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Abstract: Nanofluids have better surface stability, thermal absorption, and distribution capacities
are produced as heat transfer fluids. In current nanofluid-transport studies, together with the heat
transfer mechanisms, entropy reduction in thermo- and non-Newtonian nanofluid models with
changing thermophysical characteristics is heavily addressed. The entropy production is examined
as thermodynamically stable first-grade viscoelastic nanofluid (FGVNF) flow over a flat penetrable,
porous barrier. The uniform porous horizontal stretching of the surface in a Darcy type of pore media
results in a fluid motion disturbance. In addition, this study also includes the effects of thermal
radiation, viscous dissipation, and slip conditions at the border. Under boundary layer flow and
Rosseland approximations, the governing mathematical equations defining the physical features
of the FGVNF flow and heat transfer models are summarized. The governing nonlinear partial
differential equation is transformed by similarity variables to achieve solutions in nonlinear ordinary
differential equations. Approximative solutions for reduced ordinary differential equations are
obtained by the Keller Box Scheme. Two distinct types of nanofluids, Copper-Engine Oil (Cu-EO) and
Zirconium Dioxide-Engine Oil (ZrO2-EO), are considered in this research. The graphs are produced
to examine the effects of the different physical factors for the speed, temperature, and entropy distri-
butions. The significant findings of this study are that the critical characteristics of (boundary layer)
BL collectively promote temperature variation, including slip speed, diverse thermal conductivity,
and non-Newtonian first-grade viscoelastic nanofluid, the concentration of nanoparticles as well
as thermal radiation, and a high porous media. The other noteworthy observation of this study
demonstrates that the (Cu-EO) FGVNF is a better conductor than (ZrO2-EO) FGVNF transmission.
The entropy of the system grows the Deborah number and volume fraction parameter.

Keywords: first-grade viscoelastic nanofluids; porous media; solar radiation; thermal jump condi-
tions; Keller-Box method

1. Introduction

Boundary layer survey has significant benefits in figuring out the main concept behind
transport phenomena through a fluid flow. The boundary is defined as the interaction of a
fluid (liquid or gas) alongside the surface of a solid. Flow around the stretching surface is
an interesting topic due to its practical application in polymer engineering at plastic and
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rubber industries, cooling of various thermal systems, textile technologies, aerodynamic
research, food production, etc. [1].

There are pasted almost two decades from the nanofluid invention. Plenty of nanofluid
applications have been developed during this time, and their properties have been scruti-
nized [2]. Some facts about nanofluid are certificated, such as higher thermal conductivity
due to further surface area, which is available by nanoparticles, makes it predispose for
the base fluid to present superior heat transfer [3]. Also, adding nanoparticles to the base
fluid can alter the rheological behavior, i.e., it has the ability to donate Newtonian fluid to
non-Newtonian gestures [4]. As claimed by researchers, this revolution’s principle may
be found in the role of nanoparticles that play within the fluid’s layer. In some base fluids
such as lubricants, nanoparticles take place alongside molecular base fluid and change the
cohesion of the structure, so the behavior of fluid changes at the influence of shear rate [5].

Nowadays, some practical models are proposed by scientists who are able to describe
non-Newtonian materials; three famous of them are the Casson model [6], Giesekus
fluid [7], and viscoelastic Maxwell model [8]. Jamshed et al. [9] explored a Casson nanofluid
containing Cu and TiO2 nanoparticles over a stretching sheet. They used the Keller-Box
method for ODE solvation. Outcomes revealed that rising concentration leads to entropy
enhancement. Moreover, Cu nanoparticles showed better performance than other ones.
Base fluid with non-Newtonian nature involves preferable convective transport phenomena
than to the Newtonian one. Imran et al. [10] surveyed the role of a bioconvection of
swimming microorganisms nanofluid with cross viscosity through a cylinder. They showed
that the lower the magnetic, the higher the velocity field. Microorganisms based non-
Newtonian nanofluid was studied by Waqas et al. [11] through porous media. The results
indicated that microorganisms’ profiles could be enhanced by augmenting their Biot
number. Also, thermal radiation improved heat transfer performance. First-grade non-
Newtonian viscoelastic fluid classified as a special viscoelastic fluid incorporated the crucial
combination with the effect of solid’s elasticity and fluid’s viscosity. Some application
areas of this class of fluid can be beckoned to footwear, PVC pipe, flooring, insulation
tape, and ATM cards. The stretching sheet was firstly subjected by Crane [12] where a
Newtonian plastic sheet under the ambient conditions was investigated. Generally, the
Darcy model states governing equations in viscous materials, which include porous media.
However, it is valid at the low Reynolds numbers. Maleki et al. [13] investigated the
presence of nanofluid on a porous flat plate. Four water-based nanofluids such as Cu,
Al2O3, MWCNT, and SWCNT nanoparticles were considered. They reported that higher
concentrations of nanofluids could diminish the heat transfer in some special conditions,
such as considerable variations in viscous dissipation and radiation. In another study by
Maleki et al. [14], they carried out a numerical study about the pseudo-plastic behavior of a
non-Newtonian nanofluid based on Al2O3, Cu, TiO2, and CuO nanoparticles dispersed in
sodium carboxymethyl cellulose/water flowing over a plate. They utilized Runge–Kutta-
Fehlberg method to solve ODEs. Rising nanoparticle concentration led to a decrease in
Nusselt number for Newtonian nanofluid, increasing Nusselt number of non-Newtonian
nanofluid. In Maleki et al. [13], the transport properties of the same nanofluids were
examined on permeable surfaces. In injection status, it was non-Newtonian nanofluids that
had more heat transfer compared to the Newtonian one.

In contrast, the entropy of the system is linked to the disruption of the system [15].
The system disorder definition is recognized as 100% of usable resources are not used by
the system. In the ideal condition of the system’s entropy, we can ultimately maintain the
system’s energies [16]. However, the real-world scenario always exists a loophole. Robust
scientists have investigated strategies to decrease entropy loss since it is a crucial element
of every industry. Dalir et al. [17] investigated the entropy rate of magnetohydrodynamic
(MHD) of a Jeffrey model non-Newtonian nanofluid for stretching sheet. Keller-Box
was used as a solvation method for ODEs. They concluded that entropy generation
falls by rising relaxation/retardation ratio. Also, they claimed that alteration in Prandtl
and Reynolds numbers significantly changes the entropy through the system. Jamshed
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et al. [18] a stretching sheet exposed to a Casson nanofluid (Cu and TiO2 based on methanol)
which ODEs solved by Keller-Box method. Cu nanofluid showed better performance in
transferring than TiO2 nanoparticles. Kotha et al. [19] conducted the same study with
Jamshed et al. [18], considering the magnetic field. Entropy generation was found to amend
by augmenting velocity parameter, while Bejan number diminished by that. Khan et al. [20]
surveyed a non-Newtonian Williamson nanofluid over a stretching sheet by considering
chemically reactive species. Rung Kutta method was used to solve the nonlinear equations.
They said that magnetic force and electric field increments cause velocity reduction. Also,
by rising chemical reaction parameters, the concentration augments. Entropy generation
has a direct relation with thermal conductivity and stream function. Thumma et al. [21]
numerically presented the entropy variation for Cu and CuO nanoparticles based Casson
nanofluid on a permeable stretching sheet. Adomian Decomposition Method (ADM) was
utilized to solve mathematical modeling. Results demonstrated that entropy enhances by
nanofluid concentration and Brinkman number. Also, the Nusselt number is augmented
by the Darcy number.

Furthermore, CuO/water nanofluid had higher flow acceleration than to Cu/water
nanofluid. Usman et al. [22] verified the entropy generation of non-Newtonian MWCNT/EG
nanofluid flow over a permeable stretching rotary disk. Keller-Box was the method that
solved the governing equations after reducing PDEs to ODEs. The findings indicated that
entropy generation can be enhanced by Brinkman number and the porosity, while reducing
by material parameter.

This study aims to observe the heat transfer analysis of the first-grade viscoelastic
model using mono nanofluids (i.e., Cu-EO and ZrO2-EO) past a stretching sheet. Solar
radiation has been considered a heat source. The heat transfer is analyzed for the case of
diverse influences like thermal radiative flowing, viscous dissipation, and variant thermal
conductance. Entropy production scrutiny has been carried out in the case of first-grade
viscoelastic nanofluid (FGVNF). The modeled equations in terms of momentum and energy
have been handled using a proven arithmetical arrangement known as the Keller-Box
technique. The effect of various, sundry parameters on velocity, shear stress, heat fields,
surface drag coefficient, and Nusselt number are introduced clearly and displayed in
figures and tables.

2. Flow Model Formulations

The mathematical flow equations show the moved horizontal plate with the irregular
expanding velocity [23]:

Uw(x, 0) = Lx, (1)

where b is an original expanding ratio. Sequestered surface heat is Y =w (x, t) = Y =∞ +L∗x
and for the suitability, it is presumed to stand at x = 0, where g∗, Y =w, where Y =∞ signify
the temperature variation amount, heat of surface, and surrounds correspondingly. Here, the
plate is assumed as slippery while the surface is dependent on a temperature variation.

The following principles, as well as the constraints, apply to the flow system. The
2-D laminar steady flow, dominating-layer approximations, single-phase (Tiwari-Das)
scheme, and the non-Newtonian FGVNF is considered. Different efforts are also considered,
i.e., porous medium, thermal radiative flow, variant thermal conductance, porousness
elongated surface, convection, and slippery boundary constraints.

2.1. Formal Model

Figure 1 shows the schematic of this study:
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Figure 1. Diagram of the flow model.

2.2. Model Equations

The governing equations to this study are as follows:
Continuity Equation [23]:

∂F1

∂x
+

∂F2

∂y
= 0, (2)

Momentum Equation [23]:

F1
∂F1

∂x
+ F2

∂F1

∂y
=

µn f

ρn f

[
∂2F1

∂y2

]
− λ

[
F1

2 ∂2F1

∂x2 + F2
2 ∂2F1

∂y2 + 2F1F2
∂2v1

∂x∂y

]
−

µn f

ρn f k
F1, (3)

Enery Equation [23]:

F1
∂Y =

∂x
+ F2

∂Y =

∂y
=

1(
ρCp

)
κn f

[
∂

∂y

(
κ∗n f (Y =)

∂Y =

∂y

)]
+

µn f(
ρCp

)
n f

[
∂F1

∂y

]2
− 1(

ρCp
)

n f

[
∂qr

∂y

]
. (4)

The appropriate connection conditions are as follows, which can be located in [24]:

F1(x, 0) = Uw + DL

(
∂F1

∂y

)
, F2(x, 0) = Vξ ,−kξ

(
∂Y =

∂y

)
= hξ(Y =w −Y =), (5)

F1 → 0, Y =→ Y =∞ as y→ ∞. (6)

here the curving velocity indicates the mechanisms
←
F = [F1(x, y, 0), F2(x, y, 0), 0]. Y =

is formulated as the heat of the fluid. Other crucial parameters are surface permeability
Vξ , DL is the slip length, heat transfer coefficient hξ , porosity (k) and heat conductivity
of firm kξ . Due to a thicker non-Newtonian FGVNF, only a short distance is covered by
the radiative flow. As a result, radiative flux estimation from Rosseland [25] is utilized in
formula (2.4).

qr = −
4σ∗

3k∗
∂Y =4

∂y
, (7)

herein, σ∗ shows the constant of Stefan-Boltzmann and k∗ demonstrates the rate [26].
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2.3. Heat-Physical Possessions of FGVNF

Modified thermophysical features are the outcome of solid nanoparticles that are diffused
in EO. The next equations in Table 1 summarize FGVNF substance variables [26,27].

Table 1. Thermo-physical formulas for nanoliquids [26,27].

Features Nanoliquid

Dynamic viscosity (µ) µn f = µ f (1− φ)−2.5

Density (ρ) ρn f = (1− φ)ρ f − φρs
Heat capacity

(
ρCp

)
(ρCp)n f = (1− φ)(ρCp) f − φ(ρCp)s

Thermal conductivity (κ) κn f
κ f

=

[
(κs+2κ f )−2φ(κ f−κs)
(κs+2κ f )+φ(κ f−κs)

]

Temperature reliant heat conductance for the combo is supposed as [28]:

κ∗n f (Y =) = kn f

[
1 + βξ

Y = −Y =∞

Y =w −Y =∞

]
, (8)

2.4. Thermophysical Properties of Nanomaterials and Carrying Fluid

The physical features of the nanomaterials and working fluid are specified in Table 2 [27].

Table 2. Fabricated materials thermo-physical attributes [27].

Thermophysical ρ
(
kg/m3) cp (J/kgK) k (W/mK)

Copper (Cu) 8933 385.0 401.00
Engine Oil (EO) 884 1910 0.144

Zirconium dioxide (ZrO2) 5680 502 1.7

3. Dimensionless Formulations Model

Similarity transformations that convert the governing partial differential equations
into ordinary differential equations modified BVP formulas (2)–(6). Stream function (ψ)
can be defined as [24]:

F1 =
∂ψ

∂y
, F2 = −∂ψ

∂x
. (9)

The specified similarity quantities are [23]:

β∗(x, y) =

√
L
ν f

y, ψ(x, y) =
√

ν f Lx f (β∗), θ(β∗) =
Y = −Y =∞

Y =w −Y =∞
. (10)

Into Equations (2) to (6). Therefore,

f ′2 − f f ′′ − f ′′′

φαφβ
+ Π∗

(
f 2 f ′′′ − 2 f f ′ f ′′

)
+

1
φαφβ

Pξ f ′ = 0, (11)

θ′′
(

1 + βξ θ +
1

φω
Pr Nξ

)
+ βξ θ′

2
+ Pr

φΓ

φω

[
f θ′ − f ′θ +

Eξ

φαφΓ
f ′′ 2
]
= 0. (12)

with ([24])

f (0) = Sh, f ′(0) = 1 + Λξ f ′′ (0), θ′(0) = −Hξ(1− θ(0))
f ′(β∗)→ 0, θ(β∗)→ 0, as β∗ → ∞.

}
(13)
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where φ′ is is α ≤ i ≤ ω in formulas (11) and (12) identify the subsequent thermo-physical
structures for FGVNF (For details, please see [29]):

φα = (1− φ)2.5, φβ =
(

1− φ + φ
ρs
ρ f

)
, φΓ =

(
1− φ + φ

(ρCp)s
(ρCp) f

)
φω =

(
(ks+2k f )−2φ(k f−ks)
(ks+2k f )+φ(k f−ks)

)
.

 (14)

Other physically vital parameters like skin level friction
(

C f

)
, the reduced Nusselt

number (Nux) and Entropy generation (NG) can be expressed as [24]:

C f Re
1
2
x =

f ′′ (0)

(1− φ)2.5 ,NuxRe−
1
2

x = −
kn f

k f

(
1 + Nξ

)
θ′(0),NG = Re

[
φ5
(
1 + Nξ

)
θ′

2
+

1
φ1

Bξ

Ω

(
f ′′ 2 + Pξ f ′2

)]
. (15)

Explanation of the Entrenched Control Constraints

Equation (2) is accurately confirmed. Previously, the representation existed for demon-
strating the derivatives regarding β∗ (Please see Table 3).

Table 3. Explanation of the Entrenched Control Constraints [26].

Symbols Name Formule Default Value

Π∗ Deborah number Π∗ = Lλ 1.0
Eξ Eckert number Eξ = U2

w
(Cp) f (Y=w−Y=)

0.4

Pr Prandtl number Pr= ν f
α f

6450

φ Volume fraction - 0.18
Pξ Porosity parameter Pξ =

ν f
Lk 0.2

Sh
Suction/Injection

parameter Sh = −Vξ

√
1

ν f L . 0.4

Nξ
Thermal radiation

parameter Nξ = 16
3

σ∗Y=3
∞

κ∗ν f (ρCp) f

0.3

Hξ Biot number Hξ =
hξ

ξ

√
ν f
L

0.3

Λξ Velocity slip Λξ =
√

L
ν f

DL 0.3

Re Reynolds number Re =
Uw x
ν f

5.0

Bξ Brinkman number Bξ =
µ f U2

w
k f (Y=w−Y=∞)

5.0

Ω
Nondimensional
variation of the

temperature
Ω = Y=w−Y=∞

Y=∞
1.0

4. Classical Keller Box Technique

Keller–Box approach (KBM) [30] is employed to solve the model formulas due to its
fast convergence. Furthermore, KBM is utilized to approach the localized solution for (11)
and (12) with constraints (13). The procedure of using KBM is as follows:

At the first step, all of the ordinary differential equations (ODEs) should be trans-
formed into 1st-order ODEs (11) and (12), [23]:

H1 = f ′, (16)

H2 = H
′
1, (17)

H3 = θ′, (18)

H1
2 − f H2 −

H
′
2

φαφβ
+ Π∗

(
f 2H

′
2 − 2 f H1H2

)
+

1
φαφβ

Pξ H1 = 0, (19)



Mathematics 2021, 9, 2563 7 of 22

H
′
3

(
1 + βξ θ +

1
φ4

Pr Nξ

)
+ βξ z2

3 + Pr
φΓ

φω
[ f H3 − H1θ] +

Eξ

φαφΓ
H2

2 = 0. (20)

f (0) = Sh, H1(0) = 1 + Λξ H2(0), H3(0) = −Hξ(1− θ(0)), H1(∞)→ 0, θ(∞)→ 0. (21)

The solution domain should be discretized to calculate the estimated solution. Usually,
the field is divided into equal grid sizes. As a result, the computational results gain lower
grid independency and higher precision [31].

β∗0 = 0, β∗ j = β∗ j−1 + h, j = 1, 2, 3, . . . , J − 1, β∗ J = β∗∞.

The j is employed for straightforwardly utilizing the h-space to show the location of the
coordinates. The resolution is improbable and devoid of any preliminary approximation.
Consequently, it is significant to catch speediness, heat, entropy summaries, and heat
differences to make a preliminary presumption amid β∗ = 0 and β∗ = ∞. The subsequent
plans are projected outcomes delivered that light the bc of the problem. It is essential
to announce here that the ending consequences would ultimately be equivalent when
selecting the numerous preliminary estimations, but that the iteration count and period are
occupied to demeanor the designs that differ.

Difference formulas are computed through central differencing, and average func-
tions are replaced. The 1st ordinary differential equations (ODEs) (16)–(20) order is then
decreased to the next series of nonlinear algebraic formulas [32].

(H1)j + (H1)j−1

2
=

f j − f j−1

h
, (22)

(H)j + (H2)j−1

2
=

(H1)j − (H1)j−1

h
, (23)

(H3)j + (H3)j−1

2
=

θj − θj−1

h
, (24)(

(H1)j+(H1)j−1
2

)2
−
[( f j+ f j−1

2

)(
(H2)j+(H2)j−1

2

)]
− 1

φαφβ

(
(H2)j−(H2)j−1

h

)

+Π∗
[
−2
( f j+ f j−1

2

)(
(H1)j+(H1)j−1

2

)(
(H2)j+(H2)j−1

2

)]

+Π∗
[( f j+ f j−1

2

)2
(

(H2)j−(H2)j−1
h

)]
+ 1

φαφβ
Pξ

(
(H1)j+(H)j−1

2

)
= 0,

(25)

(
(H3)j−(H3)j−1

h

)(
1 + βξ

(
θj+θj−1

2

)
+ 1

φ4
Pr Nξ

)
+ βξ

(
(H3)j+(H3)j−1

2

)2

+Pr
φΓ
φω

[( f j+ f j−1
2

)(
(H3)j+(H3)j−1

2

)
−
(

(H1)j+(H1)j−1
2

)(
θj+θj−1

2

)
+

Eξ

φαφΓ

(
(H2)j+(H2)j−1

2

)2
]
= 0.

(26)

The consequences procedures are suggested to be linear by employing Newton’s
method. The (i + 1)th reiteration can be acquired from the former formulations [32]:

()
(i+1)
j = ()

(i)
j +

..
E()(i)j . (27)

Following linear equation method ar eobtained, when the above substituted into

formulas (22)–(26) and skipped the higher bounds from 2 and more of
..
E

i
j (see [9]).

..
E f j −

..
E f j−1 −

1
2

h(
..
E(z1)j +

..
E
(
z1)j−1

)
= (r1)j− 1

2
, (28)
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..
E(z1)j −

..
E(z1)j−1 −

1
2

h(
..
E(z2)j +

..
E
(
z2)j−1

)
= (r2)j− 1

2
, (29)

..
Eθj −

..
Eθj−1 −

1
2

h(
..
E(z3)j +

..
E
(
z3)j−1

)
= (r3)j− 1

2
, (30)

(a1)j

..
E f j + (a2)j

..
E f j−1 + (a3)j

..
Ez1 j + (a4)j

..
Ez1 j−1 + (a5)j

..
Ez2 j + (a6)j

..
Ez2 j−1

+(a7)j

..
Eθj + (a8)j

..
Eθj−1 + (a9)j

..
E(z3)j + (a10)j

..
E(z3)j−1 = (r4)j− 1

2
,

(31)

(b1)j

..
E f j + (b2)j

..
E f j−1 + (b3)j

..
Ez1 j + (b4)j

..
Ez1 j−1 + (b5)j

..
Ez2 j + (b6)j

..
Ez2 j−1

+(b7)j

..
Eθj + (b8)j

..
Eθj−1 + (b9)j

..
E(z3)j + (b10)j

..
E(z3)j−1 = (r5)j− 1

2
.

(32)

where [9]:

(g1)j− 1
2
= − f j + f j−1 +

h
2
(H1)j + (

(
H1)j−1

)
, (33)

(g2)j− 1
2
= −(H1)j + (H1)j−1 +

h
2
((H2)j +

(
H2)j−1

)
, (34)

(g3)j− 1
2
= −θj + θj−1 +

h
2
((H3)j +

(
H3)j−1

)
, (35)

(g4)j− 1
2

= −h

[(
(H1)j+(H1)j−1

2

)2
−
( f j+ f j−1

2

)(
(H2)j+(H2)j−1

2

)]

+h
[

1
φαφβ

(
(H2)j−(H2)j−1

h

)]

+2hΠ∗
[(( f j+ f j−1

2

)(
(H1)j+(H1)j−1

2

)(
(H2)j+(H2)j−1

2

))]

−h
[

1
φαφβ

Pξ

(
(H1)j+(H1)j−1

2

)]
,

(36)

(g5)j− 1
2
= −h

[ (
(H3)j−(H3)j−1

)
h

(
1 + βξ

(
θj+θj−1

2

)
+ 1

φ4
Pr Nξ

)]
− h

[
βξ

(
(H3)j+(H3)j−1

2

)2
]

−h φ3
φ4

Pr

[(
( f j+ f j−1)((H3)j+(H3)j−1)

4

)]

+h φ3
φ4

Pr

[(
(θj+θj−1)((H1)j+(H1)j−1)

4

)
− Eξ

φαφΓ

(
(H2)j+(H2)j−1

2

)2
]

(37)

The boundary conditions become [31]:

..
E f0 = 0,

..
E(z1)0 = 0,

..
E(z3)0 = 0,

..
E(z1)J = 0,

..
EθJ = 0. (38)

The margin settings should be fit even in total restatements to finish the arrange-
ment designated overhead. Therefore, with our novel supposition, utilize the boundary
mentioned above settings to continue the correct amounts in each repetition.

Using Equations (33)–(37), the tridiagonal-block array is gained as follows [31]:

Z
..
E = q, (39)
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where

Z =



A1 C1
B2 A2 C2

. . . . . . . . .
. . . . . . . . .

BJ−1 AJ−1 CJ−1
BJ AJ


,

..
E =



..
E1..
E2
...

..
Ej−1..

Ej


, q =



(g1)j− 1
2

(g2)j− 1
2

...
(gJ−1)j− 1

2
(gJ)j− 1

2


(40)

Now, Z implies the J × J tri-diagonal bulk matrix for all block-dimensions of 5× 5,
whereas,

..
E and p are J × 1 order columns array. The factoring LU is utilized to touch the

..
E

outcome [27].

5. Validation

Validation of the numerical method was measured by means of the comparative
analysis on the heat transfer rate from the current approach with the outcomes of the
former works [33]. Table 4 summarizes the coherence of outcomes of this technique with
the current result. However, the outcomes of the current analysis are exceedingly accurate.

Table 4. Comparing −θ′(0) values with Pr, while φ = 0, βξ = 0, Λξ , Eξ = 0, Nξ = 0, Sh = 0 and
Hξ → ∞ .

Pr Kamran et al. [33] This Study

0.20 0.1691 0.1691
0.70 0.4539 0.4537
2.00 0.9114 0.9114
7.00 1.8954 1.8958

6. Results and Discussion

In this section, a graphical representation (Figures 2–21) is depicted for the variations of
velocity f ′(β∗) (Figures 2, 5, 8, 11, 14 and 19), temperature θ(β∗) (Figures 3, 6, 9, 12, 15, 17 and
20) and entropy NG (Figures 4, 7, 10, 13, 16, 18 and 21). Besides, the numerical results of

heat transfer rate NuRe
−1
2

x and drag force C f Re
1
2
x are shown in (Table 5). The numerical

results are subjected to the controlling parameters: the first component of Deborah number
Π∗, porous media Pξ , nanoparticle volume friction φ, velocity slip Λξ , Biot number Hξ ,
variable thermal conductivity parameter βξ , Eckert number Eξ , radiation parameter Nξ ,
suction (Sh > 0), injection (Sh < 0), Reynolds number Re and Brinkman number Bξ [34].
Moreover, numerical results presented here (velocity, temperature, entropy, and Nusselt
number) compare Cu-EO nanofluid and ZrO2-EO nanofluid. The solid blue line displays
Cu-EO nanofluid in all graphs, whereas the solid blue line draws ZrO2-EO nanofluid.
Figures 2–4 are utilized to represent the influence of suction Sh > 0 on velocity, energy,
and entropy profiles of Cu-EO and ZrO2-EO nanofluids, respectively. Figure 2 depicts
the velocity variation in both fluids under the impact of suction Sh > 0. The velocity
profile of both fluids decreased with an upsurge in the amount of S. Figure 3 represents
the change in temperature of both fluids regarding suction Sh > 0. The temperature
of both hybrid fluids reduced with an increase in suction S. Figure 4 demonstrates the
impact of suction Sh > 0 on the entropy of both fluids. Entropy elevated with increasing
the value of Sh. Figures 5–7 depict the injection impact on nanofluid’s velocity, energy,
and entropy singly. The three profiles showed an opposite response (as in suction) when
the value of Sh is decreased. Table 5 amplifies Sh shows that the skin friction and heat
transfer rate increase for both Cu-EO and ZrO2-EO nanofluids. The graphs in Figures 8
and 9 show the flow and thermal state of two kinds of FGVNF with the combination of
Cu-EO and ZrO2-EO concerning the influencing parameter Π∗ over a stretching sheet. The
fluidity and respective thickness of the boundary layer were decelerated for improving
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values of the Deborah number, which is responsible for the hike viscosity of the fluid to
resist its flow. Slower fluid has more time to cross over the sheet, while the passing fluid
can absorb more heat. This reflects in the enhancement of thermal distribution and on
the thermal boundary layer for increasing values of the Deborah number. The execution
of Cu-EO combination is remarked to be more effective than ZrO2-EO in the flowing
fluid. Traces in Figure 10 highlight that the entropy of the system is raised concerning
the impact of increment Π∗ which correspondingly makes the heat transfer rate decrease.
Figures 11–13 represent the impact of velocity slippery variable Λξ on velocity, temperature,
and entropy, respectively. Figure 11 depicts the impact of the velocity slippery variable
Λξ on velocity outline. Velocities of both hybrid nanofluids decreased with an increase in
value of ΛM. Figure 12 represents the variation of temperature according to the changing
values of Λξ . Temperature increases by increasing Λξ . Figure 13 represents the relation
of Λξ to entropy variation. The entropy of both fluids decreased with increasing values
of Λξ . Table 5 amplifies Λξ. , showing that both the physical quantities, i.e., drag force
and heat transfer rate, decrease. Porous media parameter (Pξ) sets the physical situation
in favor of flow speed and thermal transport by improving the porosity of the medium
employed in the model. Graphical presentations in Figures 14 and 15 prove the above
mentioned claim as the Darcian force acts behind as a key factor in such cases of ZrO2-EO
and Cu-EO combinations. Regarding thermal aspects of heat transfer rate along with the
thermal boundary behavior, the previous combination stays ahead of the other combination
mentioned later. This may be due to its increased resistance from density hike for higher
values of Pξ . In these situations, the Cu-EO nanofluid seems more effective than ZrO2-EO
nanofluid. Drafts in Figure 16 disclosed the fact of entropy raise concerning the improved
permeability, which leads the heat transfer rate to decrease. According to Table 5, the
increment in Pξ resulted in enhancing the drag force bur, decreasing the heat transfer rate.
Figure 17 delegates the radiative heat flux (Nξ) effects over the temperature of the first-
grade viscoelastic nanofluid that the fluxations in the heat fluxations radiated into the flow
and made it raise along with its thermal boundary layers. Figure 18 depicts that entropy
is elevated when the value of Nξ is increased. Figures 19 and 20 present the flow and
thermal behavior of the ZrO2-EO and Cu-EO-based flows over the stretching sheet as the
fractional nanoparticle volume (φ) gets improved. This happens to be the crucial parameter
in nanofluid studies, as the particle suspension was proportionally able to manipulate the
physical aspects of the fluid utilized. The enhanced volume of nanoparticles suspended
in the base fluid makes it flow naturally to decrease the hydrodynamic boundary layer.
On the other hand, this slower velocity favors the temperature transport to increase fluid
temperature and thermal boundary layer for enhancing values of solid volume fraction.
Figure 21 delineates the positive entropy transitions for corresponding fractional volume
increases. In Table 5, it can be viewed that the Nusselt number alterations concerning
increasing solid volume fraction. The heat transfer rate of Cu-EO nanofluid seems to be a
little higher than that of ZrO2-EO nanofluid while increasing volume fraction increment.
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Figure 2. Velocity profile change with Sh > 0.

Figure 3. Temperature profile change with Sh > 0.

Figure 4. Entropy profile change with Sh > 0.
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Figure 5. Velocity profile change with Sh < 0.

Figure 6. Temperature profile change with Sh < 0.

Figure 7. Entropy profile change with Sh < 0.
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Figure 8. Velocity profile change with Π∗.

Figure 9. Temperature profile change with Π∗.

Figure 10. Entropy profile change with Π∗.
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Figure 11. Velocity profile change with Λξ .

Figure 12. Temperature profile change with Λξ .

Figure 13. Entropy profile change with Λξ .
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Figure 14. Velocity profile change with Pξ .

Figure 15. Temperature profile change with Pξ .
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Figure 16. Entropy profile change with Pξ .

Figure 17. Temperature profile change with Nξ .
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Figure 18. Entropy profile change with Nξ .

Figure 19. Velocity profile change with φ.

Figure 20. Temperature profile change with φ.
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Figure 21. Entropy profile change with φ.

Table 5. Values of C f Re1/2
x and NuxRe−1/2

x for Pr = 6450.

Π* βξ Pξ φ Λξ Sh Nξ Eξ Hξ
CfRe

1
2
x CfRe

1
2
x NuRe

−1
2

x NuRe
−1
2

x

Cu-EO ZrO2-EO Cu-EO ZrO2EO

0.3 0.1 0.1 0.18 0.3 0.5 0.3 0.2 0.3 4.3961 3.1429 2.7212 2.3133
0.5 4.4150 3.1662 2.7028 2.2845
0.7 4.4375 3.1834 2.67311 2.2647

0.1 4.3961 3.1429 2.7212 2.3133
0.2 4.3961 3.1429 2.7524 2.3402
0.3 4.3961 3.1429 2.7823 2.3773

0.1 4.3961 3.1429 2.7212 2.3133
0.5 4.4212 3.1727 2.6923 2.2870
1.5 4.4454 3.2036 2.6724 2.2539

0.09 4.3406 3.0852 2.6816 1.2475
0.15 4.3744 3.1015 2.7013 1.3046
0.18 4.3961 3.1429 2.7212 2.3133

0.1 4.4431 3.2054 2.7813 2.3679
0.2 4.4105 3.1738 2.7556 2.3346
0.3 4.3961 3.1429 2.7212 2.3133

0.3 4.3630 3.1237 2.7084 2.2917
0.5 4.3961 3.1429 2.7212 2.3133
0.7 4.4246 3.1714 2.7488 2.3302

0.1 4.3961 3.1429 2.6882 2.2886
0.3 4.3961 3.1429 2.7212 2.3133
0.5 4.3961 3.1429 2.7616 2.3345

0.1 4.3961 3.1429 2.7543 2.3433
0.2 4.3961 3.1429 2.7212 2.3133
0.4 4.3961 3.1429 2.7049 2.2941

0.1 4.3961 3.1429 2.6909 2.2939
0.3 4.3961 3.1429 2.7212 2.3133
0.5 4.3961 3.1429 2.7487 2.3342

7. Final Results and Future Guidance

This research provides a computational analysis of the first-grade viscoelastic nanofluid
(FGVNF) boundary layer flow with the transmission of heat and entropy. The heat transmis-
sion process was studied with the viscous dissipation effect for nonlinear partial differential
equations, which pronounce the flow and heat transmission models via similarity trans-
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formations, converted into nonlinear ordinary differential equations (ODEs). With the
Keller–Box technique, the converted ODEs may then be numerically solved for various
values. The result of this study in computing is novel and may assist in regulating the
production of entropy in thermal transfer systems. The key results of our analysis are
as follows:

• Critical parameters such as the material parameter, the speed glide, the concentration
of nanoparticles, and the injection parameter have been shown to improve the thermal
boundary layer and lower the heat transfer rate of the surface. In addition, the strength
of these factors enhances the flow of fluid within the boundary layer and raises the
system entropy overall.

• The critical characteristics of BL collectively promote temperature variation, includ-
ing slip speed, diverse thermal conductivity, non-Newtonian first-grade viscoelastic
nanofluid, the concentration of nanoparticles and thermal radiation, and a high porous
media. The results indicate a decreased heat transmission and a more elevated surface
thermal BL. In addition, the movement diminishes as the force of the parameters
specified in BL increases.

• The system’s entropy also affects the values of the number of Reynolds, the number of
Brinkmann, the parameter of instability, the material parameter, the volume fraction
parameter for nanoparticles, relaxation time parameter, thermal radiation, sheets
convection, and the suction parameter.

• In comparison with ZrO2-EO nanofluid, Cu-EO nanofluid is finally discovered as
having a higher thermal conductivity.

The outcomes of this research can be productive as a recommended approach for
future investigations in which PTSC’s thermal performance for diverse non-Newtonian
nanofluids is worthy (i.e., Micropolar nanofluids, Williamson, Cross–Power law, Bird–
Carreau, Second grade, and Carreau, etc.). The goals of thermal viscosity, thermally related
porosity, and eminent movement of Magnetohydrodynamic can be simplified.
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Nomenclature

L initial stretching rate
Bξ Brinkman number
C f Drag force

Cp specific-heat
(

J kg−1 K−1
)

EG dimensional entropy (J/K)
hξ heat transfer coefficient
Hξ Biot number
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k porosity of fluid
κ thermal conductivity

(
W m−1 K−1

)
kξ thermal conductivity of surface
k∗ absorption coefficient
K porous media parameter
K∗ variable thermal conductivity
Nξ radiation parameter
NG dimensionless entropy generation
Nux local Nusselt number
Pξ porous media parameter
Pr Prandtl number (ν/α)
q column vectors of order J × 1
qr radiative heat flux
qw wall heat flux
Re Reynolds number
S suction/injection parameter
F1, F2 velocity component in x, y direction

(
m s−1)

Uw velocity of the stretching sheet
Vξ vertical velocity
x, y dimensional space coordinates (m)
Z J × J block tridiagonal matrix
Greek Symbols
Y = fluid temperature
Y =w fluid temperature of the surface
Y =∞ ambient temperature
φ, volume fraction of the nanoparticles
ρ density Kg m−3

σ∗ Stefan Boltzmann constant
ψ stream function
β∗ independent similarity variable
θ dimensionless temperature
βξ variable thermal conductivity parameter
..
E unknown vector
Π∗ Deborah number
Λξ velocity slip parameter
µ dynamic viscosity of the fluid (kg m−1 s−1)
ν kinematic viscosity of the fluid (m2 s−1)
α thermal diffusivity

(
m2 s−1)

Ω dimensionless temperature gradient
Subscripts
f base fluid
n f nanofluid
s particles
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