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Abstract: This paper investigates the characteristics of the MAP/M/1/N queuing system in the
transient mode. The matrix method for solving the Kolmogorov equations is proposed. This method
makes it possible, in general, to obtain the main characteristics of the considered queuing system in a
non-stationary mode: the probability of losses, the time of the transient mode, the throughput, and
the number of customers in the system at time t. The developed method is illustrated by numerical
calculations of the characteristics of the MAP/M/1/3 system in the transient mode.
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1. Introduction

Queuing theory is used for the mathematical descriptions of a large number of prob-
lems in calculating the performance characteristics of telecommunications and distributed
computing systems. As a rule, researchers are interested in the behavior of the system un-
der consideration in a stationary mode, when the probabilities of the states of the system do
not depend on time [1–3]. However, with the transition to high-speed optical information
processing systems and 5G/6G communication systems, for a more accurate assessment
of the characteristics of the system, it is necessary to take into account its behavior in a
non-stationary mode. Such a mode of operation occurs, for example, when the switching
equipment is rebooted, when the base station is turned on and off, when the equipment is
switched from the main channel to the backup channel, in cases of equipment malfunction,
and in other cases associated with changes in system states. In this case, one of the most
important tasks is to determine the duration of the transient mode, that is, the time during
which the system will go to a stationary state. This problem is also relevant in the simula-
tion of queuing systems, when it is necessary to determine the moment of transition of the
system to a stationary mode with a sufficiently high accuracy.

The transient operation mode of queuing systems was first studied in [4–7]. In [6],
the author for the first time described the need to study the transient operation modes of
telecommunication systems and introduced the concept of the time constant of the transient
process as an important parameter for determining the rate of transition of the system to
the stochastic equilibrium mode. He considered several examples that require taking into
account the changes in the probabilities of system states from time to time. As an example,
the problem of predicting the characteristics of the system when installing the system or
disrupting its operation was presented.

In recent years, queuing systems with periodically varying parameters of input flows
and service time for customers have been actively studied [8,9]. One paper [8] considered
the problem of convergence for a nonstationary two-processor system with catastrophes,
server failures, and repairs, when all parameters are harmonic functions of time. Another
paper [9] proposed three different analytical methods for calculating upper bounds for the
rate of convergence to a stationary mode of a process given by a continuous inhomogeneous
Markov chain. The first method is based on the logarithmic norm of a linear operator
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function, the second uses the simplest Lyapunov functions, and the third uses differential
inequalities. Note that the stability of processes described by Markov chains with periodic
parameters was studied back in the 1980s [10,11].

Reference [12] presents an approximate approach to the analysis of the transient be-
havior of a M/M/1/N system. The time dependencies of the probabilities of the system
states are presented for special cases only in numerical calculations. The papers [13,14]
present analytical expressions for finding the dependencies of state probabilities on time
for the M/M/1 queuing system. The solution to the Kolmogorov system of differential
equations is sought using the Laplace transform. The papers [15,16] present an analysis of
the transient mode of a single-line queuing system with catastrophes. Analytical expres-
sions are given for finding the dependencies of the probabilities of the states of the systems
under consideration on time, and their stationary values. The paper [17] investigates a
transient operation mode of a queuing system with heterogeneous servers and impatient
customers with a Poisson input stream. The most complete review concerning the study of
the transient behavior of queuing systems with Poisson input flows is presented in [18].
In this paper, the queuing systems M/M/∞, M/M/1, M/E/1, and M/M/1/N with
catastrophes are investigated.

Despite the described approaches to the analysis of the non-stationary modes of
queuing systems with Poisson input flows, these results cannot be used in the design
of various real telecommunication systems. This is due to the fact that the traffic of
modern telecommunication systems is correlated, and for a more accurate description,
one should use not the simplest flow, but Markov correlated MAP or BMAP streams. The
monograph [1] presents a systematized presentation of research methods and estimations
of stationary characteristics of queuing systems with correlated flows. However, non-
stationary modes of queuing systems with MAP flows are poorly studied in the literature.
Note, for example, the work [19], which considers a single-line queuing system with
correlated input flows, for which a numerical calculation of the state probabilities versus
time using the Runge–Kutta method is presented.

This paper, for the first time, proposes an analytical method for studying the transient
behavior of the MAP/M/1/N system. The paper is structured as follows. Section 2
gives the formulation of the considered problem of studying the unsteady modes of the
MAP/M/1/N system. Section 3 presents an analytical method describing the behavior
of the MAP/M/1/N system in a non-stationary mode. Section 4, for the first time, gives
expressions for the main parameters of the system under consideration in the transient
mode: the probability of losses, the probabilities of the system states, the time of the
transient mode, the throughput, and the number of customers in the system at time t.
Section 5 presents numerical calculations illustrating the proposed analytical approach for
the MAP/M/1/3 system.

2. Statement of the Problem

This paper discusses an MAP/M/1/N queuing system with a Markov input flow of
customers and a limited number of waiting places. The arrival of customers is controlled
by an irreducible non-periodic Markov chain νt, t ≥ 0 with continuous time and a state
space 0, 1, . . . , M− 1. The residence time of the chain νt, t ≥ 0 in a certain state ν has an
exponential distribution with the parameter λν, ν = 0, M− 1. After the time spent by the
process in this state has expired, with the probability p(1(ν, ν′) the process νt, t ≥ 0 goes to
some state ν′ and a customer is generated, with the probability p(0)(ν, ν′) that the process
makes a transition, but without generating a customer. It is assumed that a jump from the
state ν to the same state is impossible without generating a customer, i.e., p(0)(ν, ν) = 0. It
is also assumed that the probabilities p(k)(ν, ν′), k = 0, 1 satisfy the normalization condition

M−1

∑
ν′=0
ν′ 6=ν

p(0)(ν, ν′) +
M−1

∑
ν′=0

p(1)(ν, ν′) = 1, ν = 0, M− 1 (1)
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The flow is described by two nonzero M×M-matrices D0 and D1:

D0 =


−λ0 λ0 p(0)0,1 ... λ0 p(0)0,M−1

λ1 p(0)1,0 −λ1 ... λ1 p(0)1,M−1
... ... ... ...

λM−1 p(0)M−1,0 λM−1 p(0)M−1,1 ... −λM−1

 (2)

D1 =


λ0 p(1)0,0 λ0 p(1)0,1 ... λ0 p(1)0,M−1

λ1 p(1)1,0 λ1 p(1)1,1 ... λ1 p(1)1,M−1
... ... ... ...

λM−1 p(1)M−1,0 λM−1 p(1)M−1,1 ... λM−1 p(1)M−1,M−1

 (3)

The monograph [1] describes in detail the meanings of the elements of the matrices
D0 and D1. The service time of a customer in the system is exponentially distributed with
the parameter µ.

The transition graph of the MAP/M/1/N system is shown in Figure 1. According
to this graph, the queuing system MAP/M/1/N can be in one of K = M(N + 2) states.
The vertices of the graph S0, S1, ..., SN+1, designate the macrostates of the buffer and the
server. Transitions between these macrostates are accompanied either by the generation
of a new customer, or by servicing the old one. Thus, the system is in the S0 macro state
if there are no customers in it; that is, the server is idle and the buffer is empty. The
system is in the S1 macro state if the server processes one customer and the buffer is
empty. The system is in the SN macrostate, if the server processes one customer, while
there are N − 1 more customers in the buffer. The system is in the SN+1 macrostate if the
server is busy, provided that there are N customers in the buffer, and the next incoming
customer will be discarded. Each of the above macrostates Sk, k = 0, N + 1 corresponds to
M additional states S(0)

k . . . S(M−1)
k of the MAP flow control process without generating a

customer. A change in the state of the system S(0)
k ... S(M−1)

k can occur as a result of one
of the M − 1 state transitions of the control process. Section 5 shows the relationships
between the states of the system S(0)

k ... S(M−1)
k for the case M = 3. Note that transitions

within macrostates Sk, k = 0, N + 1 correspond to the transitions of the MAP with no
customer arrivals, and these transitions are not shown in the generalized graph (Figure 1).
Additionally, the transitions between macrostates correspond to transitions of the MAP
with customer arrival (M possible transitions) or the service completion with rate µ (also
M possible transitions between states). It is easy to see that the resulting intensity of
direct transitions between macrostates is defined as λg = ∑M−1

i=0 λi ∑M−1
j=0 p(1)ij . In Figure 1,

they are specified separately for each intensity λi: λgi = λi ∑M−1
j=0 p(1)ij . Reverse transitions

between macrostates in the MAP/M/1/N system are determined both by the number of
Markov flows M and by the service intensity µ : µg = (M− 1)µ (see Figure 1).

Following [1], the Kolmogorov equation system for the MAP/M/1/N system under
consideration can be written as

d
dt
−→
P = A

−→
P (4)

in the matrix form where

A =



DT
0 µI ... O O

DT
1 DT

0 − µI ... O O
... ... ... ... ...
O O ... µI O
O O ... DT

0 − µI µI
O O ... DT

1 DT
0 + DT

1 − µI

 (5)
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−→
P (t) =

(−→
P 0,
−→
P 1, . . . ,

−→
P N+1(t)

)T
; T is a transposition operator;

−→
P k, k = 0, N + 1 is the

macrostate Sk probability column vector (the M states of S(0)
k ... S(M−1)

k ) of the server
and buffer, determined by the dimension of the matrices (2) and (3). Note that AT is an
infinitesimal generator and AT−→e =

−→
0 . Here −→e is the unit column;

−→
0 is the zero column.

 

Figure 1. Generalized graph of the MAP/M/1/N queuing system.

The purpose of this work is an analytical study of the transient mode of the system
under consideration. We propose a new approach for analyzing the transient mode of the
MAP/M/1/N queuing system and finding analytical expressions for the probability of
losses, transient time, throughput, and the number of customers in the system at the time t.
The advantages of the proposed approach are the simplification of numerical calculations
and the possibility of solving further problems of the synthesis of the corresponding
systems.

3. The Method of Studying the Non-Stationary Characteristics of the
MAP/M/1/N System

First of all, we need to formulate the main theoretical provisions necessary for studying
the non-stationary mode of the MAP/M/1/N queuing system.

3.1. Analysis of the Characteristic Polynomial Roots

This subsection analyzes the roots of the characteristic polynomial of the Kolmogorov
equations (4) (the eigenvalues of the coefficient matrix (5)), which describe the MAP/M/1/N
system. This analysis is of great importance for describing the behavior of this system
in a transient mode, since these roots determine the duration of the transient mode and
the kind of the dependence of the state probabilities on time. According to [20–22], the
characteristic polynomial of the Kolmogorov system (4) of order K has the form

γK + bK−1γK−1 + ... + b2γ2 + b1γ + b0 = 0 (6)

Here bj are the coefficients expressed in terms of the elements of the matrix (5) [20–24],
and γ are the roots of the characteristic polynomial of system (4).

Since the probabilities in (4) are linearly dependent, and accordingly, (D0 + D1)
−→e =

−→
0 [1], the determinant of the coefficient matrix (5) is equal to zero [24]. Taking into account

the well-known equality b0 = det A [24], it can be obtained from (6) that
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γ(bK−1γK−1 + ... + b2γ2 + b1γ) = 0. (7)

Thus, one of the roots γ0 of the characteristic Equation (6) is necessarily equal to zero.
Since matrix (5) is real, the roots of characteristic Equation (6) can be either real or complex
conjugate [24].

In addition, based on Sylvester’s theorem [25–27], the number of negative diagonal
elements of matrix (5) is equal to the number of negative eigenvalues of this matrix. Since
all diagonal elements (5), taking into account (2) and (3), are negative, all roots of the
characteristic equation have negative real parts.

Thus, the roots of the characteristic polynomial of the Kolmogorov system of differ-
ential equations describing the behavior of the MAP/M/1/N system can be either real
negative or pairwise complex conjugate with negative real parts.

Consequently, the transient mode in the MAP/M/1/N system always has a decaying
exponential character (Figure 2a), if the characteristic numbers are real negative or of
decaying wavy character [20–22] (Figure 2b), if at least two eigenvalues are complex
conjugates with negative real parts.

 

(a) decaying exponential type (b) decaying wavy type

Figure 2. Types of transient modes.

In accordance with [20–24], the roots of the characteristic equation (Equation (4)) can
be either simple or multiple. This study, for the sake of definiteness, considers only the
case of simple roots, which is most often encountered in practice.

3.2. The Matrix Method for Solving the Kolmogorov Equations

The papers [4–18] present various methods of studying the non-stationary mode of
queuing systems. All of them are reduced either to a numerical solution of the correspond-
ing Kolmogorov system, or to the use of Laplace transforms. All of them do not allow
obtaining a general solution to the Kolmogorov system of equations.

This paper presents the analytical approach based on the use of the so-called probabil-
ity translation matrix.

Definition 1. The probability translation matrix L(t) of system states is the matrix that relates
the state probabilities P(t) at an arbitrary moment of time t with the probabilities of the states P(t0)
of this system at the initial moment of time t0:

−→
P (t) = L(t)

−→
P (t0) (8)

Obviously, the dimension K of the matrix L in (8) is equal to the order of system (4). However,
the rank of this matrix is less by one than the order of system (4), since the probability of one of the
states is expressed in terms of the remaining probabilities. Note that in this case, it is not necessary
to fulfill the condition t0 = 0. In this case, the initial moment of time is understood as the moment
of the beginning of observation over the behavior of a random process.

Theorem 1. The state probability of the queuing system MAP/M/1/N with constant parameters
λi, p(j)

kl , i, k, l = 0, M− 1, j = 0, 1, µ in the transient mode is fully described by the translation
matrix at any time moment t, if the initial values of the state probabilities of the given system

−→
P (t0)

are known.
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Proof. First of all, it should be noted that system (4) is overdetermined under the condition
that there exists a stationary state; therefore, the rank of the fundamental matrix is less by
one than the dimensions of the coefficient matrix of the system (4), and one of the solutions
of the Kolmogorov system is a linear combination of the others. Additionally, solutions to
system (4) can be written in the form

−→
P (t) = Y(t)

−→
C (9)

where

Y(t) =


ξ00 exp(γ0t) ξ01 exp(γ1t) ... ξ0,K−1 exp(γK−1t)
ξ10 exp(γ0t) ξ11 exp(γ1t) ... ξ1,K−1 exp(γK−1t)

... ... ... ...
ξK−1,0 exp(γ0t) ξK−1,1 exp(γ1t) ... ξK−1,K−1 exp(γK−1t)

 (10)

ξkl are the elements of the eigen-basis of the coefficient matrix of system (4) (the
coefficients relating the probabilities of states);

−→
C is the column of integration constants

determined by the initial conditions. Then for t = t0:

−→
P (t0) = Y(t0)

−→
C (11)

From (11) we have

−→
C = Y−1(t0)

−→
P (t0) (12)

Substituting (12) into (9), one can obtain

−→
P (t) = Y(t)Y−1(t0)

−→
P (t0) (13)

or

−→
P (t) = L(t)

−→
P (t0) (14)

where
L(t) = Y(t)Y−1(t0) (15)

is the translation matrix. Thus, it follows from (14) that the matrix L(t) relates the states of
the process at the time t with these states at the time t0. Moreover, if Y(t0) = I, where I is
the unit diagonal matrix, then L(t) = Y(t).

Obviously, the matrix (15) is neither a Cauchy matrix nor a fundamental matrix [22],
since the system (4) is overdetermined, and the rank of these matrices is less by one than
the dimensions of the matrix (15). Moreover, as t→ ∞, determinant (15) tends to zero; and
the determinant of the fundamental matrix is the Wronski determinant and is never equal
to zero [24].

An important advantage of the presented approach is a decrease in the computational
complexity associated with transformations that exclude the linear dependence of solutions
when using fundamental matrices and calculating the Jordan forms of matrices. Moreover,
this approach does not require the use of Laplace transforms and allows one to effectively
solve synthesis problems (the so-called inverse problems).

Now it is important to find the general analytical form of the solution for the queuing
system under consideration. In the most general case, this solution is found as an exponent
of the coefficient matrix of the initial differential equation [24]. However, the calculation of
the matrix exponent requires finding the Jordan form of the original matrix and the matrix
of eigenvectors, which for large sizes of the system is a very cumbersome operation and
gives large errors. Moreover, this approach does not allow writing the final expression in
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an analytical form. This paper proposes the technique for finding this solution based on
Theorem 1 without using the procedure for calculating the matrix exponent.

Theorem 2. The translation matrix of the probabilities of the queuing system MAP/M/1/N with
constant parameters λi, p(j)

kl , i, k, l = 0, M− 1, j = 0, 1, µ; and simple roots of the characteristic
polynomial (7), has the form

L =
K−1

∑
j=0

Aj exp(γjt) (16)

where the elements of the K× K matrix Aj are written as

(
Aj
)

kl = (−1)k+l ∆l j

∆
ξkj (17)

∆ = det


ξ00 ξ01 . . . ξ0,K−1
ξ10 ξ11 . . . ξ1,K−1

...
...

. . .
...

ξK−1,0 ξK−1,1 . . . ξK−1,K−1

 (18)

∆l j is the determinant of the algebraic complement to the element ξl j of the matrix ∆, ∆ is the proper
basis of the matrix of coefficients of system (4) in K-dimensional space [22–24], and γj is the j-th
root of the characteristic polynomial (7) of system (4).

Proof. As noted above, the general solution of the system of linear homogeneous differen-
tial equations (4) with constant coefficients and simple roots of the characteristic equation
has the form [20–24]

Pj(t) =
K−1

∑
j=0

ξijCj exp(γjt), i =
−−−−→
1, K− 1 (19)

One should look for the elements of the transformation matrix under the condition
Y(t0) = I (see (15)). Then the constants Cj for the elements of the first column are found
under the condition Pi(t0) = (1, 0, . . . , 0)T ; i.e., the system of equations to be solved has
the form

K−1

∑
j=0

ξ0,jC0,j = 1

K−1

∑
j=0

ξ1,jC0,j = 0

...
K−1

∑
j=0

ξK−1,jC0,j = 0

(20)

or in a matrix form
ξ0,0 ξ0,1 . . . ξ0,K−1
ξ1,0 ξ1,1 . . . ξ1,K−1

...
...

. . .
...

ξK−1,0 ξK−1,1 . . . ξK−1,K−1




C0,0
C1,0

...
CK−1,0

 =


1
0
...
0

 (21)

Hence, one can obtain

Cj,0 = (−1)1+j ∆1,j

∆
(22)
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Substitution of the Cj1 found in (19) gives the elements

Li1 =
K−1

∑
j=0

∆1,j

∆
ξij exp(γjt) (23)

of the first column of the transformation matrix. Similarly, the elements of the second
column are found under the condition Pi(t0) = (0, 1, · · · , 0)T , as well as the elements of
the K− 1 column under the initial conditions Pi(t0) = (0, 0, · · · , 1)T .

4. System Characteristics in the Transient Mode

The main indicators of the system in the transient mode are the probability of
losses, the time of the transient mode, throughput, and the number of customers in the
system [17,18]. As a rule, these indicators for various systems are studied in a stationary
mode. The paper [6] presents relations for calculating the so-called time constant of a ran-
dom process, but provides no substantiation for this parameter, even for the M/M/1/N
system. Moreover, there are no ratios for calculating the transient time. The paper [18]
considers the problem of the maximum queue size on the interval [0, t], the probability
of losses, and the number of customers in the system at time t for the systems M/M/1
and M/M/1/N. The author used the uniformization procedure, passing from continuous
to discrete time, which significantly complicated the calculations. At the same time, the
calculation of the throughput of queuing systems in the transient mode has not yet been
considered in the world scientific literature known to the authors.

4.1. Loss Probability

The expression discovered for the transformation matrix (16) allows calculating the
probability of packet loss at each time instant of the transient mode as the sum of the
probabilities of the states S(0)

N+1...S(M−1)
N+1 in this moment in time [1].

Ploss =
M−1

∑
i=0

P(i)
N+1(t) (24)

where P(i)
N+1(t) are the probabilities of states S(0)

N+1...S(M−1)
N+1 at the time t. Taking into account

the form of transformation matrix (16), the probability of losses can be written in the form

Ploss =
K−1

∑
i=K−M

K−1

∑
j=0

Lij(t− t0)Pj(t0) (25)

where Lij(t) are elements of matrix (16) at the time t.

4.2. Transient Time

Determining the transient time is one of the most important unsolved problems in the
theory of MAP flows. It was indicated above that the values of the characteristic numbers
fully described the duration and nature of the transient mode. Now let us consider the
duration of the transient mode. In the general case, based on the analysis carried out in
Section 3.1, the probability of the i-th state is

Pi(t) = ξi0C0 +
K−1

∑
j=1

ξijCj exp(γjt) (26)

where γj < 0, j = 1, K− 1. That is, the overall process is a superposition of K-1 damped
processes. If all γj except γ0 are real negative, then at t → ∞, Pi(t) → ξi1C1. Each of
the exponential terms in (26) decreases by a factor of e over some time τj. This time
will here be called the time constant of the j-th component of a random process with an
input MAP flow, by analogy with the time constant borrowed by Harison [6] from the
theory of electrical circuits for M/M/n queuing systems. However, it should be noted
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that the physical meaning of this quantity was not described in [6]. This constant can be
calculated for real τj based on the equality exp(−|γj|τj) = 1/e = e−1, taking into account
that γ0 = 0, ∀γj < 0, j = 1, K− 1, whence, τj = 1/|γj|. In this case, a decrease in γj leads
to an increase in τj. Thus, the term in (26) with the minimum γj has the maximum time for
decreasing by a factor of e. It also determines the transient mode duration.

In the case of complex γj = αj + iβ j, the corresponding independent solution (4) is
in the form exp(αjt) cos(β jt) [20–24], where, based on Theorem 1, αj < 0. Therefore, the
time constant of the j-th component of a random process can be defined as exp(−|αj|τj) =

1/e = e−1. Thus, the following definition can be formulated.

Definition 2. The time constant of a random process with an input MAP flow with constant
parameters λi, pkl , µ is the time during which the component of the process with the smallest αj
decays by e times. Its value is equal to the inverse smallest real part of the nonzero eigenvalue
γj = αj + iβ j, i =

√
−1; i.e., τj = 1/αjmin , where ∀αj ∈ Γ : (Γ = αj, αj ≥ αmin⇒ αj = αmin).

Based on the mathematical formulation of the problem, the transient mode ends at → ∞,
but from a physical point of view, the time of the transient mode can be considered finite at
|Pj(t) − πj| ≤ ε, where ε is some infinitesimal value, and πj is the stationary probability of
the j-th state. The choice of ε is determined by the practical requirements for specific queuing
systems. Now, it will be assumed that the mode can be considered stationary when the value of
the j-th term decreases in (26) with γ( j) = αjmin + iβ j in e3. Then, the transient time is defined
as τtr = 3/|αjmin|. Similarly, for the damping of the transient process by e5 times, one can write
τtr = 5/|αjmin|.

Definition 3. In the general case, the time of the transient process can be defined as τtr = k/|αjmin|,
where ∀αj ∈ Γ : (Γ = αj, αj ≥ αmin ⇒ αj = αmin. Here k(k > 0, k ∈ R) is defined as the
coefficient of change in the state probability.

The numerical simulation presented below has shown that for practical calculations, k = 5÷ 10
is sufficient, depending on the formulation of the problem.

When considering the nature of the transient mode, the ratio of αj and β j is important. Indeed,
if two roots of the characteristic equation are complex conjugate, then one of the terms in the elements
of matrix (16) has the form exp(αt) cos(β jt). Thus, β j determines the oscillation frequency of state
probabilities in the transient mode. If β j � αj, then oscillations are practically not observed. If
β j < αj, then one half-period of oscillations can be observed. If β j ≈ αj, then one oscillation period
can be observed. If β j � αj, then the process in the transient mode has a wavy character.

4.3. Throughput

The found probability of losses Ploss(t) (25) makes it possible to calculate the through-
put of the system at a given time in accordance with the definition [3] as

A(t) = (1− Ploss(t))λ =

(
1−

M−1

∑
i−0

P(i)
N−1t

)
λ (27)

Here λ = θD1
−→e is the average intensity of the input flow [1]. Taking into account

matrix (16):

A(t) =

(
1−

K−1

∑
i=K−M

K−1

∑
j=0

Lij(t− t0)Pj(t0)

)
λ, (28)

the average value of the throughput during the transient process is

Amid =
1

τtr

∫ t0+τtr

t0

A(t)dt =

=
1

τtr

∫ t0+τtr

t0

(
1−

K−1

∑
i=K−M

K−1

∑
j=0

Lij(t− t0)Pj(t0)

)
λdt

(29)
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4.4. The Number of Customers in the System at the Time t

Knowing the probability that the system is idle, that is, both the buffer is empty and
the server is idle, one can determine the mathematical expectation of the average number
of customers in the system at the time t [17] by the formula:

E(n(t)) =
N+1

∑
i=1

i
M−1

∑
j=0

p(j)
i (t) (30)

Indeed, the probability of the system macrostate Si at the time t is equal to ∑M−1
j=0 p(j)

i (t)
(Section 2). In this case, i customers in the system correspond to the macrostate Si. Then the
mathematical expectation in accordance with the definition can be calculated by formula
(30). Then the average statistical value of the number of received customers in the system
during the transient process is

nmid =
1

τtr

∫ t0+τtr

t0

E(n(t))dt =

=
1

τtr

∫ t0+τtr

t0

N+1

∑
i=1

i
M−1

∑
j=0

p(j)
i (t)dt

(31)

Obviously, the integral in (31) is calculated analytically, since the integrand is the
sum of exponentials. Integral (31) also has an analytical solution. However, the resulting
analytical expressions are not given here due to their cumbersomeness.

5. Examples of a Numerical Study of the Characteristics of the MAP/M/1/N System

This section considers the process of servicing three types of traffic with the arrival
rates λ0 = 5 packets/s, λ1 = 583 packets/s, and λ2 = 833 packets/s. Assuming that
the input flows are correlated, the values of the flow rates can be set by the matrix Λ =
diag{λ0, λ1, λ2} = diag{5, 583, 833}. In this problem, transitions from the transmission
state of one traffic with intensity λn to the transmission state of another type of traffic with
intensity λm without generating customers are given by the transition probability matrix

P(0) =

 0 p(0)01 p(0)02

p(0)10 0 p(0)12

p(0)20 p(0)21 0

 =

 0 0.5 0.01
0.02 0 0.5
0.02 0.04 0

 (32)

P(1) =

 p(1)00 p(1)01 p(1)02

p(1)10 p(1)11 p(1)12

p(1)20 p(1)21 p(1)22

 =

 0.01 0.1 0.38
0.01 0.1 0.37
0.01 0.1 0.83

 (33)

It is taken into account that a jump from one state to the same state is impossible
without generating a customer—i.e., p(0)ν,ν = 0; and the probabilities satisfy the normal-

ization condition ∑2
j=0 p(0)ij + ∑2

j=0 p(1)ij = 1, i = 0, 2. Thus, the information flow from a
multimedia device can be specified as a MAP-flow described by two nonzero matrices
D0 = Λ(P(0) − I), D1 = ΛP(1) [1]. It follows from the problem statement that the number
of states of the MAP governing process is M = 3. In addition, it can be assumed that the
server is a switch with a buffer size of N = 1. The transition graph for the case under
consideration is shown in Figure 3. Here the states S(0)

0 , S(1)
0 , and S(2)

0 correspond to the

free states of the server (macrostate S0), and are outlined in blue. The states S(0)
1 , S(1)

1 , and

S(2)
1 correspond to the states of the serving device transmitting one of the traffic types: S(0)

1

voice, S(1)
1 video, or S(2)

1 data (macrostate S1). The states S(0)
2 , S(1)

2 , and S(2)
2 (or macrostate

S2) correspond to the states of the serving device transmitting one of the traffic types—S(0)
2

for voice, S(1)
2 for video, and S(2)

2 for data—but there is already a packet with this type of
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traffic in the buffer. In view of the above, transitions from one state to another are given by
the matrices

D0 =

 −λ0 0.5λ0 0.01λ0
0.02λ1 −λ1 0.5λ1
0.02λ2 0.04λ2 −λ2

 (34)

D1 =

 0.01λ0 0.1λ0 0.38λ0
0.01λ1 0.1λ1 0.37λ1
0.01λ2 0.1λ2 0.83λ2

 (35)

For the research, a software package in the Python language was developed.
Let us investigate the dependence of the state probabilities on the ratio of the intensities

of packet arrival and traffic service. To do this, consider the following three cases for all
real γk:

(1) The average service rate µ = 5 packets/s; the average rate of packet arrival in
accordance with [1] λ = 139.04 packets/s. According to the results of the calculation, the
minimum characteristic indicator in modulus is γmin = −8.9145. The results of calculating
the state probabilities are presented in Figure 4. Solid lines indicate the probabilities of
system states. The probability of losses for this case is indicated by a dashed and dotted
line, which, during the transient mode, increases from zero at t = 0 s to 0.57 at t > 0.56 s.
The time dependence of the probability of a free state of the system is indicated by a dashed
line and varies from unity at t = 0 s to 0.21 at t > 0.56 s. The time constant for this case, in
accordance with Definition 2, is τmax = 1/|γmin| = 1/8.9145 = 0.112 s, and the transient
time τtr = 0.56 s for k = 5 in accordance with Definition 3.

(2) The average service rate µ = 11.3 packets/s; the average packet arrival rate
λ = 139.04 packets/s. For this case, the modulus minimum characteristic exponent is
γmin = −14.7. The results of calculating the probabilities of states are presented in Figure 5.
The probability of loss, varying from zero to 0.41 during the transient, is equal to the
probability that the buffer and the server are idle in the stationary mode. Solid lines
indicate the probabilities of states. The time constant of the transient is τmax = 1/|γmin| =
1/14.7 = 0.068 s, and the transient time is τtr = 0.34 s for k = 5.

(3) The average service rate µ = 33.33 packets/s; the average packet arrival rate
λ = 139.04 packets/s. As a result of the calculation, it is found that γmin = −28.55. The
results of calculating the state probabilities are presented in Figure 6. Solid lines indicate
the probabilities of system states. The probability of losses during the transient mode
increases from zero at t = 0 s to 0.26 at t > 0.18 s (see Figure 6). The probability that the
system is free changes from unity at t = 0 s to 0.64 at t > 0.18 s. The time constant for this
case is τmax = 1/|γmin| = 1/28.55 = 0.035 s, and the transient time is τtr = 0.18 s for k = 5.

The results of studying the throughput of the system in the transient mode at
µ = 5 packets/s and λ = 33.33 packets/s are presented in Figures 7 and 8, respectively.
The throughput in the first case decreases from A(0) = 139.04 packets/s to
A(ttr) = 59.9 packets/s, and in the second case from A(0) = 139.04 packets/s to A(ttr) =
103.4 packets/s.

Thus, with an increase in the service rate µ, the transition time decreases. It should be
noted that the transient time is long for high-speed data transmission systems, amounting
to tenths of a second. In addition, the throughput of the system at the beginning of the
system startup or reboot significantly exceeds the stationary value, which requires large
resources for its processing. It follows from this that analysis of the characteristics of the
system in the transient mode is necessary for the correct choice of the system configuration
that provides the required quality of service indicators.
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Figure 3. Transition graph of the MAP/M/1/N system.

 
Figure 4. Dependencies of the probabilities on the time. Dashed and dotted line—the probability of
losses; dashed line—the servicing device is idle, the buffer is empty.
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Figure 5. Dependencies of the probabilities on the time. Dashed and dotted line—the probability of
losses; dashed line—the servicing device is idle, the buffer is empty.

 
Figure 6. Dependencies of the probabilities on the time. Dashed and dotted line—the probability of
losses; dashed line—the servicing device is idle, the buffer is empty.

Consider the cases when any of γk, k = 0, K− 1 is complex. This case corresponds,
for example, to λ0 = λ1 = λ2 = 833 packets/s, λ = 472.3 packets/s, µ = 11.3 packets/s
(Figure 9). In this case, there are four pairwise complex conjugate roots of the characteristic
equation: γ1,2 = −983.25± i81.86, γ3, 4 = −894.92± i74.1. The transient time is τtr = 0.01 s.
Note that for these values of τk in the transient mode, there are bursts of probabilities that
the server and the switch buffer are idle, along with the likelihood that the server is
busy and the buffer is free for all types of traffic. At the same time, the values of some
probabilities differ significantly from their values in the stationary mode. Thus, only the
analysis of the behavior of the MAP/M/1/N system in a stationary mode can lead to an
incorrect assessment of the system state.

Increasing the size of the switch buffer obviously leads to a decrease in the probability
of losses; however, it also causes a significant increase in the transient time. Thus, Figure 10
shows the results for the previous values of the intensities and transition probabilities, and
N = 8. The transient time is already τtr = 0.025 s with a slight decrease in the probability
of losses.
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Figure 7. Dependence of the system throughput on time.

 

Figure 8. Dependence of the system throughput on time.

 
Figure 9. Dependencies of the probabilities on the time. Dashed and dotted line—the probability of
losses; dashed line—the servicing device is idle, the buffer is empty.
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Figure 10. Dependencies of the probabilities on the time. Dashed and dotted line—the probability of
losses; dashed line—the servicing device is idle, the buffer is empty.

6. Conclusions

This work was devoted to an analytical study of the transient mode of the MAP/M/1
/N system. First of all, based on the analysis of the Kolmogorov system of equations,
it was shown that in such a system, there will always be a stationary mode. The paper
presented for the first time an analytical method for studying the MAP/M/1/N system in
a transient mode, based on the concept of the so-called transformation matrix. Numerical
methods were used only when calculating the eigenvalues of the coefficient matrix of the
Kolmogorov system of equations for large-scale systems. Indeed, an algebraic equation
higher than the fourth order has no analytical solution. The paper presents analytical
expressions for calculating the time of the transient mode and the analysis of the possible
behavior of the system in the transient mode, depending on the values of the roots of the
characteristic equation of the system of Kolmogorov equations. Analytical expressions for
calculating the probabilities of system states in a transient mode were presented. Analytical
expressions were also presented for calculating the main indicators of the system operation,
such as the probability of losses, throughput, the number of applications in the system
at an arbitrary point in time, and the average values of throughput and the number of
applications in the transient mode. Numerical modeling was carried out using the example
of the MAP/M/1/1 system.
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