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Abstract: We present a finite volume method formulated on a mixed Eulerian-Lagrangian mesh for
highly advective 1D hyperbolic systems altogether with its application to plug-flow heat exchanger
modeling/simulation. Advection of sharp moving fronts is an important problem in fluid dynamics,
and even a simple transport equation cannot be solved precisely by having a finite number of
nodes/elements/volumes. Finite volume methods are known to introduce numerical diffusion, and
there exist a wide variety of schemes to minimize its occurrence; the most recent being adaptive grid
methods such as moving mesh methods or adaptive mesh refinement methods. We present a solution
method for a class of hyperbolic systems with one nonzero time-dependent characteristic velocity.
This property allows us to rigorously define a finite volume method on a grid that is continuously
moving by the characteristic velocity (Lagrangian grid) along a static Eulerian grid. The advective
flux of the flowing field is, by this approach, removed from cell-to-cell interactions , and the ability
to advect sharp fronts is therefore enhanced. The price to pay is a fixed velocity-dependent time
sampling and a time delay in the solution. For these reasons, the method is best suited for systems
with a dominating advection component. We illustrate the method’s properties on an illustrative
advection-decay equation example and a 1D plug flow heat exchanger. Such heat exchanger model
can then serve as a convection-accurate dynamic model in estimation and control algorithms for
which it was developed.

Keywords: mixed mesh; lagrangian mesh; eulerian mesh; finite volume method; numerical diffusion;
hyperbolic conservation law; heat exchanger model

MSC: 35L04; 35L60; 80A04

1. Introduction

Numerical computation is a fundamental tool for the study of complex phenomena
described by sets of partial differential equations (PDE). Being able to simulate these
equations gives the opportunity to answer not only research questions but to accelerate
technological and knowledge advances in general. To name a few, numerical solutions of
PDEs are important in fluid dynamics, magnetohydrodynamics, particle physics, automatic
control, optimization, etc. In this paper, we deal with a class of problems arising in
computational fluid dynamics, in particular, the advection-(diffusion)-reaction (ADR)
equation. The ADR equation represents a variety of physical, chemical, or biological
processes, where the examples include water pollution analysis, chemical reactors models,
heat exchanger models, population growth, and others.

There exists countless amount of solution methods for such a system. Coarsely, one
can choose from finite difference, finite element, or finite volume methods (FVM). Picking
the FVM, which differs from the latter by engaging the divergence theorem, the main
ingredients of the solutions are a spatial reconstruction scheme, numerical flux selection,
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grid (adaptation) selection, and a time integration method. Analysis of numerical methods
for hyperbolic systems is given in [1].

A breakthrough paper by Godunov [2] presents a first-order upwind method and
discusses the monotonicity of the solution schemes. Regarding spatial accuracy, his method
is of the first order. A second-order scheme is referred to as MUSCL according to its
originating paper [3]. This was also the first second-order total variation diminishing
(TVD) [4] scheme. Such a property is there obtained by the use of a proper flux limiter
function, e.g., minmod or superbee limiters [5]. There are, in fact infinitely many TVD flux
limiter functions; they only need to fit the TVD region [6]. Arbitrary order, piecewise
polynomial, essentially non-oscillatory scheme (ENO) for spatial reconstruction was
presented in [7] and further developed in [8,9]. The most used nowadays, however, is the
weighted essentially non-oscillatory scheme (WENO) first presented in [10] and further
developed and analyzed in [11].

Numerical flux is driven by the Riemann problem solution, which can be either exact,
e.g., [2], or approximate as in [12,13]. The latest development in the field focuses on
adaptive mesh techniques. Moving mesh methods continuously reposition a finite number
of grid points such that some measure is equalized over the grid; a review can be found
in [14]. Another technique, the adaptive mesh refinement method, is, however, the most
popular. Between the recent well-cited papers are [15,16], for example. Time integration is
either multi-step, Runge–Kutta typically, or one-step, where the discontinuous Galerkin
methods gain popularity lately.

This article presents a mixed-mesh method for a particular class of hyperbolic systems—
systems with two characteristics, where one is non-zero and time-dependent. Traditional
FVM may add significant artificial numerical diffusion at the low number of states/nodes;
the presented mixed-mesh method eliminates this drawback. Sharp edges are convected
undistorted even in low-dimensional situations, which is beneficial for control-oriented
models for example. The model is given in the state-space representation for the convenience
of the control community. Full implementation in Matlab is published as an open-source [17].
An exact discretization of the continuous model is prepared for a follow-up article.

The paper is organized as follows. First, the problem formulation is stated and a brief
resume of FVM is given. The mixed-mesh finite volume method (MMFVM) is defined
in the next section An application to a simple advection equation, together with a heat
exchanger application, is presented at the end of the article.

1.1. Problem Formulation

Consider a general continuity equation in one spatial dimension

∂tq + ∂x f = s, (1)

where the flux f (x, t) is of the form

f = Vq + D∇q

and the variables of interest (states) q(x, t) : R×R→ Rn are defined on a spatial domain
x ∈ Ω and time domain t ∈ J , V(t) is a matrix of time-dependent transport velocities, D
is a diffusion coefficient matrix, s(q, x, t) ∈ Rn is a source/sink term and ∂t = ∂/∂t, ∂x =
∂/∂x are shorthand notations for partial differential operators with respect to time and
space (Euler notation), respectively.

Under the assumption of an incompressible fluid, spatially invariant transport velocity
and constant diffusion coefficients, we get a common advection-diffusion-reaction equation

∂tq + V∂xq + D∂2
xq = s. (2)

Focusing further on highly advective systems (with the Péclet number much larger
than 10) the diffusion term is marginal and can be omitted [18]. Consider now the initial
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boundary value problem (IBVP) for the system (3), where q0(x) is an initial spatial profile
at time t = t0 and boundary conditions at x = 0 are b(t) (transport velocities are considered
non-negative in the positive direction of x),

∂tq + V∂xq = s (3a)

q(x, t0) = q0(x) (3b)

q(0, t) = b(t). (3c)

The goal is to obtain a transient solution for the variables q(x, t) on a defined time
interval J ≡ 〈t0, T〉. In particular, to obtain a numerical solution that preserves the wave
behavior of the system without introducing numerical diffusion.

1.2. Finite Volume Method

Finite volume method (FVM) is one of the numerical solution techniques used for
solving fluid dynamics problems. The core of the method lies in the usage of the divergence
theorem on cells of finite volume and then on an approximation of the cell boundary fluxes
from cell averages (a cell-centered method is assumed). More specifically, define a grid
of N nodes, equidistant for simplicity, with a node to node distance ∆x = 1/N. For any
h : R×R→ Rn define a notation of an average value over one grid length,

(h)x(t) =
1

∆x

∫
c(x)

h(s, t)ds, (4)

where the interval c(x) = 〈x− ∆x/2, x + ∆x/2〉. Now, applying the cell average to (3) and
using the divergence theorem results in a system of ordinary differential equations for all
cell-average variables

d
dt

qi +
V
∆x
(
qi−1/2 − qi+1/2

)
= si, (5)

where qi = (q)xi
is a cell average about position xi = (i− 1/2)∆x, i = 1, . . . , N, qi±1/2 =

q(xi ± ∆x/2, t) denote left and right face values, and si = (s)xi
is a cell source term average.

The face value approximation depends on a numerical scheme used. In the first-order
upwind scheme, for example, are the face values simply qi−1/2 = qi−1, qi+1/2 = qi. The first-
order upwind approximation is monotone (no non-physical oscillations) but introduces
a considerable numerical diffusion. Higher-order schemes bring higher accuracy, where
the solution is smooth, but by the order barrier theorem, see [2] cannot be monotone. The
remedy is to approximate the face values by a low order scheme, where the solution has
high gradients, and by a high order scheme, where the solution is smooth. The switch
between schemes is performed according to a slope/flux limiter function, and the method
coined the term MUSCL [3]. Numerous limiters were introduced over the past five decades,
starting with Van Leer [19]. An important class of slope limiters is the one forbidding
an appearance of any new local extrema-the total variation diminishing class [4]. In the
MUSCL scheme, the face values are approximated, component-wise, as

qi−1/2 = qi−1 +
φ(ri−1)

2
(qi−1 − qi−2)

qi+1/2 = qi +
φ(ri)

2
(qi − qi−1),

where the slope limiter function is, for example, the one by Van Leer [19]

φ(r) =
r + |r|
1 + |r|

and the smoothness monitor is
ri =

qi − qi−1

qi+1 − qi
. (6)
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See [20,21] for more schemes and slope limiters.
Time evolution of (5) is obtained using standard integration techniques such as RK4;

special care, however, has to be taken concerning the sampling period. To contain the
physical domain of dependence in the numerical domain of dependence (or in other words
avoid interaction of adjacent Riemann problems), the sampling period must satisfy the
Courant–Friedrichs–Lewy (CFL) condition [22]

max(|eig(V)|)∆t ≤ ∆x. (7)

2. Mixed Mesh Finite Volume Method

The challenge of the numerical approximation of hyperbolic transport equations is
to obtain high accuracy of the solution in both discontinuous and smooth regions [23].
Highly advective systems also present a challenge for the finite volume method. The cells
are considered coherent (ideally mixed), and as a consequence, the flux at one boundary
immediately influences fluxes at all the other boundaries. The numerical propagation speed
is therefore always infinite for FVM. Pure discontinuities, as well, always dissolve into
smooth step changes. The finer the grid, the less the phenomenon is observed. An exact
solution, advecting discontinuities sharp, is obtained for an infinite number of cells [24].

To overcome this fundamental limitation, we propose a modified approach.

Remark 1. Where coherent cells of finite volumes are used, an exact finite transport speed is only
preserved by moving the grid by this velocity.

A Mixed-mesh Finite Volume Method (MMFVM) based on the observation of Remark 1
is presented here. The underlying principle is simple: advect (move) cells of the flowing
field and simultaneously solve FVM for both the moving and static cells until the moving
grid passes the static grid by one grid length; sample the state and reinitialize all moving
cells to their starting positions and assign appropriate cell averages. The idea was first
introduced in preceding conference papers of the authors [25,26] and will be generalized
here. We believe a similar approach was used in [27,28], but a description of the spatially
discretized system and its analysis are missing therein.

Definition 1 (Monocharacteristic hyperbolic system). A system of the form (1), where the flux
Jacobian J ≡ ∂ f /∂q can be decomposed to

J = vRDR−1, D = diag(d1, . . . , dn), di ∈ {0, 1}∀i (8)

with v(t) ∈ R being (for this paper) a space-independent velocity and R being a square decomposition
matrix, is a monocharacteristic hyperbolic system, i.e., the system has a monocharacteristic hyperbolic
property.

Remark 2. As a hyperbolic system has a diagonalizable flux Jacobian with real eigenvalues a system
is monocharacteristic hyperbolic when the Jacobian has just one nonzero eigenvalue, i.e., when a
subset of the vector variable q advects with a transport (characteristic) velocity v, and the rest of q
is stationary.

Definition 2 (Normal monocharacteristic form). A normal monocharacteristic form is

∂tq + v
[

I ·
· 0

]
∂xq = s (9)

or equivalently

∂t

[
qa
qs

]
+ v
[

I ·
· 0

]
∂x

[
qa
qs

]
=

[
sa
ss

]
, (10)
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where q =
[
qTa qTs

]T, s =
[
sTa sTs

]Tand qa(x, t) : R×R→ Rna is a vector of advected states,
qs(x, t) : R×R → Rns is a vector of stationary states and sa(q, u, t) ∈ Rna , ss(q, u, t) ∈ Rns

are respective spatially independent sink/source terms. I, 0 are square unit and zero matrices of
appropriate sizes and (·) denotes rectangular zero matrix of coresponding size.

Lemma 1. A system (1) with a monocharacteristic property (8) has a normal monocharacteristic
form (9), (10).

Proof. We will prove the statement by transformation construction. The system (1) can be
decomposed using the chain rule as

∂tq +
∂ f
∂q

∣∣∣∣
x=const.

∂xq = s− ∂

∂x
f
∣∣∣∣
q=const.

,

where J ≡ ∂ f/∂q|x=const. is the flux Jacobian and s̄ ≡ s − ∂/∂x f |q=const. is an equivalent
sink/source term. As the system is monocharacteristic hyperbolic, J can be decomposed to
form (8). Defining now a permutation matrix P such that

PTDP =

[
I ·
· 0

]
,

the Jacobian is

J = vRP
[

I ·
· 0

]
(RP)−1.

So (1) can be rewritten as

∂tq + vRP
[

I ·
· 0

]
(RP)−1∂xq = s̄

(RP)−1∂tq + v
[

I ·
· 0

]
(RP)−1∂xq = (RP)−1s̄.

Now, define a transformation T(x) = (RP)−1x, then q̃ ≡ T(q), s̃ ≡ T(s̄) and

∂tq̃ + v
[

I ·
· 0

]
∂xq̃ = s̃

is in a normal monocharacteristic form (9).

Method Formulation

Consider a problem (1) with a monocharacteristic property (8) without a loss of
generality in the monocharacteristic form (10)

∂tqa + v∂xqa = sa(qa, qs, u) (11a)

∂tqs = ss(qa, qs, u) (11b)

qa(0, t) = b(t) (11c)

qa(x, 0) = qa,0(x) (11d)

qs(x, 0) = qs,0(x), (11e)

where u(t) are external inputs, initial spatial profiles for advected states and static states
are qa,0(x), qs,0(x), respectively and v(t) ≥ 0. Define an equidistant grid of N elements
with a grid spacing ∆x. The stationary grid Ξs resembles the one of FVM

Ξs =

{
xi

s

∣∣∣ i ∈ Z, 0 ≤ i ≤ N, ∆x =
1
N

, xi
s =

(
i− 1

2

)
∆x
}

, (12)
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but the advected grid differs importantly. The basic idea behind the MMFVM is to allow the
grid of advected states to flow along the stationary states with the characteristic velocity v.

Definition 3 (Relative cell shift). A relative stationary-to-advected grid shift p is a distance
a tracer would travel with a velocity v in a time interval 〈t0, t0 + τ〉 taken relative to one grid
length ∆x

p(t) =
1

∆x

∫ t0+τ

t0

v(s)ds, (13)

where the integration start t0 will be specified later on.

Definition 4 (Advected grid). Grid positions of the advected states are

Ξa =
{

xi
a

∣∣∣i ∈ Z, 0 ≤ i ≤ N, xi
a = xi

s + p∆x
}

, (14)

where p is given by (13).

Remark 3. Note that there is always at least one upwind “ghost” cell for the advected states at
position x0

a = (p− 1/2)∆x, where a boundary condition is applied. Other ghost cells are added
depending on the boundary conditions. See Figure 1 for illustration. Note that there is also a ghost
cell at position x0

s that can be used to apply boundary conditions for static states, but this cell in this
paper does not play any role and is only added for future use and simplification of the notation.

Figure 1. Illustration of the advected grid movement against the static grid.

Theorem 1 (MMFVM step). Time evolution of a problem (11) discretized on grids Ξs, Ξa, is on a
time interval 〈t0, t0 + τ〉 given by

d
dt

[
qi

a
qi

s

]
= (1− p)

[
sa
(
qi

a, qi
s, u
)

ss
(
qi

a, qi
s, u
)]

+p
[

sa
(
qi

a, qi+1
s , u

)
ss
(
qi−1

a , qi
s, u
)] (15)

d
dt

p =
v

∆x
, (16)

where qi
a, qi

s, i = 0, . . . , N, denote centered cell average values of the advective and static grid,
respectively, and sa

(
q0

a, q0
s , u
)
= 0, sa

(
qN

a , qN+1
s , u

)
= 0, ss

(
q0

a, q0
s , u
)
= 0, ss

(
q−1

a , q0
s , u
)
= 0.

The length of the time interval τ is given by the relative cell shift to integrate from p(t0) = 0 to
p(t0 + τ) = 1 or equivalently ∫ t0+τ

t0

v(t)dt = ∆x. (17)
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The initial conditions are

qi
a(t0) = (qa(x, t0))xi

s
(18a)

qi
s(t0) = (qs(x, t0))xi

s
(18b)

p(t0) = 0, (18c)

for i = 1, . . . , N. The boundary conditions are applied to the upwind ghost cell q0
a(t0) = b(t0) at

the beginning of the integration.

Proof. Direct. Spatial discretization of (11), by applying cell average operator (4) about
positions xi

s, xi
a, gives

(∂tqa)xi
a
+ (v∂xqa)xi

a
= (sa)xi

a
(19)

(∂tqs)xi
s

= (ss)xi
s

(20)

and to prove Theorem 1 we will deal with all the terms in (19) and (20) separately.
Remember that xi

a(t) = xi
s + p(t)∆x.

The time differential term (19) reads as

(∂tqa)xi
a

=
1

∆x

∫ xi
a(t)+

∆x
2

xi
a(t)− ∆x

2

∂tqa(x, t)dx,

where using the Leibnitz’s integral rule the order of integration and differentiation can be
switched to obtain

(∂tqa)xi
a

=
1

∆x
d
dt

∫ xi
a(t)+

∆x
2

xi
a(t)− ∆x

2

qa(x, t)dx−

1
∆x

qa

(
xi

a(t)−
∆x
2

, t
)

d
dt

(
xi

a(t)−
∆x
2

)
+

1
∆x

qa

(
xi

a(t) +
∆x
2

, t
)

d
dt

(
xi

a(t) +
∆x
2

)
.

Now, first calculating the integral bounds derivative,

d
dt

(
xi

a(t)±
∆x
2

)
=

d
dt

(
xi

s + p(t)∆x
)

= ∆x
d
dt

(p(t))

= ∆x
d
dt

∫ T

t0

v(s)
∆x

ds

= v(t),

we obtain the first term as

(∂tqa)xi
a

=
1

∆x

(
∆x

d
dt

qi
a − v

(
qi+1/2

a − qi−1/2
a

))
=

d
dt

qi
a −

v
∆x

(
qi+1/2

a − qi−1/2
a

)
, (21)

where qi
a(t) = (qa)xi

a
(t) is a cell average value and qi±1/2

a (t) ≡ qa
(
xi

a ± ∆x/2, t
)

denote cell
face values.

The transport term (19) reads as

(v∂xqa)xi
a

=
1

∆x

∫ xi
a+

∆x
2

xi
a− ∆x

2

v∂xqa(x, t)dx,
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which using the Ostrogradsky’s divergence theorem simplifies to

(v∂xqa)xi
a

=
v

∆x

(
qi+1/2

a − qi−1/2
a

)
. (22)

The time differential term (20) reads as

(∂tqs)xi
s

=
1

∆x

∫ xi
s+

∆x
2

xi
s− ∆x

2

∂tqs(x, t)dx

which by substitution qi
s(t) = (qs)xi

s
(t) immediately gives

(∂tqs)xi
s

=
d
dt

qi
s. (23)

The static state source term (20) reads as

(ss)xi
s

=
1

∆x

∫ xi
s+

∆x
2

xi
s− ∆x

2

ss(qa(x, t), qs(x, t), u(t))dx.

Given ss is spatially independent and inspecting Figure 1 we observe, that the integral may
be separated as

(ss)xi
s

=
1

∆x

(∫ xi
s− ∆x

2 +p(t)∆x

xi
s− ∆x

2

ss(qa(x, t), qs(x, t), u(t))dx

+
∫ xi

s+
∆x
2

xi
s− ∆x

2 +p(t)∆x
ss(qa(x, t), qs(x, t), u(t))dx

)
,

which, under a piecewise constant spatial profile approximation of qa, qs is

(ss)xi
s

= (1− p)ss

(
qi

a, qi
s, u
)

+pss

(
qi−1

a , qi
s, u
)

(24)

and finally following the same reasoning as above we obtain the advected state source
term (19)

(sa)xi
a

= (1− p)sa

(
qi

a, qi
s, u
)

+psa

(
qi

a, qi+1
s , u

)
. (25)

The source term formulas are only valid for 0 ≤ p(t) ≤ 1, which corresponds with (17).
Note that higher order spatial reconstructions are possible following that appropriate
calculation of the source terms (24), (25) above is performed.

Now, by substitution of (21) to (25) into (19), (20) we get

d
dt

qi
a −

v
∆x

(
qi+1/2

a − qi−1/2
a

)
+

v
∆x

(
qi+1/2

a − qi−1/2
a

)
= (1− p)sa

(
qi

a, qi
s, u
)

+psa

(
qi

a, qi+1
s , u

)
d
dt

qi
s = (1− p)ss

(
qi

a, qi
s, u
)

+pss

(
qi−1

a , qi
s, u
)
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moreover, we see that the velocity-dependent terms cancel out, and by aggregation of
states, we obtain (15). Differentiation of the relative cell shift Equation (13),

d
dt

p(t) =
v(t)
∆x

with p(t0) = 0 gives (16) and concludes the statement.

Corollary 1 (MMFVM step for systems with a linear source term). If a monocharacteristic
hyperbolic system of Theorem 1 has a linear source term

s(qa, qs, u) =
[

Aaa Aas
Asa Ass

][
qa
qs

]
+

[
Ba
Bs

]
u, (26)

then (15) simplifies to

d
dt

[
qi

a
qi

s

]
=

[
Aaa Aas
Asa Ass

][
qi

a
qi

s

]
+

+p
[

0 Aas
Asa 0

][(
qi−1

a − qi
a
)(

qi+1
s − qi

s
)]+

+

[
Ba
Bs

]
u (27)

and the whole system of equations can be formulated as

d
dt

x =
(
Ac + pAcp

)
x + Bcu, (28)

where the state vector x ∈ R(N+1)·n aggregates the advected states and stationary states as

x =
[(

q0
a
)T, . . . ,

(
qN

a
)T,

(
q0

s
)T, . . . ,

(
qN

s
)T]T.

Proof. By construction. Substituting (26) into (15), after minor arrangements, gives (27).

Defining now Ãc,1 ≡
[

Aaa Aas
Asa Ass

]
, Ãc,2 ≡

[
0 0

Asa 0

]
, Ãc,3 ≡

[
0 Aas
0 0

]
, B̃c ≡

[
Ba
Bs

]
, M =

N + 1 and aggregating the states as

x̃ =

[[(
q0

a
)T (

q0
s
)T]T, . . . ,

[(
qN+1

a
)T (

qN+1
s

)T]T]T,

we can summarize (27) for i = 0, . . . , M into a formula

d
dt

x̃ =
(

IM ⊗ Ãc,1

)
x̃

+ p
(

KM
−1 ⊗ Ãc,2 + KM

+1 ⊗ Ãc,3

)
x̃

+
(

1M ⊗ In ⊗ B̃c

)
u, (29)

where KM
−1 =

(
IM
−1 − IM), KM

+1 =
(

IM
+1 − IM), Ik denotes an identity matrix of size Rk×k,

Ik
−1, Ik

+1 are lower and upper shift matrices of size Rk×k, respectively, 1k ∈ Rk is a column
vector of ones and ⊗ denotes the Kronecker product. Now, define a permutation matrix P
such that x = PT x̃

P = P̃⊗ 12, P̃ = {pi,j} =
〈 1 i odd, j = i+1

2
1 i even, j = i+2N

2
0 otherwise

, (30)
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then (29) becomes (28) with

Ac = PT
(

IM ⊗ Ãc,1

)
P (31a)

Acp = PT
((

KM
−1 ⊗ Ãc,2 + KM

+1 ⊗ Ãc,3

))
P (31b)

Bc = PT
(

1M ⊗ In ⊗ B̃c

)
. (31c)

Theorem 2 (Mixed Mesh Finite Volume Method, MMFVM). A numerical solution to a
monocharacteristic hyperbolic system is obtained by a repetitive solution of the MMFVM step
(Theorem 1/ Corollary 1).

There is a delay τ in the solution

τi(t) :

{∫ t
t−τi(t) v(s)ds = ∆x

2 ; x = xi
s, i = 1, . . . , N∫ t

t−τi(t) v(s)ds = ∆x; x = xi
s, i = N + 1

(32)

caused by the fact that there is an additional (N + 1)st cell in the advected grid.

Proof. During the MMFVM step, the cell average values evolve by the governing PDE,
as proved in the Theorem 1. Consider now a ghost cell q0

a initialized by an appropriate
boundary condition. It takes N + 1 MMFVM steps to move this cell along all the stationary
cells. Only after N + 1 MMFVM steps, the cell has interacted with all the stationary cells
and its value stops evolving.

The solution delay of the cell inside the spatial domain (x = xi
s, i = 1, . . . , N) is caused

by a length the MMFVM solution has to travel further opposed to a true analytic solution.
More precisely, the true analytic residence time ςi

T(x, t) is by the method of characteristics
given as

ςi
T

(
xi

s, t
)

:
∫ t

t−ςi
T

v(s)ds = xi
s =

(
i− 1

2

)
∆x. (33)

The MMFVM solution, however, has to travel a longer path (see Figure 1) and its residence
time ςi

A(x, t) is given by

ςi
A

(
xi

s, t
)

:
∫ t

t−ςi
A

v(s)ds = xi
s +

∆x
2

= i∆x,

which can be, due to linearity of the integral operator, also written as

∫ t−ςi
A+ςi

T

t−ςi
A

v(s)ds +
∫ t

t−ςi
A+ςi

T

v(s)ds =
(

i− 1
2

)
∆x +

∆x
2

. (34)

Defining a solution delay as τi(t) = ςi
A(t)− ςi

T(t) and identifying (33) in (34) we conclude
the first part of (32) ∫ t

t−τi(t)
v(s)ds =

∆x
2

, i = 1, . . . , N.

Similarly, for i = N + 1, the analytic residence time ςN+1
T is given by

∫ t

t−ςN+1
T

v(s)ds = 1.
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The MMFVM residence time ςN+1
A is given by

∫ t

t−ςN+1
A

v(s)ds =

(
N + 1− 1

2

)
∆x +

∆x
2

= 1 + ∆x,

from which we can, by the same manipulation as above, conclude the remaining part
of (32) ∫ t

t−τN+1(t)
v(s)ds = ∆x.

Corollary 2 (State jump). When a consecutive MMFVM step is being initialized (at p(t) = 1
from the preceding step), then the initial averaging of states (18) over the stationary grid Ξs (instead
of the fully shifted Ξa grid) effectively performs a state shift/jump

qi
a
(
t+
)

= qi−1
a (t) (35a)

qi
s
(
t+
)

= qi
s(t) (35b)

p
(
t+
)

= 0, (35c)

where t+denotes the just-after-jump instance at time t. Note that this relation holds only for a
piecewise constant spatial profile approximation. Analogous relations can be derived for higher-order
reconstructions.

Proof. Integration of (18) at p = 1 gives (35). See Figure 2 for illustration.

Figure 2. Illustration of a discrete state jump in otherwise continuous state evolution.

Note that in the case of a simple transport equation ∂tq + v∂xq = s(q), s(q) = Aq + b,
the solution delay (32) of MMFVM for the position xN+1

s (corresponding to the analytic
solution at x = 1) can be compensated by a modification to the velocity v̂ = (N+1/N)v and
modification to the source term ŝ(q) = N+1/N(Aq + b). This statement can be shown to be
true, but as it does not apply to the more general case considered, the proof is omitted.

Remark 4. There is a minor numerical diffusion caused by the cell homogeneity (constant spatial
profile over a cell). Imagine an advected cell being halfway shifted (p = 1/2), as it interacts with
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its left stationary cell, its state value changes and this, by cell homogeneity, in turn, affects the
interaction with its right stationary cell and vice versa. This effect is, however, minor compared to
FVM, where the cell homogeneity affects the greater advective flux.

In FVM, the sampling in time is bounded by the CFL condition (and possibly other
stability conditions), but otherwise can be chosen freely. Sampling instances tk in MMFVM
are, however, rigidly defined by the grid refinement and the actual characteristic velocity;
in particular by ∫ t0+tk

t0

v(t)dt = k∆x, k ∈ N.

Those are the instances where the stationary and advected grid, (12) and (14), coincide,
and when the last advected cell is done interacting with the stationary cell, and its value
remains unchanged from thereon. The advected state boundary condition is sampled
at this rate. Homogeneity assumption (piecewise constant spatial profile reconstruction)
disallows free time sampling at fixed spatial positions due to passing discontinuities. Free
time sampling is in general possible, but the quality of the solution strongly depends on
the quality of the spatial profile reconstruction.

When the characteristic velocity tends to zero, the sampling intervals tend to infinity;
this is not a desired property. To prevent this scenario, the following step is advised.

Remark 5. When the sampling interval exceeds an allowed threshold, switch the solution method
to FVM, i.e., stop the advected grid and incorporate the advective flux as is usual in FVM. It may
also be beneficial to momentarily refine the grid.

Note that for low velocities the relative importance of the advective flux decreases
and any numerical advection artifacts of FVM decrease. Also, as the velocity increases, the
solution delay of MMFVM decreases. The MMFVM method is in a sense complementary
to FVM, and its advantages prevail in highly advective scenarios.

Remark 6. For systems with no static grid, apply the boundary condition directly to the first
advected cell (and the upwind cells in the case of boundary conditions on the derivatives). MMFVM
reduces to a system of ODEs with state shifts and solves the problem without transport delays in
the solution.

Remark 7. The (11) can be imagined as time and spatial evolution of an infinite number of
infinitesimally small slices/points. For illustration, in a cooled water pipe, we can imagine infinitely
many slices of water of width dx traveling by a defined input velocity through a pipe consisting
again of infinitely many, now static, slices. For increasing N, MMFVM approximates ever so
closely the continuum of the governing PDE; the solution delay of Theorem 2 diminishes and so
does the numerical diffusion introduced in Remark 4.

3. Application

Two examples will be given; a simple transport-decay equation, for which an analytic
solution is known and a plug-flow heat exchanger, for which comparison to a fine FVM
solution will validate the solution.

3.1. Advection-Decay Test

A simple transport equation with decay

∂tq(x, t) + v∂xq(x, t) = −sq(x, t)
q(0, t) = b(t)
q(x, 0) = 0
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has by the method of characteristics an analytical solution that is only a time-shifted initial
or boundary condition with exponential decay along the transport,

q(x, t) =

{
0 t < x

v
b
(
t− x

v
)
e−

s
v x t ≥ x

v .

This analytic solution is compared to an FVM solution with a first order upwind
scheme, an FVM solution with a superbee limiter [5] and finally to the MMFVM.

According to the Theorem 2, the MMFVM solution is obtained by repetitive solution
of the MMFVM step, i.e., integrate the following system in time

d
dt

q = −sq

d
dt

p = Nv

for p ∈ 〈0, 1〉 and perform a state jump according to Remark 2 at p = 1,when b(t) is
assigned to the first volume state.

Figure 3 shows the results for q(1, t), with a simulation setting N = 5, v = 0.1 and
s = −v ln(0.6). A number of elements N = 5 is set low to highlight low-dimensional
behavior of the said methods. Time integration is performed by BS23 [29] method with
event location [30] (at p = 1) . The analytic solution is q(1, t) = 0.6× b(t− 10), t ≥ 10.
Figure 3 also contains the input signal b(t).

It is noticeable that the FVM solution with first-order profile approximation brings
great numerical diffusion to the solution. The usage of superbee slope limiter [5] improves
the behavior, but under-performs in advecting discontinuities. The MMFVM solution is
capable of truly advecting the input. The sampling is, however, dictated by the advection
speed and is rather sparse in the case of only a few elements (N = 5). Solution preserves
the shape of input but suffers from the solution delay as analyzed in Theorem 2 and its
proof.

Note that the problem contains no static states and therefore Remark 6 applies.
However, to highlight properties of the method for general scenarios, the boundary
condition has been applied to a first upwind ghost cell to generate the transport delay in
the solution (N+1 integration steps instead of N). The source term had to be altered as
s′ = s N

N+1 to account for this modification.

0 10 20 30 40 50 60 70 80

0

0.2

0.4

0.6

0.8

1 Input

Analytic solution

FVM FO upwind

FVM superbee

MMFVM

Figure 3. Method comparison for the advection-decay test at x = 1; number of volumes for all
methods is N = 5.
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3.2. Water-to-Air Heat Exchanger Model

A plug flow heat exchanger is a plug flow reactor, where no reaction, only a heat
exchange, occurs. Its model captures a distributed parameter, distributed time delay
behavior and can be used for simplified modeling of, for example, water-to-air heat
exchangers.

A water-to-air heat exchanger is considered to be a tubular single-pass cross-flow heat
exchanger with the following assumptions: (a1) Heat transfer rates are constant in space,
time and temperature. They solely depend on flow velocities. (a2) There is only one phase
in both fluids, i.e., no condensation nor evaporation occurs. (a3) Fluids are incompressible
and of constant density and specific heat capacity. (a4) Heat conduction (dispersion,
diffusion) in the direction of flow is negligible. (a5) Water flow is radially coherent. The
heat exchanger is thin in the air flow direction. (a6) Air flow has no dynamics and is ideally
mixed at the inlet and outlet. The air temperature acting an the heat exchanger body as
assumed constatnt and equal to the air inlet temperature. (a7) Water velocity (mass flow)
is known.

The model is derived using the Fourier’s and conservation laws. The resulting system
of partial differential equations is the first order hyperbolic

∂tTw + v∂xTw = α(Tb − Tw)

∂tTb = β1(Tw − Tb) + β2(Ta − Tb),

where the state variables Tw = Tw(x, t)[◦C] and Tb = Tb(x, t)[◦C] denote the water and
metal body temperature, respectively, and v(t) = ṁ(t)/mw

[
s−1] is a normalized transport

speed, where ṁ[kg/s] is a water mass flow and mw[kg] a weight of water in the heat
exchanger. The space variable was normalized using x = ξ/L[−], where ξ[m] is the
space variable along the length of the heat exchanger, L[m] denotes the length of the heat
exchanger.

The boundary conditions are

Tw(t, 0) = Tw,in(t)
Ta(t, x) = Ta,in(t), x ∈ 〈0, 1〉

moreover, initial conditions are

Tw(0, x) = Tw,0(x)
Tb(0, x) = Tb,0(x), x ∈ 〈0, 1〉

where Tw,0(x) and Tb,0(x) are initial temperature profiles in the water and body, respectively,
and Tw,in(t), Ta,in(t) [◦C] are water and air inlet temperatures, respectively. The coefficients
are

α =
Hwb(ṁ)

Cw
, β1 =

Hwb(ṁ)

Cb
, β2 =

Hba
(
V̇
)

Cb
,

where Hwb(ṁ)[W/K], Hba(V̇)[W/K] are flow dependent heat exchange coefficients and
Cw[J/K], Cb[J/K] are total heat capacities of water and metal body, respectively. Air volumetric
flow is denoted V̇

[
m3/s

]
. The outputs of the model are a heat flow from body to air Q(t) =∫ 1

0 UAba(Tb(x, t)− Ta,in(t))dx [W] and an outlet water temperature Tw,out(t) = Tw(1, t).
FVM is applied in a standard way; the CFL condition is ṁ(t)τs(t)N ≤ mw, where τs(t)

is a sampling period.
For the application of MMFVM, first define advected and static state variables qa = Tw,

qs = Tb and boundary conditions b(t) = Tw,in(t), u(t) = Ta,in(t). Quick observation of the
source terms

sa(qa, qs) = −αqa + αqs

ss(qa, qs) = β1qa − (β1 + β2)qs + β2u,
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reveals their linearity. By application of the MMFVM step (26) we get the following
evolution of volume averages

d
dt

[
qi

a
qi

s

]
=

[
−α α
β1 −(β1 + β2)

][
qi

a
qi

s

]
+ p

[
0 α
β1 0

][
qi−1

a − qi
a

qi+1
s − qi

s

]
+

[
0
β2

]
u

and a relative shift equation

d
dt

p =
v

∆x
.

Solving now this system according to Theorem 2 we obtain the solution. Time integration
is performed by BS23 [29] method with event location [30] at p = 1.

Setting of the experiment was: Hwb(ṁ) = 43.1(ṁ/3600)0.292 W/K, Hba
(
V̇
)
= 1.68×

10−3V̇2 − 0.87V̇ + 260 W/K, Cw = 2.41 · 103 J/K, Cb = 2.26× 103 J/K, mw = 0.577 kg, Tw,0 =
Tb,0 = 20 ◦C. The time sequence of all the four inputs is depicted in Figure 4. Figure 5
shows body and water volume temperatures at four equidistant spatial positions x =
[0.125, 0.375, 0.625, 0.875] (from top to bottom). Fine FVM solution (N = 1004) with HCUS
limiter [31] mimics the role of the true solution. To have a comparison with the two
consecutive solutions with N = 4, the states of the fine solution are averaged in space over
∆x = 1/4. Figure 6 depicts the outputs. An interesting comparison begins with the FVM
simulation with only four volumes (N = 4) and HCUS flux limiter. Both state and output
figures show how numerical diffusion alters the solution. The inlet temperature step at
t = 100 s is smeared out, whereas the true solution is a sharp moving front. MMFVM with
only four volumes (N = 4) can advect the sharp front. However, the time sampling is
tightly defined by the problem setting and transport velocity, as also is the solution delay.
Considerable quality enhancement is achieved by having more volumes, a low number of
volumes has been chosen to intensify the distinction in properties of the compared methods.
Nevertheless, the MMFVM still performs reasonably well in this highly convective scenario.

0 20 40 60 80 100 120 140 160 180 200

20

30

40

50

60

70

100

200

300

400

500

Figure 4. Time sequence of inlet water temperature Tw,in, inlet air temperature Ta,in, water mass flow
ṁ and air volumetric flow V̇.
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FVM HCUS N=4

MMFVM N=4

Figure 5. Time evolution of the body and water temperatures Tb, Tw at x = [0.125, 0.375, 0.625, 0.875]
(from top to bottom). The fine FVM solution was spatially averaged to the cell size of the latter two
solutions.

0 20 40 60 80 100 120 140 160 180 200
30

35

40

45

50

0 20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

2000

2500

True (FVM HCUS N=1004)

FVM HCUS N=4

MMFVM N=4

Figure 6. Time evolution of the heat output Q and the water outlet temperature Tw,out (at x = 1).

4. Conclusions

A numerical solution method for systems with dominant advective components
has been presented. The method utilized the Eulerian grid for stationary states and the
Lagrangian grid for states with a characteristic velocity. Formulation of the interaction of
the two grids is the main contribution of the paper. The employment of the Lagrangian
grid removes advection flux from the cell-to-cell flux for its volumes as derived in the proof
to Theorem 1. The solution to this problem formulation can contain discontinuities and a
numerical diffusion is significantly decreased. As no finite numerical method can give an
absolutely accurate numerical solution, there also is a price to pay for MMFVM. The time
sampling intervals are advection velocity dependent, and there is a velocity-dependent
delay in the solution. It is reasonable to resort to classic FVM for low-to-zero velocities,
where diffusion/dispersion/conduction begin to prevail anyway. The MMFVM method
should be used as complementary to FVM in highly-advective conditions (Pe� 10).
A low-order convection-accurate heat exchanger simulation model has been a primary
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motivation for the development of the method. The model has been implemented and its
performance analyzed.
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