ
j+σ
N |2ψ

j+σ
N − |φj+σ|2ψj+σ, η

j+σ
e

)]
− γ (ej+σ, η

j+σ
e ) + (O(τ2), η

j+σ
e ) = 0.

Invoking (33), (63) and (65). Using Lemma 8, we obtain

1
2

D β
t

∥∥∥η
j+σ
e

∥∥∥2
+ ν1C2

∥∥∥η
j+σ
e

∥∥∥2

α/2

+ Re

[
(k1 + iζ1)

(
IN |ψ

j+σ
N |2ψ

j+σ
N − |ψj+σ|2ψj+σ, η

j+σ
e

)
(66)

+ (ε1 + iµ1)
(

IN |φ
j+σ
N |2ψ

j+σ
N − |φj+σ|2ψj+σ, η

j+σ
e

)]

+ (O(τ2), η
j+σ
e ) = γ

∥∥∥η
j+σ
e

∥∥∥2
.

Proceeding as in the proof of Theorem 1, we define G(ψj+σ) = |ψj+σ|2ψj+σ, and using
the Cauchy-Schwarz inequality, we get

(ING(ψ
j+σ
N )− G(ψj+σ), η

j+σ
e ) ≤ 1

2

∥∥∥ING(ψ
j+σ
N )− G(ψj+σ)

∥∥∥2
+

1
2
‖ηe‖2,(

IN |φ
j+σ
N |2ψ

j+σ
N − |φj+σ|2ψj+σ, η

j+σ
e

)
≤ 1

2

∥∥∥IN(|φ
j+σ
N |2ψ

j+σ
N )− |φj+σ|2ψj+σ

∥∥∥2
+

1
2

∥∥∥η
j+σ
e

∥∥∥2
.

By Lemma 7, we obtain∥∥∥ING(ψ
j+σ
N )− G(ψj+σ)

∥∥∥ ≤ ∥∥∥IN(G(ψ
j+σ
N )− G(ψj+σ))

∥∥∥ (67)

+
∥∥∥ING(ψj+σ)− G(ψj+σ)

∥∥∥ (68)

≤ C
∥∥∥G(ψ

j+σ
N )− G(ψj+σ)

∥∥∥+ CN−s
∥∥∥ψj+σ

∥∥∥
s
. (69)

We get as in [40] depending on Lemma 11 that∥∥∥ING(ψ
j+σ
N )− G(ψj+σ)

∥∥∥ ≤ CN−s
∥∥∥ψj+σ

∥∥∥
s
+
∥∥∥η

j+σ
e

∥∥∥. (70)

Also, ∥∥∥IN(|φ
j+σ
N |2ψ

j+σ
N )− |φj+σ|2ψj+σ

∥∥∥
=
∥∥∥|φj+σ|2

(
INψ

j+σ
N − ψj+σ

)
+
(

IN |φ
j+σ
N |2 − |φj+σ|2

)
INψ

j+σ
N

∥∥∥
≤
∥∥∥φj+σ

∥∥∥2

s

(
N−s

∥∥∥ψj+σ
∥∥∥

s
+
∥∥∥η

j+σ
e

∥∥∥)
+ c1

(∥∥∥φj+σ
∥∥∥

s
+ c2

)(
N−s

∥∥∥φj+σ
∥∥∥

s
+
∥∥∥η

j+σ
E

∥∥∥)
≤Ĉ
(

N−s +
∥∥∥η

j+σ
e

∥∥∥+ ∥∥∥η
j+σ
E

∥∥∥).
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The next estimate flows after some manipulations,

Dβ
t

∥∥∥η
j+σ
e

∥∥∥2
≤ C̃

(
N−2s +

∥∥∥η
j+1
e

∥∥∥2
+
∥∥∥η

j
e

∥∥∥2
+
∥∥∥η

j+1
E

∥∥∥2
+
∥∥∥η

j
E

∥∥∥2
+ τ4

)
. (71)

Simultaneously,

Dβ
t

∥∥∥η
j+σ
E

∥∥∥2
≤ C̄

(
N−2s +

∥∥∥η
j+1
e

∥∥∥2
+
∥∥∥η

j
e

∥∥∥2
+
∥∥∥η

j+1
E

∥∥∥2
+
∥∥∥η

j
E

∥∥∥2
+ τ4

)
. (72)

Adding (71) to (72) and applying the L2-1σ Discrete fractional form of Grönwall
inequality in Lemma 13, then the final result (55) is achieved directly. Similarly, we can get
the result (56) when α = 3

2 . Then the proof is fulfilled.

5. Numerical Experiments

In this section, we provide two numerical examples to validate the analysis and
the performance of the present scheme for the time-space fractional Ginzburg–Landau
equations. All computations and visualizations have been carried out using Mathematica
12.1 on a personal computer with 12 GB memory and 2.3 GHz speed. Moreover, the spatial
and the temporal convergence orders are computed using the following formulae:

Order =


ln(‖e(M,K1)‖/‖e(M,K2)‖)

ln(K1/K2)
, in time,

ln(‖e(M1,K)‖/‖e(M2,K)‖)
ln(M1/M2)

, in space,

where M1 6= M2, K1 6= K2 and

Error = e(M, K) = max
1≤n≤K

(∥∥ψn
1,M − ψ1

∥∥+ ∥∥ψn
2,M − ψ2

∥∥).
Example 1 (Convergence test). Consider the following nonlinear coupled system of fractional
Ginzburg–Landau equations to test the accuracy of the proposed scheme:

C
0 Dβ

t ψ− (1 + i) ∂αψ
∂|x|α +

(
( 1

2 + i) |ψ|2 + i |φ|2
)

ψ− ψ = f1(x, t), x ∈ (0, 1], t ∈ (0, 1), (73)

C
0 Dβ

t φ− (1 + i) ∂αφ
∂|x|α +

(
i |ψ|2 + ( 1

2 + i) |φ|2
)

φ− φ = f2(x, t), x ∈ (0, 1), t ∈ (0, 1], (74)

with the homogeneous boundary conditions

ψ(a, t) = ψ(b, t) = φ(a, t) = φ(b, t) = 0, t ∈ I. (75)

The initial conditions and the source terms f1(x, t) and f2(x, t) are determined by the exact so-
lutions

ψ(x, t) = t3/2x2(1− x)2, φ(x, t) = t7/3x2(1− x)2.

Tables 1 and 2 list the L2-errors and corresponding convergence orders with
α = β + 1 = 1.2, 1.5, 1.8 and N = 100 for φ and ψ, respectively. We can see that these
results confirm the second-order convergence in time. The convergence orders in space
a are depicted for different values of α and β at M = 1600 in Figures 1 and 2. All the
convergence results are in agreement with the theoretical results.
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Table 1. The L2-errors and the convergence order of φ versus M and α = β + 1 with N = 100 for
example 1.

M
α = β + 1 = 1.2 α = β + 1 = 1.5 α = β + 1 = 1.8

Error Order Error Order Error Order

100 5.046× 10−7 −− 1.090× 10−6 −− 1.449× 10−6 −−
200 1.262× 10−7 1.999 2.726× 10−7 1.999 3.625× 10−7 1.999
400 3.164× 10−8 1.997 6.833× 10−8 1.996 9.093× 10−8 1.995
800 8.006× 10−9 1.983 1.734× 10−8 1.978 2.342× 10−8 1.957

1600 2.183× 10−9 1.874 4.871× 10−9 1.832 7.708× 10−9 1.603

Table 2. The L2-errors and the convergence order of ψ versus M and α = β + 1 with N = 100 for
example 1.

M
α = β + 1 = 1.2 α = β + 1 = 1.5 α = β + 1 = 1.8

Error Order Error Order Error Order

100 6.035× 10−7 −− 1.300× 10−6 −− 1.731× 10−6 −−
200 1.510× 10−7 1.999 3.250× 10−7 1.999 4.329× 10−7 2.000
400 3.783× 10−8 1.997 8.143× 10−8 1.997 1.085× 10−7 1.996
800 9.549× 10−9 1.986 2.060× 10−8 1.983 2.773× 10−8 1.968

1600 2.551× 10−9 1.904 5.629× 10−9 1.871 8.578× 10−9 1.693

20 40 60 80 100

-8

-7

-6

-5

N

lo
g
1
0
(E
rr
o
r(

�

)) � �=�+1 = 1.8

■ α=β+1 = 1.5

● α=β+1 = 1.2

Figure 1. Convergence order of φ in space for different values of α and β at M = 1600.
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Figure 2. Convergence order of ψ in space for different values of α and β at M = 1600.

Example 2 (Model output). Consider the case of the coupled fractional Ginzburg–Landau
Equations (1) with the initial values

ψ(x, 0) = sech(x + D0) exp (−iV0x),

and
φ(x, 0) = sech(x− D0) exp (−iV0x).

Henceforth, we take D0 = 2, V0 = 3, x ∈ [−10, 10].
In this test, we select ν1 = ν2 =η1 = η2 = ζ1 =ζ2 = µ1 = µ2 = 1, k1 = k2 = 1/2 and

ε1 = ε2 = 0. Moreover, we will set the computational parameter N = 100 and M = 500.
Figures 3 and 4 display the numerical solutions for different α and β according to Example 2.

We observe that, the fractional parameters α and β will dramatically affect the shape of the soliton,
which is completely different from the classical case and shows the nonlocal character of the Caputo
fractional derivative and fractional Laplacian. We find from these two figures also that the parameters
γ1 and γ2 dramatically influence on the wave-shape. It is also observed that the numerical solutions
decay fast with time evolution especially when the parameters γ1 and γ2 become more smaller and
also when the fractional orders become more close to the integer orders, which means α comes close
to 2 and β be closer to 1. These results seems to be in a good agreement with those appeared in ([33],
Example 3).
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Figure 3. The evolution of |ψN | and |φN | for different values of γ1 = γ2 = γ = 0, 1, 3. The first row is presented at α = 1.2
and β = 0.9. The second row is presented at α = 1.5 and β = 0.9. The third row is done at α = 1.99 and β = 0.99.
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Figure 4. The evolution of |ψN | and |φN | for different values of γ1 = γ2 = γ = 0, 1. The first row is presented at α = 1.2
and β = 0.4. The second row is presented at α = 1.5 and β = 0.4. The third row is done at α = 1.99 and β = 0.4.
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6. Conclusions

In this work, we provided an efficient high order numerical scheme for the generalized
fractional coupled Ginzburg–Landau system. This scheme has a second order of conver-
gence with respect to time and spectral accuracy with respect to space. The convergence
analysis of the scheme shows the unconditional convergence of its approximate solution.
An algorithmic easy implementation of the scheme is also provided to facilitate its numeri-
cal application. The paper ends with a numerical example, it shows the agreement between
the theoretical results and numerical ones. Finally, we need to clarify the following issues
and present some future work:

• Our proposed high order hybrid numerical scheme is a linearized scheme of second
order of convergence with respect to time inspite of the nonlinearity of the problem
under consideration. The spectral accuracy is achieved due to the use of Galerkin
Legendre approximation. Up to our knowledge, it is the first time that scheme is
used to solve that kind of problems, especially noting the appearance of time and
space fractional derivatives in the model under study. Unconditional convergence and
stability of that scheme is secured, which means the error estimates of the numerical
model has no dependence on time and spatial steps. This work reflects the possibility
of that kind of schemes to be extended to deal with success with the singularity near
the initial values of time fractional Caputo operators appearing in the generalized
Ginzburg–Landau system. The latter can be secured by using nonuniform Alikhanov
schemes combined with Legendre Galerkin spectral and it would be a near future
plan for us.

• Due to the intrinsically nonlocal property and historical dependence of the frac-
tional derivative, numerical applications of the numerical methods are always time-
consuming. Therefore, fast schemes based on local approximations [41,42] can be
implemented to avoid the high computational costs coming from the prehistory fea-
ture of spatial fractional order operators. Fast L1 and Fast Alikhanov formulas of
the Caputo derivative which are based on the sum of exponentials can be used to to
reduce the huge storage and computational cost [43,44]. Invoking these approaches to
reduce the computational cost of finite difference/Galerkin spectral methods would
be a target of our new works in the near future.
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