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1. Introduction

Let 0 < a < b < ∞ and C[a, b] be the space given by

C[a, b] = {u : [a, b]→ R : u is continuous on [a, b] and ‖u‖C = max
x∈[a,b]

|u(x)| < +∞}.

Clearly, C[a, b] is a Banach space. Furthermore, the product space C[a, b]× C[a, b] (also a
Banach space) is defined as

C[a, b]× C[a, b] = {(u, v) : u, v ∈ C[a, b]},

with the norm given by
‖(u, v)‖ = ‖u‖C + ‖v‖C.

The Hadamard-type fractional integral and derivative of order α > 0 for a function u
are defined in [1–4] (see also the recent developments on the subject of fractional calculus
and its applications, which are reported in [5,6]) as follows:(

J α
a+,µu

)
(x) =

1
Γ(α)

∫ x

a

(
t
x

)µ(
log

x
t

)α−1
u(t)

dt
t

, a < x < b

and
(Dα

a+, µ u)(x) = x−µδnxµ(J n−α
a+, µ u)(x), δ = x

d
dx

,

where log(·) = loge(·), µ ∈ R, n = [α] + 1, and [α] is an integral part of α. In particular,
we let

(J α
a+u)(x) =

(
J α

a+,0u
)
(x) =

1
Γ(α)

∫ x

a

(
log

x
t

)α−1
u(t)

dt
t

.
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There are many definitions of fractional derivatives available in the literature, such as
the Riemann-Liouville derivative, which played an important role in the development of
the theory of fractional analysis. However, the commonly used derivative is the Hadamard
fractional derivative (with µ = 0) given by Hadamard in [7]. Butzer et al. [8–10] studied
various properties of the Hadamard-type derivative, which is more general than the
familiar Hadamard fractional derivative.

For u ∈ C[a, b], we have

‖J α
a+u‖C 5

1
Γ(α + 1)

(
log

b
a

)α

‖u‖C.

Indeed, we get

‖J α
a+u‖C =

1
Γ(α)

max
x∈[a,b]

∫ x

a

(
log

x
t

)α−1
u(t)

dt
t

5
1

Γ(α)

∫ b

a

(
log

b
t

)α−1 dt
t
‖u‖C 5

1
Γ(α + 1)

(
log

b
a

)α

‖u‖C.

Let Xµ(a, b) be the space of those Lebesgue measurable functions u on [a, b] for which
xµ−1u(x) is absolutely integrable [2]:

Xµ(a, b) =
{

u : [a, b]→ C : ‖u‖Xµ
=
∫ b

a
xµ−1|u(x)|dx < ∞

}
.

Obviously, C[a, b] ⊂ Xµ(a, b). Then, it follows from Lemma 2.2 in [2] that the following
semigroup property holds true:

J α
a+J

β
a+u = J α+β

a+ u,

for all α, β > 0, and u ∈ C[a, b].
The goal of this paper is to study the existence of solutions for the following nonlinear

integro-differential system involving the fractional Hadamard-type operators by using
Leray-Schauder’s alternative and the multivariate Mittag-Leffler function in the product
space C[a, b]× C[a, b]:{

u(x) + an(J αn
a+u)(x) + · · ·+ a1(J α1

a+u)(x) = f1(x, u(x), v(x)),
v(x) + bn(J βn

a+v)(x) + · · ·+ b1(J
β1

a+v)(x) = f2(x, u(x), v(x)),
(1)

where αn > αn−1 > · · · > α1 > 1, βn > βn−1 > · · · > β1 > 1, and the functions f1 and f2
are mappings from [a, b]×R2 to R satisfying certain conditions. To the best of the authors’
knowledge, this is a new development, and such an existence problem has presumably not
been investigated before.

Babenko’s approach [11] provides a powerful tool in solving differential and integral
equations by treating bounded integral operators like variables. The method itself is similar
to the Laplace transform method for the equations with constant coefficients, but it can be
used to deal with integral or fractional differential equations with variable coefficients or
generalized functions whose Laplace transforms do not exist in the classical sense [6,12,13].
In order to illustrate Babenko’s approach in detail, we shall solve the following fractional
integro-differential equation for α > 0 and f ∈ Xµ(a, b) (see also [14]):

u(x) + J α
a+u(x) = f (x).

Clearly, the above equation proves to be of the form:

(1 + J α
a+)u(x) = f (x),
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which is informally arrived at through Babenko’s method,

u(x) = (1 + J α
a+)
−1 f (x) =

∞

∑
k=0

(−1)kJ αk
a+ f (x),

where
(J α

a+)
k = J αk

a+,

by the semigroup property. It follows from Lemma 2.1 in [2] that

‖u‖Xµ
5

∞

∑
k=0

∥∥∥J αk
a+ f (x)

∥∥∥
Xµ

5
∞

∑
k=0

1
Γ(αk + 1)

(
log

b
a

)αk
‖ f ‖Xµ

= Eα,1

(
logα b

a

)
‖ f ‖Xµ

< ∞,

where

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk + β)
,

is the two-parameter Mittag-Leffler function (see, for details, [6]; see also a recent expository
article [15]). Therefore, u is the solution of the integral equation and is well defined in the
space Xµ(a, b).

Theorem 1 (Leray-Schauder’s alternative [16]). Consider the continuous and compact mapping
T of a Banach space S into itself. The boundedness of

{x ∈ S : x = λTx for some 0 5 λ 5 1}

implies that T has a fixed point.

Leray-Schauder’s alternative is a useful theorem for showing the existence of solutions
to nonlinear fractional differential equations [17–24]. In the year 2004, Bai and Fang and
Gao [25] considered the existence of a positive solution to the following singular coupled
system using Leray-Schauder’s alternative and Krasnoselskii’s fixed point theorem in
a cone: {

Dsu(t) = f (t, v(t)), 0 < t < 1,
Dpv(t) = g(t, u(t)), 0 < t < 1,

where 0 < s < 1, 0 < p < 1, Ds, Dp are two standard Riemann-Liouville fractional
derivatives, f , g : (0, 1]× [0,+∞)→ [0,+∞) are two given functions, and

lim
t→0+

f (t, ·) = lim
t→0+

g(t, ·) = +∞.

In 2014, Ahmad and Ntouyas [26] studied the existence of solutions for a couple
system of Hadamard-type fractional differential equations (also with µ = 0) and integral
boundary conditions based on Leray-Schauder’s alternative. In addition, Toumi and
EI Abidine [27] investigated the following nonlinear fractional differential problem on
R+ = (0,+∞) {

Dαu(t) + f (t, u(t), Dpu(t)) = 0, t ∈ R+,
u(0) = u′(0) = · · · = u(m−2)(0) = 0,

where 2 5 m ∈ N, m− 1 < α 5 m, 0 < p 5 α− 1, and f ia a Borel measurable function
in R+ ×R+ ×R+ satisfying certain conditions. They showed the existence of multiple
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unbounded positive solutions by Schauder’s fixed point theorem, which is a special case of
Leray-Schauder’s alternative.

Recently, Ding et al. [28] applied the fixed-point index and non-negative matrices
to study the existence of positive solutions for a system of Hadamard-type fractional
differential equations with semipositone nonlinearities.

We assume that the functions f1(x, z1, z2) and f2(x, z1, z2) satisfy the Lipschitz condi-
tions in the second and third variables. Then, the uniqueness of a system for the nonlinear
Hadamard-type integro-differential equations, with all µ ∈ R and positive orders, in the
Banach space Xµ(a, b)× Xµ(a, b), was studied very recently by Li in [29] by using Banach’s
fixed point theorem.

The multivariate Mittag-Leffler function was initially given by Hadid and Luchko [30]
for solving linear fractional differential equations with constant coefficients:

E(α1,··· ,αm),β(z1, · · · , zm) =
∞

∑
k=0

∑
k1+···+km=k

(
k

k1, · · · , km

)
zk1

1 · · · z
km
m

Γ(α1k1 + · · ·+ αmkm + β)
,

where αi, β > 0 for i = 1, 2, · · · , m.

2. Main Results

In this section, we shall present our main theorem dealing with the existence of
solutions to the nonlinear system (1) by Babenko’s approach, Leray-Schauder’s alternative,
and the multivariate Mittag-Leffler function.

Theorem 2. Assume that αn > αn−1 > · · · > α1 > 1, βn > βn−1 > · · · > β1 > 1, and the
functions f1(x, z1, z2) and f2(x, z1, z2) are continuous mappings from [a, b]×R2 to R satisfying
the following conditions for non-negative constants C0, C1 and C2 :

| f1(x, y1, y2)| 5 C0 + C1|y1|+ C2|y2|

and

| f2(x, y1, y2)| 5 C0 + C1|y1|+ C2|y2|.

In addition, suppose that f ′1x and f ′2x are bounded and

max{C1, C2}(E(α1,··· ,αn , 1)

(
|a1|
(

log
b
a

)α1

, · · · , |an|
(

log
b
a

)αn)
+ E(β1,··· ,βn , 1)

(
|b1|
(

log
b
a

)β1

, · · · , |bn|
(

log
b
a

)βn
)
) < 1.

Then, there exists a solution to the system (1) in the space C[a, b]× C[a, b].

Proof. Let f ∈ C[a, b] with 0 < a < b < ∞ . Then, the following equation

u(x) + an(J αn
a+u)(x) + · · ·+ a1(J α1

a+u)(x) = f (x),

has a unique and global solution in the space C[a, b] by Babenko’s approach and the
semigroup property

u(x) =
∞

∑
k=0

(−1)k ∑
k1+···+kn=k

(
k

k1, k2, · · · , kn

)
akn

n · · · a
k1
1 (J knαn+···+k1α1

a+ f )(x),

where we define
J 0

a+ f (x) = f (x).
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Indeed,

‖u‖C 5
∞

∑
k=0

∑
k1+···+kn=k

(
k

k1, k2, · · · , kn

)
|an|kn · · · |a1|k1

∥∥∥J knαn+···+k1α1
a+ f

∥∥∥
C

5
∞

∑
k=0

∑
k1+···+kn=k

(
k

k1, k2, · · · , kn

)
|an|kn · · · |a1|k1

· 1
Γ(knαn + · · ·+ k1α1 + 1)

(
log

b
a

)knαn+···+k1α1

‖ f ‖C

= E(α1,··· ,αn , 1)

(
|a1|
(

log
b
a

)α1

, · · · , |an|
(

log
b
a

)αn)
‖ f ‖C < +∞. (2)

This claims that the series is uniformly convergent on [a, b], and hence u(x) is continu-
ous.

Let (u, v) ∈ C[a, ]× C[a, b]. Define a mapping T on the space C[a, b]× C[a, b] as

T(u, v) = (T1(u, v), T2(u, v)),

where

T1(u, v) =
∞

∑
k=0

(−1)k ∑
k1+···+kn=k

(
k

k1, k2, · · · , kn

)
akn

n · · · a
k1
1

· (J knαn+···+k1α1
a+ f1)(x, u(x), v(x)),

and

T2(u, v) =
∞

∑
k=0

(−1)k ∑
k1+···+kn=k

(
k

k1, k2, · · · , kn

)
bkn

n · · · b
k1
1

· (J kn βn+···+k1β1
a+ f2)(x, u(x), v(x)),

It follows from the inequality (2) that

‖T1(u, v)‖C 5 E(α1,··· ,αn , 1)

(
|a1|
(

log
b
a

)α1

, · · · , |an|
(

log
b
a

)αn)
‖ f1(x, u, v)‖C

5 E(α1,··· ,αn , 1)

(
|a1|
(

log
b
a

)α1

, · · · , |an|
(

log
b
a

)αn)
· (C0 + C1‖u‖C + C2‖v‖C),

‖T2(u, v)‖C 5 E(β1,··· ,βn , 1)

(
|b1|
(

log
b
a

)β1

, · · · , |bn|
(

log
b
a

)βn
)
‖ f2(x, u, v)‖C

5 E(β1,··· ,βn , 1)

(
|b1|
(

log
b
a

)β1

, · · · , |bn|
(

log
b
a

)βn
)

· (C0 + C1‖u‖C + C2‖v‖C).

Therefore, T is a continuous mapping from the space C[a, b]× C[a, b] to itself, since f1
and f2 are continuous.

Suppose that B is a proper bounded subset of C[a, b] × C[a, b]; then, we can find
constants W1, W2 > 0 such that

‖ f1(x, u, v)‖C 5 W1, ‖ f2(x, u, v)‖C 5 W2,
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for all (u, v) ∈ B, which deduces that

‖T1(u, v)‖C 5 W1E(α1,··· ,αn , 1)

(
|a1|
(

log
b
a

)α1

, · · · , |an|
(

log
b
a

)αn)
, and

‖T2(u, v)‖Y 5 W2E(β1,··· ,βn , 1)

(
|b1|
(

log
b
a

)β1

, · · · , |bn|
(

log
b
a

)βn
)

.

Thus, TB is uniformly bounded in the space C[a, b]× C[a, b]. We need to show that T
is equicontinuous on C[a, b]× C[a, b]. Letting τ1, τ2 ∈ [a, b] with τ1 < τ2, we come to

|T1(u, v)(τ2)− T1(u, v)(τ1)| 5 | f1(τ2, u(τ2), v(τ2))− f1(τ1, u(τ1), v(τ1))|

+
∞

∑
k=1

∑
k1+···+kn=k

(
k

k1, · · · , kn

)
|a1|k1 · · · |an|kn

1
Γ(λ1)

·
∣∣∣∣∫ τ2

a

(
log

τ2

t

)λ1−1
f1(t, u(t), v(t))

dt
t
−
∫ τ1

a

(
log

τ1

t

)λ1−1
f1(t, u(t), v(t))

dt
t

∣∣∣∣,
where

λ1 = k1α1 + · · ·+ knαn = α1 > 1,

for k = k1 + · · ·+ kn = 1.
Since f ′1x is bounded, there is a constant M1 > 0 such that

| f1(τ2, u(τ2), v(τ2))− f1(τ1, u(τ1), v(τ1))| 5 M1(τ2 − τ1),

by the mean value theorem.
Furthermore,∫ τ2

a

(
log

τ2

t

)λ1−1
f1(t, u(t), v(t))

dt
t
=
∫ τ1

a

(
log

τ2

t

)λ1−1
f1(t, u(t), v(t))

dt
t

+
∫ τ2

τ1

(
log

τ2

t

)λ1−1
f1(t, u(t), v(t))

dt
t

.

Thus, we have∣∣∣∣∫ τ2

a

(
log

τ2

t

)λ1−1
f1(t, u(t), v(t))

dt
t
−
∫ τ1

a

(
log

τ1

t

)λ1−1
f1(t, u(t), v(t))

dt
t

∣∣∣∣
5

∣∣∣∣∫ τ1

a

((
log

τ2

t

)λ1−1
−
(

log
τ1

t

)λ1−1
)

f1(t, u(t), v(t))
dt
t

∣∣∣∣
+
∫ τ2

τ1

(
log

τ2

t

)λ1−1
| f1(t, u(t), v(t))|dt

t
.

Obviously,

∫ τ2

τ1

(
log

τ2

t

)λ1−1
| f1(t, u(t), v(t))|dt

t
5 W1

(
log

τ2

τ1

)λ1

λ1
,
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and ∣∣∣∣∫ τ1

a

((
log

τ2

t

)λ1−1
−
(

log
τ1

t

)λ1−1
)

f1(t, u(t), v(t))
dt
t

∣∣∣∣
5 W1

∫ τ1

a

((
log

τ2

t

)λ1−1
−
(

log
τ1

t

)λ1−1
)

dt
t

5 W1


(

log
τ2

τ1

)λ1

λ1
+

(
log

τ2

a

)λ1

λ1
−

(
log

τ1

a

)λ1

λ1

.

Again, by the mean value theorem, we deduce that

0 <

(
log

τ2

a

)λ1

λ1
−

(
log

τ1

a

)λ1

λ1
5 (τ2 − τ1)

(
log

b
a

)λ1−1
.

Hence, we have∣∣∣∣∫ τ1

a

((
log

τ2

t

)λ1−1
−
(

log
τ1

t

)λ1−1
)

f1(t, u(t), v(t))
dt
t

∣∣∣∣
5 W1

(
log

τ2

τ1

)λ1

λ1
+ W1(τ2 − τ1)

(
log

b
a

)λ1−1
.

In summary, therefore, we find that

|T1(u, v)(τ2)− T1(u, v)(τ1)| 5 M1(τ2 − τ1)

+ 2W1

∞

∑
k=1

∑
k1+···+kn=k

(
k

k1, · · · , kn

)
|a1|k1 · · · |an|kn

(
log

τ2

τ1

)k1α1+···+knαn

Γ(k1α1 + · · ·+ knαn + 1)

+ W1 (τ2 − τ1)
∞

∑
k=1

∑
k1+···+kn=k

(
k

k1, · · · , kn

)
|a1|k1 · · · |an|kn

·

(
log

b
a

)k1α1+···+knαn

Γ(k1α1 + · · ·+ knαn)
.

Noting that

2W1

∞

∑
k=1

∑
k1+···+kn=k

(
k

k1, · · · , kn

)
|a1|k1 · · · |an|kn

(
log

τ2

τ1

)k1α1+···+knαn

Γ(k1α1 + · · ·+ knαn + 1)

5 2W1

∞

∑
k=1

∑
k1+···+kn=k

(
k

k1, · · · , kn

)
|a1|k1 · · · |an|kn

(
log

b
a

)k1α1+···+knαn

Γ(k1α1 + · · ·+ knαn + 1)
,

which implies that the series of the left-hand side is uniformly convergent on [a, b], and

every term in the series has the factor
(

log
τ2

τ1

)α1

. Therefore, T1 is equicontinuous on

C[a, b].
Regarding T2, we let M2 be a constant, such that

| f ′2x| 5 M2.
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Then, it follows from a similar step that

|T2(u, v)(τ2)− T2(u, v)(τ1)| 5 M2(τ2 − τ1)

+ 2W2

∞

∑
k=1

∑
k1+···+kn=k

(
k

k1, · · · , kn

)
|b1|k1 · · · |bn|kn

(
log

τ2

τ1

)k1β1+···+kn βn

Γ(k1β1 + · · ·+ knβn + 1)

+ W2 (τ2 − τ1)
∞

∑
k=1

∑
k1+···+kn=k

(
k

k1, · · · , kn

)
|b1|k1 · · · |bn|kn

·

(
log

b
a

)k1β1+···+kn βn

Γ(k1β1 + · · ·+ knβn)
.

So, clearly, T2 is also equicontinuous on C[a, b]. This further infers that T is a compact
mapping by the Arzela-Ascoli theorem. It remains to be proven that the set

W = {(u, v) ∈ C[a, b]× C[a, b] : (u, v) = λT(u, v) for some 0 5 λ 5 1}

is bounded.
For any x ∈ [a, b],

u(x) = λT1(u, v)(x), v(x) = λT2(u, v)(x).

From Inequality (2), we have

‖u‖C 5 ‖T1(u, v)‖C 5 E(α1,··· ,αn , 1)

(
|a1|
(

log
b
a

)α1

, · · · , |an|
(

log
b
a

)αn)
· (C0 + C1‖u‖C + C2‖v‖C), and

‖v‖C 5 ‖T2(u, v)‖C 5 E(β1,··· ,βn , 1)

(
|b1|
(

log
b
a

)β1

, · · · , |bn|
(

log
b
a

)βn
)

· (C0 + C1‖u‖C + C2‖v‖C).

Therefore,

A1‖u‖C + A2‖v‖C 5

5 C0E(α1,··· ,αn , 1)

(
|a1|
(

log
b
a

)α1

, · · · , |an|
(

log
b
a

)αn)
+ C0E(β1,··· ,βn , 1)

(
|b1|
(

log
b
a

)β1

, · · · , |bn|
(

log
b
a

)βn
)

,

where

A1 = 1− C1(E(α1,··· ,αn , 1)

(
|a1|
(

log
b
a

)α1

, · · · , |an|
(

log
b
a

)αn)
+ E(β1,··· ,βn , 1)

(
|b1|
(

log
b
a

)β1

, · · · , |bn|
(

log
b
a

)βn
)
) > 0, and

A2 = 1− C2(E(α1,··· ,αn , 1)

(
|a1|
(

log
b
a

)α1

, · · · , |an|
(

log
b
a

)αn)
+ E(β1,··· ,βn , 1)

(
|b1|
(

log
b
a

)β1

, · · · , |bn|
(

log
b
a

)βn
)
) > 0,

by our hypothesis.
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Let
A0 = min{A1, A2} > 0.

Then, we have

A0(‖u‖C + ‖v‖C) 5 A1‖u‖C + A2‖v‖C

and

‖u‖C + ‖v‖C

5
C0

A0
E(α1,··· ,αn , 1)

(
|a1|
(

log
b
a

)α1

, · · · , |an|
(

log
b
a

)αn)
+

C0

A0
E(β1,··· ,βn , 1)

(
|b1|
(

log
b
a

)β1

, · · · , |bn|
(

log
b
a

)βn
)

.

Hence, W is bounded for all λ ∈ [0, 1]. Using Leray-Schauder’s alternative, we imply
that system (1) has a solution in the space C[a, b]× C[a, b].

Remark 1. From Theorem 2, we can derive that, if f1, f ′1x, f2 and f ′2x are continuous and bounded
(that is, C1 = C2 = 0), then the system (1) has a solution in the space C[a, b]× C[a, b].

Example 1. As an illustrative example, the following nonlinear Hadamard-type integro-differential
system with all integral orders bigger than 1 and arbitrary coefficients a1, a2, b1, and b2{

u(x) + a2 J 2.7
a+ u(x) + a1 J 2.1

a+ u(x) = cos(x + u(x) + v(x)),
v(x) + b2 J 2.1

a+ v(x) + b1 J 1.1
a+ v(x) = sin2(x + u(x)),

(3)

has a solution in the space C[a, b]× C[a, b] (0 < a < b < +∞), since

f1(x, y1, y2) = cos(z + y1 + y2) and

f2(x, y1, y2) = sin2(x + y1),

are continuous and bounded with their partial derivatives with respect to x, by noting that

| f ′1x(x, y1, y2)| 5 1, | f ′2x(x, y1, y2)| 5 2.

Thus, C0 = 2, and C1 = C2 = 0 in Theorem 2. By Remark 1, the system (3) has a solution
in the space C[a, b]× C[a, b].

3. Conclusions

Using Babenko’s approach, Leray-Schauder’s alternative, and the multivariate Mittag-
Leffler function, we have studied the existence of solutions to the nonlinear Hadamard-type
integro-differential system (1), which is new. The results obtained are fresh and interesting.
We have also included an example showing the application of the main theorem.
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