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Abstract: The control of an automotive suspension system by means of a hydraulic actuator is a complex
nonlinear control problem. In this work, a Linear Parameter Varying (LPV) model is proposed to reduce
the complexity of the system while preserving the nonlinear behavior. In terms of control, a dual
controller consisting of a Model Predictive Control (MPC) and a Linear Quadratic Regulator (LQR) is
implemented. To ensure stability, Quadratic Stability conditions are imposed in terms of Linear Matrix
Inequalities (LMI). Simulation results for quarter-car model over several disturbances are tested in both
frequency and time domain to show the effectiveness of the proposed algorithm.

Keywords: active suspension; model predictive control; linear parameter varying; ellipsoidal set;
attraction sets; quadratic stability

1. Introduction

A vehicle can experiment different road disturbances while maneuvering in normal
conditions such as bumps or bends. The suspension system of a car is designed to attenuate
those disturbances to preserve comfort for the passengers while maintaining safe driving
conditions to control the car’s direction. However, when road conditions are harsh, passive
suspension systems may fail to preserve both comfort and road holding.

The Active Suspension system has been used to improve road-holding conditions
while improving the comfort of passengers by means of a hydraulic actuator. To provide
Active Suspension control, several control strategies have been proposed in the literature
such as PID controller [1–4], H2 and H∞ control [5–9], fuzzy logic control [10–13], and
sliding mode control [14–17]. All these controllers have exhibited a trade-off between
comfort and road holding, with specific tuning conditions to manage each one of the design
specifications according to the desired performance.

Another control strategy widely used in Active Suspensions is Model Predictive
Control (MPC). MPC approaches encompass several MIMO control strategies involving the
prediction of the future behavior of the system along a prediction horizon Np and finding
an optimal control solution subject to constraints in inputs, outputs and states. The general
structure of the MPC strategy is to solve at each step an optimization problem where a
cost function is minimized subject to constraints to find the optimal input sequence to be
introduced in the system.

Some MPC approaches for Active Suspension systems are the following. In [18] an
autoregressive with exogenous variable (ARX) model-based predictive control is presented
to improve passenger comfort and road holding in a vehicle using a semi-Active Suspension
with a Bouc–Wen representation. The results showed improvement when compared with
passive suspension; however, the results were limited by the type of suspension used in
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this application. In [19] a full-car suspension model is controlled by a linear MPC with 6
degrees of freedom (6-DOF). In this approach, the control goal is to achieve a desired tilt
angle to preserve comfort and road holding. The actuator is considered to be ideal, which
results in a linear behavior of the system. This allows real-time implementation due to the
short optimization time; however, the performance of the control algorithm may not be as
effective as the one shown in simulation due to the linear design of the controller. Other
MPC approaches using linear models are presented in [20–22].

Another MPC approach for the Active Suspension system is presented in [23]. In
previous work, the Active Suspension quarter-car system was modeled as nonlinear by
considering the nonlinear effect of the actuator. To comply with the MPC approach, the
system is modeled as a Takagi–Sugeno model (T–S) by a fuzzy representation consisting
of two sub-models. The Model Predictive Control is also designed as a fuzzy MPC where
there exist two interconnected linear models and the switching between one model and
the another is performed by fuzzy logic. Additionally, terminal equality constraints are
included in terms of Linear Matrix Inequalities (LMI) to ensure stability. In [24] a robust
model predictive controller (RMPC) for an Active Suspension full-car system is presented.
This approach considers both the nonlinearities of the hydraulic actuator and the nonlinear-
ities presented by the relationship of the movement of each one of the four corners of the
car. Therefore, to design the MPC, the model is simplified into a linear fuzzy logic system.
To add robustness to the control approach, an adaptive control law is proposed based on
the MPC and a fractional PID controller.

As shown in the previous works, the nonlinear model of an Active Suspension sys-
tem is represented by linear representations to comply with the MPC strategy. In this
research work, a Linear Parameter Varying (LPV) representation is proposed. This kind of
representation is common in semi-Active Suspension control approaches [25–27]. In this
approach, the LPV representation is done using one scheduling parameter embedding the
nonlinearities of the hydraulic actuator.

Therefore, the proposed control strategy consists of a Model Predictive Controller for
an Active Suspension system with an electro-hydraulic actuator with a servo spool valve.
The model of the system is constructed as a Linear Parameter Varying model using one
scheduling variable ρ1. Quadratic Stability conditions are included in the MPC algorithm
as LMI, as presented in [28]. To improve performance, a terminal cost using attraction sets
is included, as shown in [29]. Finally, the inclusion of a terminal set and a Linear Quadratic
Regulator (LQR) controller in the terminal set is included.

The rest of the paper is organized in the following structure. Section 2 presents the
Active Suspension with electro-hydraulic actuator model. Section 3 shows a state–space
LPV representation of the Active Suspension. Section 4 describes the MPC-LPV control
algorithm. Section 5 shows a Recursive Least Squares (RLS) algorithm for the prediction of
the scheduling parameter along the prediction horizon. Section 6 presents the Quadratic
Stability conditions for the MPC-LPV approach. Section 7 describes the attraction sets and
terminal set for control switching. Results and simulations are presented in Section 8 and
conclusions are discussed in Section 9.

2. Quarter-Car Active Suspension Model

Active Suspension systems add an actuator to the passive system mainly consisting of
the wheel mass and the chassis mass. Figure 1 presents a schematic model of an Active
Suspension system as found in [7]. In this model, the actuator produces a force fs which
reduces the vertical movement of both masses ms, which is the sprung mass representing
the chassis body, and mus, which is the unsprung mass representing the suspension unit
and wheel of the quarter-car.
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Figure 1. Active Suspension System.

The dynamic force equations of the system are the following:

ms z̈s + ks(zs − zus) + bs(żs − żus)− fs = 0 (1)

mus z̈us − ks(zs − zus)− bs(żs − żus) + kt

(
zus − r(t)

)
+ fs = 0 (2)

with ks being the constant of the spring between the two masses and bs being the damping
coefficient. kt represents the tire elastic constant and r(t) represents the road disturbances.
The force fs is generated by an electro-hydraulic actuator with a servo spool valve. A
schematic of the electro-hydraulic actuator is shown in Figure 2. By means of this actuator,
the force fs is generated by the pressure supplied to the system Pl and the area of the
moving piston A. Therefore, the force can be expressed using the following equation.

fs = APl (3)

Figure 2. Electro-Hydraulic Actuator.

The pressure Pl dynamics are modeled using the following differential Equation (4).

Vt

4βe
Ṗl = Q− CtpPl − A(żs − ˙zus) (4)
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with Q = sgn
[

Ps − sgn(zv)Pl

]
Cdwxv

√
1
ρ

∣∣∣Ps − sgn(zv)Pl

∣∣∣, where Vt is the total actuator

volume, Q the load flow, Be the effective bulk modulus, Ctp the piston leakage coefficient,
Cd the discharge coefficient, w the spool valve area gradient, ρ the hydraulic fluid density
and Ps the pressure supply. The displacement of the spool valve zv is proportional to the
control action u(k) which is a voltage signal. The valve displacement is expressed by the
following equation.

żv =
zv

τ
+ kvu(k) (5)

where kv represents the valve gain and τ is a scaling factor.

3. LPV-SS Representation of the Quarter-Car Active Suspension Model

To comply with the MPC strategy, Equations (1) through (5) will be used to build a
Linear Parameter Varying state–space (LPV-SS) model with a scheduling parameter ρ1 of
the form:

ẋ(t) = A
(

ρ1(t)
)

x(t) + Bu(t) + Brr(t) (6)

with the discrete LPV-SS obtained by a Zero-Order Hold (ZOH) represented as:

x(k + 1) = A
(

ρ1(k)
)

x(k) + Bu(k) + Brr(k) (7)

where ẋ(t) = [x1 x2 x3 x4 x5 x6]
T = [zs żs zus ˙zus Pl zv]T . With A being the state matrix

and B the input matrix, Br represents the input disturbance matrix while u(k) is the control
input. Therefore, the space-state matrices can be defined as the following:

A
(

ρ1(k)
)
=



0 1 0 0 0 0
− ks

ms
− bs

ms
ks
ms

bs
ms

A 0
0 0 0 1 0 0
ks

mus
bs

mus
− ks+kt

mus
− bs

mus
− A

mus
0

0 −αA 0 αA −β γρ1
0 0 0 0 0 1

τ


(8)

B =



0
0
0
0
0
kv
τ

 (9)

Br =



0
0
0
kt

mus
0
0


(10)

With α = 4βe
Vt

, β = αCtp, γ = αCd

√
1
ρ and ρ1 = sgn

[
Ps− sgn(x6)x5

]√∣∣∣Ps − sgn(x6)x5

∣∣∣.
The inclusion of the scheduling variable ρ1 allows the system to be expressed as an LPV-SS
representation which allows the MPC law to be computed in a compact matrix form.

4. LPV-MPC Controller

To develop a MPC scheme for LPV models, the future states need to be formulated so
a trajectory can be formed along the prediction horizon. The i-steps-ahead prediction can
be structured as the following:
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x(k + i|k) =
(

i−1

∏
j=0

A
(

ρ1(k + j)
)

x(k) +

(
i−1

∑
s=1

(
i−1

∏
l=s

A
(

ρ1(k + l)
)))

Bu(k + s− 1)

)
+ Bu(k + i− 1) (11)

Prediction of the future states needs to be performed for the future Np time steps, thus
using (11) the following matrix equation can be deduced.

X = Φ ∗ x(k) + Ψ ∗U (12)

Where:

X =


x(k + 1|k)
x(k + 2|k)

:
.

x(k + Np|k)

 (13)

Φ =



A(ρ1(k))

∏1
j=0

(
A
(

ρ1(k + j)
))

...

∏
Np−1
j=0

(
A
(

ρ1(k + j)
))


(14)

Ψ =



B 0nx×nu . . . 0nx×nu

A
(

ρ1(k + 1)
)

B B . . . 0nx×nu

A
(

ρ1(k + 2)
)

A
(

ρ1(k + 1)
)

B A
(

ρ1(k + 2)
)

B . . . 0nx×nu

...
...

. . .
...(

∏
Np−1
i=1 A

(
ρ1(k + i)

))
B

(
∏

Np−1
i=1 A

(
ρ1(k + i + 1)

))
B . . . B


(15)

U =


u(k)

u(k + 1)
:
.

u(k + Np − 1)

 (16)

with X ∈ RNp ·nx , Φ ∈ RNp ·nx×nx , Ψ ∈ RNp ·nx×Np ·nu and U ∈ RNp ·nu where nx is the number
of states and nu the number of inputs. With the state prediction equation, we can construct
a cost function to minimize the deviation from the equilibrium states and the energy used
by the inputs, so that the cost function is defined as:

J = XTQcX + UTRcU (17)

where Qc and Rc are weight matrix of appropriate dimensions. To find the optimal control
trajectory U, (17) needs to be minimized subject to the constraints in the inputs (18) and the
states (19).

umin ≤ U ≤ umax (18)

xmin ≤ X ≤ xmax (19)

with both umin & umax ∈ RNp×nu and both xmin & xmax ∈ RNp×Np . However, to properly
solve the MPC problem, the future values of ρ1, which are unknown, must be estimated. To
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obtain the values we must estimate them using an RLS approach to obtain an approximate
value of the scheduling parameter based on its previous behavior and the system response.

5. Scheduling Parameter Prediction Using RLS

To obtain an estimation of the future scheduling parameter, an RLS approach is used
as presented by Sename, Morato & Normey-Rico in [26]. The scheduling parameter is
assumed to be measurable at instant k and all previous values can be stored; however, the
future parameters will be estimated based on the previous measurements of the scheduling
parameters as well as the previous inputs and outputs to consider the behavior of the system.

The behavior of the scheduling parameter of a LPV system can be approximated by a
linear ARX model, which is a function of the previous scheduling parameter values, the
previous inputs and the previous outputs. This ARX model can be represented as:

ρ1(k + Np) = a0ρ1(k) + ... + aNp ρ1(k− Np) + b0u(k− 1) + ...

... + bNp u(k− Np − 1) + c0y(k) + ... + cNp y(k− Np) (20)

Afterwards, (20) can be expressed in a compact form and be dependent only on known
values to be suitable for MPC design. To find a solution to the RLS, parameters a0 to cNp

need to be calculated. These parameters will be grouped into the following vector:

Θ(k) = [a0...cNp ]
T (21)

resulting in:
ρ1(k) = γ(k)TΘ(k) (22)

with:

γ(k)T =
[
ρ1(k− Np), ..., ρ1(k− 2Np), u(k− Np − 1), u(k− 2Np − 1), y(k− Np), ..., y(k− 2Np)

]
(23)

with (22) and (23) a direct solution can be built and used to find ρ1 in an online RLS
algorithm as presented in [30]:

Θ(k) = Θ(k− 1) + σ(k)
(

ρ1(k)− γ(k− 1)TΘ(k− 1)
)

(24)

Q̂(k) =
(

I − σ(k)γ(k)T
) Q̂(k− 1)

µ
(25)

with µ ∈ [0, 1] being a forgetting factor that gives exponentially less weight to older error
samples of the RLS algorithm and σ(k) being a vector defined as:

σ(k) =
1

µc(k)
Q̂(k− 1)γ(k) (26)

and c(k) is a scalar defined by:

c(k) = 1 + γ(k)T Q̂(k− 1)
µ

γ(k) (27)

Therefore, the RLS algorithm for estimating the future scheduling parameters is shown
as Algorithm 1:

After solving the RLS algorithm for the Np future scheduling parameters, they will be

considered to be known and exact to build a vector P̂(k) =
[
ρ1(k), ..., ρ1(k + Np)

]T
which

contains all of them; therefore, (12) is no longer an equation with unknown variables and
can be solved through LMI optimization.
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Algorithm 1
Offline
Step 1—Initialize Θ(0) and Q̂(0)
Online
Step 2—Obtain ρ1(k), y(k) and u(k)
Step 3—Construct γT(k) vector
Step 4—Calculate scalar c
Step 5—Obtain vector σ(k)
Step 6—Obtain Θ(k)
Step 7—Obtain Q̂(k)
Step 8—Obtain ρ1(k)
Step 9—Set k = k + 1, If k < Np go to Step 10, else, go back to step 3

Step 10—Construct P̂(k) =
[
ρ1(k), ρ1(k + 1), ..., ρ1(k + Np)

]

6. Quadratic Stability in MPC-LPV Approach

To ensure Quadratic Stability in the MPC-LPV approach, system (7) can be considered
to be a parametric uncertain system. In parametric uncertain systems, the scheduling
variable is limited to vary in a range ∆ρ1min ≤ ∆ρ1k ≤ ∆ρ1max. To ensure stability in
parametric uncertain systems, the following condition needs to be met as presented in [31].(

A(ρ1) + BK
)T

P
(

A(ρ1) + BK
)
− P < 0 (28)

which is the Riccati Equation for parametric uncertain systems where P > 0 is a positive
definite matrix of appropriate dimensions and K a static feedback gain matrix. Then, (28)
can be pre- and post-multiplied by a matrix Q = P−1 and KQ = R to obtain:(

QAT(ρ1) + RTBT
)

Q−1
(

A(ρ1)Q + BR
)
−Q < 0 (29)

To cope with the MPC paradigm, the Schur complement is applied to (29) to obtain
the following LMI: [

Q QAT(ρ1) + RB
A(ρ1)Q + BR Q

]
> 0 (30)

for every possible value of ρ1 at time instant k which leads to an infinite number of LMI.
However, as system (7) is considered to be a parametric uncertain system, (30) can be
evaluated on the vertex of matrix A to consider the worst-case scenarios. Therefore, (30)
can be written as: [

Q QAT
i,j(ρ1) + RB

Ai,j(ρ1)Q + BR Q

]
> 0 (31)

The previous condition must be met ∀j ∈ [k, k + Np] and ∀i ∈ [1, 2l ], where l is
the number of scheduling variables ρ1, Q > 0 is a positive definite stability matrix to
be determined, and KQ = R, where K is the static feedback gain matrix. With these
adjustments, the number of LMI to be solved is now finite and equal to 2l Np. Since there is
the consideration of a static feedback gain, the control law is determined as u(k) = Kx(k),
but to comply with the MPC paradigm, the previous expression can be considered to be
an inequality as u(k) < Kx(k). This leads to a conservative MPC performance due to the
limitations of the input variable. However, this problem will be addressed in Section 7
with the inclusion of terminal sets. Therefore, using (17)–(19) and (31) the optimization
problem needs to find the optimal control sequence at each time step k is the following:

min
U

J s.t.(18), (19) & (31) (32)
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7. MPC-LQR for LPV Models
7.1. Attraction Sets and Terminal Set

The inclusion of LMIs to ensure robust stability to the MPC paradigm often leads to
a conservative performance of the control of the system. Therefore, to steer the system
into a desired equilibrium state in the presence of disturbance or uncertainty, a series of
terminal sets can be defined. In [32] a set of shrinking ellipsoids is determined using a
decay rate, which can vary the speed of the system and the stability determined by similar
stability conditions to the ones shown in Section 6, to steer the states to the equilibrium
point. However, the determination of the decay rate and the constructions of the ellipsoids
make this algorithm too slow for real-time applications and is rather implemented as an
offline algorithm. In [33] a set of ellipsoidal sets are defined to predict the behavior of the
system in the presence of bounded disturbances and uncertain bounded parameter changes.
In [34] a path of ellipsoids is defined to predict the possible behavior of the scheduling
parameter along the prediction horizon. In all three approaches, the goal of the ellipsoidal
sets is that the states reach a terminal set or a terminal point, where a state-dependent
stationary gain is applied to the system instead of the MPC law.

In this work, the future scheduling parameter is not known but predicted using the
RLS algorithm presented in Section 3; therefore, the ellipsoids to build do not consider a
variation on the scheduling parameter but rather the prediction error generated by the
RLS algorithm. To generate the optimal desired trajectory to the setpoint, a path must be
defined from every possible initial state to the terminal ellipsoidal set.

To steer the system into the desired terminal set, a term JTS is added to the cost
function J presented in (17). JTS is defined as the following:

JTS =
(

x(k + Np)− (xds + xdist)
)T

L
(

x(k + Np)− (xds + xdist)
)
− E(ρ1) (33)

where E(ρ1) = ∑
k+Np
i=k

[
ρ1(i) − γ(i − 1)TΘ(i − 1)

]2
represents the sum of the squared

errors of the prediction of the future parameter values. x(k + Np) are the predicted states
at the end of the prediction horizon, xds represents the desired state after Np steps, xdist is
the predicted effect of the disturbance on the states Np steps ahead and it was obtained
by performing an open loop simulation of every possible disturbance from every initial
set of states. Both xds and xdist were computed offline and stored in a lookup table. L is a
weighing matrix of appropriate dimensions. Therefore, (17) is redefined as:

J = XTQcX + UTRcU + JTS (34)

However, the computation of every desired trajectory for every state needs to be
computed offline and stored in a lookup table before the implementation of the MPC
algorithm to increase execution speed.

7.2. MPC-LQR Dual Controller

To reduce the computational load of the algorithm, when the current states reach a
terminal invariant set around the equilibrium point, the MPC algorithm does not need
to be computed. Instead, an LQR gain can be computed based on the value of the actual
prediction parameter to cope with the small error that may be present inside the terminal
invariant set. The control law is then presented as:

u(k) =

{
Umpc x(k) /∈ T
KLQR(ρ1)x(k) x(k) ∈ T

(35)

where KLQR(ρ1) is the LQR gain dependent on the scheduling parameter ρ1 and T is the
terminal invariant set defined around the equilibrium point of the system.
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Figure 3 presents the block diagram for the proposed LPV-MPC-LQR control strategy.
Additionally, the LPV-MPC-LQR algorithm is shown in the flowchart presented in Figure 4.

Figure 3. Block diagram of the proposed LPV-MPC-LQR control strategy for the Active Suspension system.

Figure 4. Flow diagram of the LPV-MPC-LQR control strategy.

8. Results and Discussion

The following simulations are made to observe the advantages and performance
of implementing the proposed LQR-MPC-LPV algorithm described in Section 7. The
algorithm was tested in the Active Suspension system described in Section 2. Table 1 shows
the specifications of the Active Suspension system obtained from [7].



Mathematics 2021, 9, 2533 10 of 17

Table 1. Constant Values of the Active Suspension system.

Variable Value Units

ms 250 kg
mus 50 kg
mus 50 kg
kt 190,000 N/m
ks 16,812 N/m
bs 1000 N/(m/s)
Ps 10,300,000 Pa
τ 1/30 s
A 3.35× 10−4 m2

β 1 s−1

α 4.515× 1013 N/m−5

kv 1× 10−4 m/V

A discretization is made to comply with the MPC paradigm using a sampling time
of Ts = 10 ms. A prediction horizon of Np = 3 was defined after several tests using
different prediction horizons were made. Using a larger prediction horizon resulted in
longer optimization time and more inexact variable scheduling predictions while it does
not exhibit a significant improvement in control performance. The control objective is to
steer all the states to the origin while complying with the following constraints.

−12 V ≤ u(k) ≤ 12 V

−1 cm ≤ zv ≤ 1 cm

The results will be divided into frequency-domain results and time-domain results.

8.1. Frequency-Domain Results

To obtain a frequency analysis in the nonlinear Active Suspension system, an algorithm
similar to the process of defining the system response as a describing function is used.
To produce these results, Algorithm 1 presented in [35] is issued. Figure 5 presents the
frequency response of the Active Suspension deflection gain using the proposed LPV-MPC-
LQR algorithm. Figure 6 presents the frequency response of the acceleration of the chassis
mass using the proposed LPV-MPC-LQR algorithm; also, the frequency response plots are
compared with the ones presented in [36] which use an LPV gain scheduling approach.

The results show how the suspension deflection is attenuated at every frequency,
which results in better road holding and driving conditions. Additionally, the chassis
acceleration stays in values which guarantee passenger comfort. Compared to the frequency
responses of the work of Fialho et al. [36] the MPC-LQR-LPV approach presents an
improvement especially in terms of road holding, shown in Figure 5, without affecting the
passenger comfort.

8.2. Time-Domain Results

To obtain time-domain results using the proposed LPV-MPC-LQR control algorithm,
the system was simulated using two different disturbances. Figures 7–9 present the
suspension behavior when a bump disturbance of 5 cm is introduced. Figures 10–12
show the suspension behavior when driving through a sinusoidal road. The system was
simulated using Matlab®; also, the software package YALMIP [37] using QP-solver SDPT3
was used for the MPC optimization. The results presented by [7] are included to make a
comparison. Additionally, the results using the MPC with a frozen scheduling parameter
approach without using the RLS to show the effect of the scheduling variable prediction in
control performance are included.
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Figure 5. Frequency response of the Active Suspension deflection gain.

Figure 6. Frequency response of the chassis acceleration.
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Figure 7. Chassis displacement—Bump Disturbance (Blue—disturbance, Red—MPC-LQR, Yellow—
Passive, Purple—H2, Green—MPC-Frozen).

Figure 8. Suspension Deflection—Bump Disturbance (Blue—disturbance, Red—MPC-LQR, Yellow—
Passive, Purple—H2, Green—MPC-Frozen).

The results of both displacement and deflection show a better performance, which
results in better road holding while maintaining passenger comfort. Additionally, the
comfort exhibits improvement in terms of chassis acceleration as shown in Figure 9. Addi-
tionally, to express the results numerically, both the RMS value and the maximum value
of the displacement of the chassis, the suspension deflection and the acceleration of the
chassis are presented in Tables 2 and 3 respectively.
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Table 2. RMS Values performance.

Variable MPC-LQR-LPV H2 (Ghazaly, 2016) Passive MPC-Frozen

Chassis Displacement (m) 0.0079 0.0091 0.0142 0.0107
Suspension Deflection (m) 0.0089 0.0149 0.0240 0.0122

Chassis Acceleration (m/s2) 0.0713 0.1104 0.1041 0.0838

Table 3. Max Values performance.

Variable MPC-LQR-LPV H2 (Ghazaly, 2016) Passive MPC-Frozen

Chassis Displacement (m) 0.0293 0.0284 0.0380 0.0367
Suspension Deflection (m) 0.0355 0.0499 0.0464 0.0439

Chassis Acceleration (m/s2) 0.2644 0.3978 0.2925 0.2899

Figure 9. Chassis Acceleration—Bump disturbance (Blue—MPC-LQR, Red—Passive, Yellow—H2,
Purple—MPC-Frozen).

Similar to the bump disturbance case, the proposed LPV-MPC-LQR control strategy
exhibits better performance in both displacement and deflection, which results in better
road holding. In terms of comfort, the acceleration of the chassis presented in Figure 12
shows a major improvement. Table 4 presents the peak values for the displacement of the
chassis, the suspension deflection, and the acceleration of the chassis.

Table 4. Peak Values performance.

Variable MPC-LQR-LPV H2 (Ghazaly, 2016) Passive MPC-Frozen

Chassis Displacement (m) 0.0027 0.0044 0.0151 0.0055
Suspension Deflection (m) 0.0034 0.0040 0.0097 0.0051

Chassis Acceleration (m/s2) 0.0164 0.32 0.162 0.0312

As shown in the previous figures, the proposed LPV-MPC-LQR control algorithm
presents a better performance when compared with the H2 control strategy in both distur-
bance cases (bump disturbance and sinusoidal road disturbance). The RLS prediction of the
future scheduling parameters have improved the control performance as well. Additionally,
the proposed algorithm shows an appropriate optimization time with a worst optimization
time of 930 ms and an average optimization time of 93 ms.
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Figure 10. Chassis displacement—Sinusoidal Disturbance (Blue—disturbance, Red—MPC-LQR,
Yellow—Passive, Purple—H2, Green—MPC-Frozen).

Figure 11. Suspension Deflection—Sinusoidal Disturbance (Blue—disturbance, Red—MPC-LQR,
Yellow—Passive, Purple—H2, Green—MPC-Frozen).
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Figure 12. Chassis Acceleration—Sinusoidal disturbance (Blue—MPC-LQR, Red—Passive, Yellow—
H2, Purple—MPC-Frozen).

9. Conclusions

In this paper, a novel LPV-MPC-LQR control algorithm ensuring Quadratic Stability
and with the inclusion of attraction sets was presented. This method runs an RLS algorithm
to obtain the prediction of the future scheduling parameter values, which simplifies the
prediction of the future states while ensuring Quadratic Stability. This application can
cope with nonlinear systems that can be embedded into LPV representation and therefore
reduce the complexity of the algorithm and allow fast execution times. This control strategy
was designed and tested on a nonlinear Active Suspension system. The results show
improvements to the performance of the Active Suspension in terms of road holding and
passenger comfort. Future research works should deal with recursive feasibility analysis
based on stability conditions, and robustness analysis. Optimization of the LPV-MPC-LQR
algorithm to achieve faster execution times using techniques of the embedded systems will
also be considered in future works as well.
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