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Abstract: In this work, we focus on the development of new distance measure algorithms, namely,
the Causality Within Groups (CAWG), the Generalized Causality Within Groups (GCAWG) and the
Causality Between Groups (CABG), all of which are based on the well-known Granger causality. The
proposed distances together with the associated algorithms are suitable for multivariate statistical
data analysis including unsupervised classification (clustering) purposes for the analysis of multi-
variate time series data with emphasis on financial and economic data where causal relationships are
frequently present. For exploring the appropriateness of the proposed methodology, we implement,
for illustrative purposes, the proposed algorithms to hierarchical clustering for the classification of
19 EU countries based on seven variables related to health resources in healthcare systems.

Keywords: multivariate time series; Granger causality; clustering; classification; distance; divergence;
healthcare systems; pattern recognition

1. Introduction

In time series analysis and, generally, in statistics we are interested in the correlation
between variables which is often investigated with the aim of discovering the degree
and the extent of their association. Such statistical techniques include among others the
autocovariance, the autocorrelation, the Pearson correlation coefficient, etc. Generally,
the autocovariance depends on the unit of measurement of the variables; thus, it is difficult
to measure the dependence of random variables of a stochastic process by using autoco-
variances. The existence of a high correlation among variables is by no means proof that
there is a causal relationship between the variables under investigation. However, in most
cases it is hard to detect whether two variables cause one another or are independent of
each other or only one is causing the other. The inability of correlations and autocorre-
lations to capture the underlying mechanisms of stochastic processes and the difficulties
of establishing a causal relationship between economic variables led Granger to develop
the economic concept of causality known as Granger causality. In this work, we take into
consideration the causal relationship measured by the Granger causality and propose new
algorithms for measuring the distance (closeness) between two time series. The proposed
algorithms are suitable for classification purposes for both univariate and multivariate time
series where causal relationships are frequently present. Such techniques are highly useful
in cases where financial variables and/or economic indicators are measured across groups
(regions, zones, countries, etc.), and the purpose of the analysis is the classification into
clusters based on the degree of closeness among groups.

Univariate and multivariate time series techniques have numerous applications in
fields ranging from engineering and technical systems to economic, financial, or actuarial
data analysis. A field of great significance with considerable economic as well as social
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impact is the dynamic study of the effectiveness of health related systems (i.e., healthcare
systems and surveillance systems). For instance, epidemiological data such as incidence
data or rates collected via surveillance systems are often analyzed for the purpose of
identifying differences or patterns between geographical areas (regions, communities,
etc.) or international comparisons of incidence rates among states. Monitoring, spread
prevention and healthcare efficiency are classical issues of importance for health officials.
In such studies, multivariate techniques for time series analysis and health indicators play a
key role. For instance, efficiency and productivity of healthcare systems have been claimed
to have a major impact on healthcare costs and have been a topic of great research activity
(see, e.g., in [1,2]).

Comparative studies of multivariate time series involve, among others, the detection
and identification of patterns and/or anomalies. Such tasks are explored via time series
distance measures. Visual tools and analysis are frequently used to reveal patterns (e.g.,
visual inspection of electroengephalograms (EEG) [3]). Other examples include surveillance
systems for comparing disease behavior in various regions and physiologic databases for
comparing regions and identifying temporal patterns [4]. Detection of these complex
physiological patterns not only enables demarcation of important clinical events, but can
also elucidate hidden dynamical structures that may be suggestive of disease processes.
Distance measures in conjunction with visual analysis tools enable analysts to achieve their
tasks reliably and accurately including clustering and classification purposes (see, e.g.,
in [5,6]). For further readings, the interested reader may refer to the works in [7–10].

In this work, we introduce new distance measures based on Granger causality. The
fact that necessitates the development of new measures is the understanding that distances
should take under consideration any causal relationships existed between the variables
involved and, additionally, groups should be combined into clusters according to the degree
and extent of their causality. For exploring the applicability and the appropriateness of the
proposed methodology, the new distance measures are implemented to healthcare efficiency
for combining and classifying via hierarchical clustering, 19 EU countries according to the
variables of a survey of the Organization for Economic Co-operation and Development
(OECD) covering the period 1999–2016. The classic distance measure of association based
on the autocorrelation is also used, for comparative purposes.

The presentation of the paper is as follows. In Section 2, we discuss standard asso-
ciation measures and furnish the concept of Granger causality. In Section 3, we present
new distance measures based on Granger causality. Furthermore, in Section 4, we provide
the results of the application to healthcare efficiency data from OECD. The last section is
devoted to some general concluding remarks.

2. Material and Methods
2.1. Measures of Association

In this section, some classic measures of association are briefly presented and the
Granger causality is reviewed [11–13]. New advanced measures will be proposed in the
next section.

A useful measure of dependence, as it is dimensionless, is the autocorrelation function
(ACF) usually denoted by ρ(h), which measures the serial correlation of a time series with
itself, shifted in time:

ρ(h) =
Cov(Xt, Xt+h)√

Var(Xt)Var(Xt+h)
. (1)

Another classical measure of dependence is the partial autocorrelation function
(PACF), which is denoted by π(h) and gives the partial correlation of a time series with its
own lagged values, controlling for the values of the time series at all lower lags in a fashion
similar to (1).

Other measures frequently encountered in the literature is the classical Pearson’s
correlation, the cross-correlation which resembles the convolution function or the mutual
correlation which is a measure of mutual dependence. For further details, the interested
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reader may refer to the works in [14–17] which detail a comprehensive reference volume
on distances.

Classical Distance Measures for Time Series

For autocorrelation and partial autocorrelation, distance measures have been pro-
posed in [18] and used in relevant applications [19]. More specifically, autocorrelation
distance computes the distance between a pair of numeric time series Xt and Xs based on
their estimated autocorrelation (or partial autocorrelation) coefficients. In such settings, a
straightforward measure of distance is based on the computation of the autocorrelation co-
efficients ρt = (ρt(1), ..., ρt(h))

′
for some h and then is used to define the measure between

the two series Xt and Xs as follows:

Dρ(Xt, Xs) = (ρt − ρs)
′
W(ρt − ρs) (2)

where W is a weighting function that can be used to assign weights to the coefficients that
decrease with the lag. A similar distance Dπ(Xt, Xs) can be acquired with the use of partial
autocorrelation coefficient with πt = (πt(1), ..., πt(h))

′
in place of ρt.

The above distances like any other typical distance measure, e.g., City-Block, Minkowski,
Mahalanobis, etc., can be used for clustering purposes in conjuction with hierarchical clus-
tering algorithms.

2.2. Granger Causality

The concept of Granger causality between two time series Xt and Yt first introduced
by [11] and later reformed and formally proposed by Granger and discussed in [12,13],
among others, is briefly presented below.

Definition 1. Assume that Xt and Yt are two time series and Ωt is the probability space containing
all the information up to time t. Then, Xt is said not to Granger-cause Yt if for all h > 0,

F(Yt+h|Ωt) = F(Yt+h|Ωt − Xt)

where F(.|.) denotes the conditional distribution and Ωt − Xt contains all the information except
the amount associated with the series Xt. In other words, Xt is said to not Granger-cause Yt if
X cannot help in predicting a future value of Y. For the Granger test for causality, the following
autoregressions are considered:

Yt = µ0 +
h

∑
i=1

aiYt−i +
k

∑
j=1

bjXt−j + ut (3)

Xt = φ0 +
h

∑
i=1

diXt−i +
k

∑
j=1

cjYt−j + et (4)

where µ0, φ0, ai, di, bj, cj, i = 1, . . . , h, j = 1, . . . , k with h and k not necessarily equal, are appro-
priate coefficients and ut & et are the error sequences. Consider also the restricted autoregression
associated with (3) where Yt is regressed only on its past values excluding all Xt terms (to avoid
confusion, we use Y∗ in place of Y):

Y∗t = µ0 +
h

∑
i=1

aiY∗t−i + u∗t . (5)

A similar restricted autoregression associated with (4) can be obtained for Xt where all Yt
terms have been removed (as before, we use X∗ in place of X):

X∗t = φ0 +
h

∑
i=1

diX∗t−i + e∗t . (6)
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The causality test is presented below:

• If in (3) the coefficients bj are not statistically significant at a given significance level
while in (4) the coefficients ci are statistically significant then we conclude that Yt is
causing according to Granger, Xt.

• If in (3) the coefficients bj are statistically significant at a given significance level while
in (4) the coefficients ci are not statistically significant then we conclude that Xt is
causing according to Granger, Yt.

• If all b’s and c’s are statistically significant at a given significance level, then there is a
two-way causality.

• If the coefficients bj and cj in (3) and (4) are not statistically significant at a given
significance level, Xt and Yt are independent.

The hypothesis that Yt is causing Xt according to Granger is tested by using the test
statistic F defined by

FX,Y =
(SSE∗ − SSE)/h

SSE/(n− k)
=

n− k
h

(
SSE∗

SSE
− 1
)

(7)

where SSE∗ = ∑
(
X̂∗i − X∗i

)2 is the restricted sum of squares of residuals associated with

the restricted regression (6), SSE = ∑
(
X̂i − Xi

)2 is the unrestricted sum of squares of
residuals, n is the sample size, h is the number of lags, k the number of parameters of Yt
in (4), and X̂∗i and X̂i are the predictions of X∗i and Xi, respectively. For the hypothesis
that Xt is causing Yt, the test statistic FY,X is given by (7), where SSE∗ is the restricted SSE
associated with (5). Under the null hypothesis, the test statistic F follows an F-distribution
with h and (n − k) degrees of freedom. For further readings on Granger causality, the
interested reader may refer to the work in [13].

Remark 1. It should be pointed out that the Granger causality is a concept of causality from the
statistical point of view, developed to analyze the flow of information between time series. Granger
formulated the above-mentioned statistical definition of causality which consists of two aspects,
namely, that a cause occurs before its effect and that knowledge of a cause improves the prediction
quality of its effect. Thus, Granger causality provides information about the predictive ability of a
process and it does not refer to the actual causal relationship between two series. It is under this
framework that we proceed below with the definition of the new causality distance measures.

3. The New Causality Distance Measures

In this section, we introduce new distance measures for time series based on the
concept of Granger causality.

The section ends with recalling the hierarchical clustering algorithms that could be
used in practice, in conjunction with the distance measures introduced in this section.

3.1. Granger Causality Distance Measures For Time Series

The proposal of the new distance measures by way of the Granger causality test, is
based on the idea that variables should be clustered together (classified) as long as the
causalities among the variables/elements of a multivariate time series are similar to the
causalities of the same variables of another multivariate time series.

3.1.1. The Granger and Generalized Granger Causality within Groups Distances

Consider two k−dimensional multivariate time series (MTS) with the following structure:

Xq1 = (Xq1
t1 , ..., Xq1

ti , ..., Xq1
tk ) (8)

and
Xq2 = (Xq2

t1 , ..., Xq2
ti , ..., Xq2

tk ) (9)

where



Mathematics 2021, 9, 2708 5 of 15

• Xq1
ti for each i = 1, . . . , k is a univariate time series of the first MTS (q1), t = 1, 2, ....

• Xq2
ti for each i = 1, . . . , k is a univariate time series of the second MTS (q2), t = 1, 2, ....

• k : common dimension of each MTS or number of variables (univariate time series).

We provide below the 4-step algorithm for the evaluation of the proposed Granger
Causality Within Groups (CAWG) Distance distance (Algorithm 1).

Algorithm 1: CAWG.

1. Using (7), calculate for the MTS q1 the Fq1
ij value of the Granger causality test

which tests whether Xq1
tj causes Xq1

ti , i = 1, ..., k− 1 , j = 2, ..., k, i < j. The total
number of F values is equal to [k(k− 1)]/2.

2. Repeat step 1 for the second MTS q2 and obtain the [k(k− 1)]/2 values of Fq2
ij

for testing whether Xq2
tj causes Xq2

ti , i = 1, ..., k− 1 , j = 2, ..., k, i < j.

3. Compute the squared differences between each (corresponding) pair of the Fq1
ij

and the Fq2
ij values.

4. Compute the summation of the squared differences of step 3 and obtain
CAWG(Xq1 , Xq2).

The definition of the proposed distance is given below followed by a lemma providing
its basic properties. Through the properties which are easily shown, one verifies that the
proposed distance is a typical pseudodistance [20].

Definition 2. The Granger Causality Within Groups (CAWG) Distance between two k−dimensional
multivariate time series Xq1 and Xq2 is defined by

CAWG(Xq1 , Xq2) = ∑
1≤i<j≤k

[
Fq1

ij − Fq2
ij

]2
, (10)

where Fq
ij is the value of the test statistic defined in (7) according to which Xq

tj causes Xq
ti, with q =

q1, q2.

Lemma 1. The Granger Causality Within Groups (CAWG) Distance satisfies the following prop-
erties:

1. CAWG(Xq1 , Xq2) ≥ 0.
2. CAWG(Xq1 , Xq2) = 0 for q1 = q2.
3. CAWG(Xq1 , Xq2) = CAWG(Xq2 , Xq1).

Remark 2. The proposed measure is based on the intercorrelations of a stochastic nature (like the
autoregressions in our setting), of the series involved. The measure proposed in Definition 2 is
a classic distance measure as it evaluates the intercorrelations between the components on one
series denoted by Fq1

ij and comparing it with the associated quantity Fq2
ij of the other series. Thus,

the Granger causality is used as a tool to measure the overall causality within the components (in
pairs) of a multivariate series. The distance between the two series is defined through the classical
square difference between the corresponding overall causalities. If this difference is zero, the two
series are considered to be close to each other and in terms of clustering, can (and should) be classified
into a single cluster. As expected, if the two elements of a pair are interchanged, the causality may
not necessarily coincide with the original one. Indeed, the above distance is based on the definition
of causality according to which the jth element of a series Granger-causes the ith element of the
same series with i < j which does not allow for the reverse Granger causality, i.e., for which the jth

element of a series Granger-causes the ith element of the same series with i > j. Lemma 2, below,
generalizes the distance in Definition 1 in a way that the resulting generalized distance GCAWG,
takes under consideration both the above (Granger) causes. Note that we approach in this work,
the issue of distance, from the statistical point of view where a satisfactory measure of divergence or
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distance is the one which is not negative with equality to zero occurring when the two arguments of
the distance, coincide. Observe though that according to Lemma 1 above and Lemma 2 below, both
proposed distance measures also satisfy the symmetry property.

Lemma 2. Consider two multivariate time series Xq1 and Xq2 according to (8) and (9) and define
the CAWG distance

CAWGr(Xq1 , Xq2) = ∑
1≤j<i≤k

[Fq1
ij − Fq2

ij ]
2, (11)

which is the reverse of Definition 1 for which i > j. Then, the Generalized Granger Causality
Within Groups (GCAWG) defined by

GCAWG(Xq1 , Xq2) = CAWG(Xq1 , Xq2) + CAWGr(Xq1 , Xq2) (12)

is a distance measure such that

1. GCAWG(Xq1 , Xq2) ≥ 0.
2. GCAWG(Xq1 , Xq2) = 0 for q1 = q2.
3. GCAWG(Xq1 , Xq2) = GCAWG(Xq2 , Xq1).

Proof. The proof is immediate by Definition 2, Equation (11), and the application of
Lemma 1.

The proposed methodology can be extended to M, M ≥ 2 multivariate time series of
dimension k. Consider the case of {q1, q2, . . . , qM} time series each of dimension k, with

Xq = (Xq
t1, ..., Xq

ti, ..., Xq
tk), q = q1, ..., qM (13)

representing a k−dimensional MTS, q = q1, q2, . . . , qM. Then, the generalization of Def-
inition 2 can be achieved by repeating the 4-step CAWG algorithmic procedure for the
calculation of all Fij values and their squared differences for each pair of series qi and qj
such that i, j = 1, ..., M, with i 6= j. At the end of the algorithm, the resulting Granger
Causality Within Groups Distance M×M matrix given by

CAWGM =


0 CAWG(Xq1 , Xq2) ... CAWG(Xq1 , XqM )

CAWG(Xq2 , Xq1) 0 ... CAWG(Xq2 , XqM )
... ... ... ...
... ... ... ...

CAWG(XqM , Xq1) CAWG(XqM , Xq2) ... 0

 (14)

could be useful for classification purposes and especially in connection with hierarchical
clustering for classifying the M groups into clusters. Observe that due to Lemmas 1 and 2
the matrix associated with the Generalized CAWG Distance is simplified as follows:

GCAWGM =


0 GCAWG(Xq1 , Xq2) ... GCAWG(Xq1 , XqM )

GCAWG(Xq2 , Xq1) 0 ... GCAWG(Xq2 , XqM )
... ... ... ...
... ... ... ...

GCAWG(XqM , Xq1) GCAWG(XqM , Xq2) ... 0

.

(15)

with (GCAWGM)i,j = (GCAWGM)j,i.

3.1.2. The Granger Causality between Groups Distance

In this section, we present the Granger Causality Between Groups (CABG) Distance
where the causality is related to the association between the corresponding elements
(components) of two multivariate time series. Consider the two k−dimensional MTS (8) and
(9) of the previous subsection. For the calculation of CABG Distance, the quantities Fq1,q2
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and Fq2,q1 will be used which represent the Granger causalities between the corresponding
elements (components) of the MTS q1 and q2.

A 5-step CABG Algorithm is provided below for the calculation of the proposed
CABG Distance (Algorithm 2).

Algorithm 2: CABG.

1. For the series q1 and q2, calculate the Fq1,q2
i value of the Granger causality test

which tests whether Xq2
ti (the i component of q2) causes Xq1

ti (the i component
of q1).

2. Repeat step 1 for each component of the series and obtain a total of k values
of Fq1,q2

i , i = 1, 2, ..., k.
3. For q1 and q2 calculate the Fq2,q1

i value of the Granger causality test which tests
whether Xq1

ti causes Xq2
ti .

4. Repeat step 3 for each component of the series and obtain a total of k values
of Fq2,q1

i , i = 1, 2, ..., k.
5. Compute the inverse of the summation Fq1,q2

i and Fq2,q1
i , over i = 1, . . . , k

The definition of the CABG distance together with its properties are presented below
in Definition 3 and Lemma 3.

Definition 3. The Granger Causality Between Groups (CABG) Distance between two multivariate
time series Xq1 and Xq2 is defined by

CABG(Xq1 , Xq2) =
1

∑k
i=1(Fq1,q2

i + Fq2,q1
i )

(16)

where Fq1,q2
i is the value of the test statistic defined in (7) according to which Xq2

ti causes Xq1
ti and

Fq2,q1
i is the corresponding value according to which Xq1

ti causes Xq2
ti .

Lemma 3. Assuming the convention CABG(Xq1 , Xq2) = 0 for q1 = q2, the Granger Causality
Between Groups (CABG) Distance satisfies the following properties:

1. CABG(Xq1 , Xq2) > 0, for q1 6= q2.
2. CABG(Xq1 , Xq2) = CABG(Xq2 , Xq1).

The above algorithm can be extended to any number of k−dimensional multivariate
time series. Indeed using the notation (13) of the previous subsection, the Granger Causality
Between Groups Distance M×M matrix is easily obtained by repeating steps 1–5 of the above
CABG Algorithm for any pair of series from {q1, q2, . . . , qM}:

CABGM =


0 CABG(Xq1 , Xq2) ... CABG(Xq1 , XqM )

CABG(Xq2 , Xq1) 0 ... CABG(Xq2 , XqM )
... ... ... ...
... ... ... ...

CABG(XqM , Xq1) CABG(XqM , Xq2) ... 0

. (17)

with (CABGM)i,j = (CABGM)j,i.
As in the case of CAWG and GCAWG algorithms, the CABG algorithm results could

be useful for classification purposes and especially in hierarchical clustering for classifying
groups into clusters. Recall that hierarchical clustering techniques for cluster analysis,
with a widespread use in practice, are based on a series of successive groupings (Agglom-
erative algorithms) or successive divisions (Divisive algorithms). As for measuring the
distance between groups, standard methods like the nearest neighbor, furthest neighbor,
etc. are used. For details see in [21]. Observe that CAWG and GCAWG distances join
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multivariate time series with similar causalities (either weak or strong) among their com-
ponents while in the CABG distance the series are joined together as long as elementwise
the causalities are strong.

Remark 3. It should be noted that for the above distance measure we adopted an idea different from
the one used for the first two distance measures. More specifically, in this case, the interrelations are
evaluated (in pairs) among the corresponding components of the two multivariate series involved.
Thus, the overall amount of interrelation is large if each of the components of each series is causing
the corresponding component of the other series. Then, in terms of clustering, the two series should
be clustered together under the same class, since they are considered to be closely related. Thus,
under Definition 3, large values imply closeness while small ones imply separation (which is the
opposite of Definition 2). To accommodate this idea into the statistical analysis, we have chosen to use
the inverse in the definition of CABG, so that if the value is close to zero (for large interrelations) the
series will be grouped together and if the value increases (tends to infinity, for small interrelations)
the series will stay in separate clusters/groups. As the new distance is undefined if the two series
coincide, we set, by convention, CABG = 0 for i = j.

4. Application

In order to better understand the properties of the new measures, an application to
state health data was designed and implemented. The application and the results are
presented in this Section.

4.1. Preliminaries

In the years following World War II, in all OECD countries, a significant share of the
economy was used to improve or preserve the health of the population. On average, 8.8%
of a country’s GDP was dedicated to health in 2018 [22], from 3.5% in 1970. The annual
increase in per capita health care costs outpaced the average annual economic growth of the
last twenty years in all OECD countries [23]. According to Mueller and Morgan, on average
71% of health expenditures is funded government revenues generated from taxes and social
insurance contributions. According to OECD projections, health expenditures will reach
9% of GDP by 2030 and 14% of GDP by 2060 [23]. The major driving forces behind the
continuing rise in health care costs are new medical technology, health care services price
inflation, rising income, and population aging.

Policy-makers have expressed the view that continued increases in health care spend-
ing may be “unsustainable”, particularly in light of current and projected government
budget deficits [24]. Today, health care is one of the most complex expenditures area
and health and budget officials face the challenge to develop policies (a) for risk-sharing
between the state and citizens, (b) an effort to increase the efficiency and effectiveness of
funding ([5].

Several scientific methods have been proposed for measuring and providing ways to
improve the efficiency of health systems [25–27]. Operational research proposed a large
variety of such models. Their main feature was the need to compare homogeneous systems
and policies. Many of them are based on comparing efficiency between countries. However,
comparing countries with different systems and health policies can lead to underestimating
or overestimating efficiency. For best results, the comparison of similar states is required.
Cluster analysis helped to classify countries according to their health system characteristics.
As the health expenditures are ‘dynamic’ and evolve, the classification should not be based
on ‘static’ measures. Measures based on the correlation and causality of time series may be
more useful [5].

As mentioned before, the logic of the proposed distance measures is different; in the
GAWG measure, countries with the same internal causality between the variables, namely,
countries following the same health policy will be in the same cluster. On the other hand,
the GABG measure classifies together the countries that follow the same “development
path” for their health systems.
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4.2. Data

To explain cost increasing, many studies try to diagnose the underlying factors such as
an ageing population, increased social expectations, broader insurance coverage, supplier-
induced demand, and relative prices that may affect the utilization and costs of healthcare
services. Many researchers examine the effect of these risk factors to the health system,
such as the study of the effect on the mean length of stay (mls) in the hospitals [28] or
techniques to estimate future spendings [29].

The data have been retrieved from the Organization for Economic Co-operation and
Development (OECD) and EUROSTAT [30,31] and concern seven main health indices
(Table 1) for 19 EU countries (Table 2), for the period 1999–2016. The survey focused on EU
countries without taking into account the healthcare system in these countries.

Table 1. Variables used in the survey.

Variable Variable Name

V1 Total health expeditures as a share of GDP
V2 Government spending as a share of total spendings
V3 Out of pocket as a share of total spendings
V4 Pharmaceutical spending as a share of total spendings
V5 Doctors per 1000 inhabitants
V6 Nurses per 1000 inhabitants
V7 Beds per 1000 inhabitants

For a brief description of the variables involved in the analysis, the reader is referred
to supplementary material at the Laboratory of Statistics and Data Analysis of the Univ. of
the Aegean at https://labstada.weebly.com/publications.html (accessed on 25 July 2021).

Table 2. Countries in the survey.

Country Code Country Code Country Code

Austria AUT Greece GRC Poland POL
Belgium BEL Hungary HUN Portugal PRT

Czech Republic CZE Ireland IRL Slovakia SVK
Denmark DNK Italy ITA Spain ESP
Finland FIN Luxembourg LUX Sweden SWE
France FRA Netherlands NLD United Kingdom GBR

Germany DEU

For handling missing values, we proceeded with imputations using the linear inter-
polation technique. The percentage of missing values was approximately 10%. The data
analysis was conducted with the R free software, and figures were built via Tableau for
Teaching and Rawgraphics [32].

4.3. Data Analysis

For the implementation of the proposed methodology to the dataset, both CAWG and
CABG distances have been used in this section. The distance among all possible pairs of
countries in each dataset has been calculated according to the algorithms in Sections 3.1.1
and 3.1.2. For comparative purposes, the ACF distance has been applied to the dataset.
Among the hierarchical algorithms, the agglomerative one has been chosen for the analysis
so that at the beginning of the classification process, each country forms a singleton
cluster/class. For the distance between clusters, the complete linkage method has been
used. Note that the agglomerative algorithm and the complete linkage method have been
used for illustrative purposes. Equally effective would have been the divisive algorithm in

https://labstada.weebly.com/publications.html
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conjunction with any other well-known distance between clusters (single linkage, average
linkage etc.).

Hierarchical algorithms provide clustering results in a form of a dendrogram, for any
possible number of clusters and the researcher is free to choose which choice is more
appealing to him/her. In what follows, and as this application is for illustrative purposes,
we provide the results of the agglomerative algorithm only for 2 and 3 clusters according to
each of the above-mentioned methods. Note that these choices happened to coincide with
those recommended by popular techniques available in the literature for various purposes,
such as silhouette and elbow methods ([33–35]).

The geographic representation of the classification results is depicted in Figure 1.
The differences in classification observed are due to the different ways of measuring
association. Indeed, ACF is associated with the correlation of lags, while Granger causality
is an intercorrelated mechanism. As a result, the two measures which have been defined
in this work and are based on the Granger causality, are expected to arrive at different
classifications. One though could notice that a relative large number of countries are
classified in a single cluster irrespective of the method used (see and compare Figure 1 and
Table 3).

Table 3. Countries classification.

Country ACF CAWG CABG

Austria 2 2 2
Belgium 2 2 1

Czech Republic 3 3 3
Denmark 2 2 3
Finland 2 2 3
France 2 2 3

Germany 2 2 1
Greece 3 2 3

Hungary 1 2 1
Ireland 3 2 1

Italy 2 2 3
Luxembourg 1 1 3
Netherlands 2 2 1

Poland 3 2 2
Portugal 3 2 3
Slovakia 3 2 2

Spain 2 2 3
Sweden 2 2 3

UK 2 2 3

Figure 1. Geographic representation of classification comparison of ACF, CAWG, and CABG (in 3 clusters)—Luxembourg
cannot be seen due to its size.
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4.4. Comparison of the Results

The three competing techniques (ACF, CAWG, and CABG) are represented by the
three layers of the dendrogram (Figure 2), starting from the left for the ACF classification
and moving to the CAWG classification in the middle and to CABG classification at the far
right. Note that the extra layer to the far right is the palette where each color represents
a country or a group of countries. Each cluster for each technique is represented by a
number (1 through 3), with the countries included in each cluster reported at the far
right layer of the figure. For a better reading of the dendrogram, consider for instance
cluster 2 according to the ACF (far left layer), with 11 members that correspond to red,
blue and orange countries (with Luxembourg and Hungary creating cluster 1—upper left
corner—and all other countries—including the Czech Republic (in green)—forming cluster
3 at the lower far left corner of the dendrogram). Moving to CAWG classification in the
middle of the dendrogram, we observe that Hungary (brown) splits from cluster 1 (leaving
Luxembourg-yellow as the only member of cluster 1) and joins cluster 2. At the same time,
the Czech Republic-green stays by itself in cluster 3 with all other members of the cluster,
joining (together with Hungary) cluster 2. The classification according to CABG appears in
the right layer of Figure 2.

Figure 2. Classification comparison of ACF, CAWG, and CABG (in 3 clusters).

ACF and CAWG appear quite similar as 13 out of 19 countries are classified in the same
clusters. On the other hand, the dissimilarity between CAWG and CABG is approximately
60% (12 out of 19 countries are not classified into the same clusters).

For the evaluation of the accuracy (agreement) of the partitions (classifications) pro-
duced by ACF, CAWG, and CABG distance measures, the well-known Rand Index ([36])
has been calculated. Recall that if a set S consists of n elements, o1, .., on and two clustering
algorithms A and B produce r and s clusters, respectively, then the Rand Index between
the A and B partitions is given by

RI(A, B) =
(

α + β

(n
2)

)
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where α is the number of pairs of elements in S that are in the same cluster in A and in
the same cluster in B and β is the number of pairs of elements in S that are in different
clusters in A and in different clusters in B. It is reminded that the index ranges from 0 to 1
where higher values indicate a higher degree of similarity (agreement) between the two
clustering algorithms. The index for pairwise classification comparisons takes values in the
range 0.51–0.55 except in the case of the input dataset for the 2 new distance measures for
which the index is equal to RI(CABG, CAWG) = 0.38 (Tabel 4).

Table 4. Rand Index table for the clustering prerformance of ACF, CAWG and CABG.

ACF CAWG CABG

ACF 1 - -
CAWG 0.51 1 -
CABG 0.55 0.38 1

These results indicate that the partitions carry a similar degree of agreement.

Remark 4. Note that as clustering is an unsupervised machine learning algorithm the data do not
contain ground truth labels making it hard to test the extent of the classification error.

4.5. Concluding Remarks

According to ACF distance measure results, the second cluster consists of economically
strong EU countries while in the third, not so economically strong countries are clustered
together. The CAWG distance indicates that the causalities between the variables obtained
are more or less similar among almost all the countries included in the analysis (cluster 2),
except Luxembourg (singleton cluster 1) and the Czech Republic (singleton cluster 3).
Thus, the effect of the overall cause is more or less the same among the European countries
implying that the causal relationship between the variables (the elements of the multivariate
time series) affecting the health system is quite similar across Europe. The CABG distance
combines together countries of North and South Europe leaving on their own; Central
European countries are to be combined in a separate entity. This observation implies that
the extend of causality between Northern and Southern European countries is of the same
magnitude, with causalities lower than those between central European countries.

5. General Conclusions

In this work, we proposed three new distance measures for measuring the distance
(closeness) between multivariate time series by way of causal relationship. The measures
defined together with the associated algorithmic procedures proposed are suitable for
classification purposes for both univariate and multivariate time series where causal
relationships are frequently present. A measure that takes into consideration some (any)
kind of causal relationship like the one introduced by Granger and used in this work for
proposing CABG, GCAWG and CAWG distance measures, is therefore recommended for
clustering (unsupervised classification) purposes to ensure as accurate and as precise as
possible decision making across groups with similar causalities. The contribution of this
work lies on the proposal of the new distances CABG, GCAWG, and CAWG which are
based on the idea that groups, regions, or countries should be combined into clusters as
long as the causalities among the elements of two multivariate time series are similar.

The methodology proposed in this work is highly useful among other fields, in inter-
national or cross-national economics where financial variables and/or economic indicators
are measured across groups (regions, zones, countries, etc.) and the purpose of the analysis
is the classification into clusters based on the degree of closeness among groups. Further-
more, due to rapid integration of international economic markets, causal relationships are
considered to be vital in the international economy as the identification of a possible impact
could be used to alter or void economic policies, prevent socio-economic crises or enforce
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the same economic or financial decisions to groups with similar causal relationships. In this
work, the implementation of the proposed methodology to healthcare systems shows the
applicability and the usefulness of the new distance measures based on Granger causality.

Based on the results of the present analysis, we observe that the classification is
strongly related to the distance/similarity measure considered. Different measures give
rise to different classifications. It is clear from the analysis that the distance measure
plays an important role so that the investigator should choose the one that is preferable
according to the issue under investigation. In datasets such as the ones considered in
this work, the relation between the variables involved, in terms of autocorrelation, partial
autocorrelation or Granger causality, is quite common. It is therefore expected that the
distances consider in this work are directly connected to the above association function
in order to incorporate into the classification methodology the special characteristics of
time series data. Moreover, it is natural to explore and implement more than one distance
measures like the ones considered in this work. If though, more than one measure fits
satisfactorily the needs of the investigator, then a comparison between the methods should
be made by quantifying and evaluating the appropriateness of each method via a proper
loss/error function. Thus, the proposed methodology offers an extra, user-friendly toolkit
in the researcher’s toolbox. The fact that various tools exist (or could be introduced) each
based on a special distributional feature, provides the researcher with a great flexibility in
choosing from the toolbox, that tool that fits better his/hers needs.

The applicability of the proposed methodology goes beyond healthcare systems, eco-
nomics, finance, or actuarial science ranging from political sciences with regional conflicts
and their causal relationship with political, institutional, and economic factors [37–39] to
medicine, epidemiology and biology as well as to psychology and behavioral sciences
where causal relationships play a fundamental role in understanding social behavior or
identifying disease causation for the purpose of administering proper and effective be-
havioral or therapeutic treatments [40–42]. Furthermore, causal relationships and causal
research in general, are particularly useful in business and management as for example
in increasing customer retention or effective advertising ([43–45]. Further work with the
focus on some of the above fields is expected to unfold at least some more of the numerous
advantages of the proposed methodology.
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