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Abstract: In this article, we introduce a new extended cosine family of distributions. Some important
mathematical and statistical properties are studied, including asymptotic results, a quantile function,
series representation of the cumulative distribution and probability density functions, moments,
moments of residual life, reliability parameter, and order statistics. Three special members of the
family are proposed and discussed, namely, the extended cosine Weibull, extended cosine power,
and extended cosine generalized half-logistic distributions. Maximum likelihood, least-square,
percentile, and Bayes methods are considered for parameter estimation. Simulation studies are used
to assess these methods and show their satisfactory performance. The stress–strength reliability
underlying the extended cosine Weibull distribution is discussed. In particular, the stress–strength
reliability parameter is estimated via a Bayes method using gamma prior under the square error loss,
absolute error loss, maximum a posteriori, general entropy loss, and linear exponential loss functions.
In the end, three real applications of the findings are provided for illustration; one of them concerns
stress–strength data analyzed by the extended cosine Weibull distribution.

Keywords: trigonometric distributions; moments; entropy; maximum likelihood estimation; least-
square estimation; percentile estimation; Bayes estimation; stress–strength parameter

1. Introduction

In various practical analyses, the choice of an appropriated statistical model is cru-
cial. This is particularly problematic for some data analyses for which the commonly
used distributional models are incapable of providing a satisfactory fit. In the past few
years, some solutions have been proposed, including the construction of families of flex-
ible distributions. The majority of them seek to improve the functionality of a baseline
distribution by employing various mathematical generalization (or extension) techniques.
Thus, constructed, the corresponding models may contain some additional parameters
which confer enough flexibility to explore real-life data in various fields of studies, such
as reliability, survival analysis, computer sciences, finance, biomedical sciences, medicine,
hydrology, etc.

Most of the extensions of the classical distributions generated are usually algebraic,
but recent attention has been given to statistical distributions based on trigonometric func-
tions. The trigonometric functions can play a vital role in statistical studies with unlimited
motivations and influence. These can be a means of extending models by the convolution
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of algebraic-based and trigonometric-based distributions. The proposed statistical distribu-
tions based on trigonometric functions could provide researchers with more alternatives
in terms of the availability of distributions having trigonometric functions. Furthermore,
they might lead to additional new problems that allow more exploration of computational
techniques, simulation, and algorithms. The following are some statistical distributions,
or families of distributions, based on trigonometric functions: Fisher (F) distribution by [1],
Von Mises (VM) distribution by [2], beta-trigonometric (BT) distribution by [3], circular
Cauchy (CC) distribution by [4], sine square (SS) distribution by [5], sine-generated (SG)
family by [6,7], cosine-generated (CSG) family by [8], new cosine–sine-generated (NCSG)
family by [9], transformed sine-generated (TSG) family by [10], new sine-generated (NSG)
family by [11], tan-generated (TG) family by [12], polyno-expo-trigonometric (PET) family
by [13], sin Topp-Leone-generated (STLG) family by [14], sine extended odd Fréchet-
generated (SEOFG) family by [15], new exponential with trigonometric function (NET)
distribution by [16], weighted cosine exponential distribution by [17], arc-sine distribution,
and raised cosine distribution, among others. In particular, the SG, CSG, NSG, TG, STLG,
and SEOFG families benefit from the oscillating nature of trigonometric functions to enrich
the modeling capabilities of any chosen baseline distribution.

In this paper, we enhance the aforementioned idea by introducing the extended
cosine-generated (ECSG) family of distributions. As a main motivation, it provides a
simple one-parameter extension of the SG family, improving its theoretical and statistical
possibilities. As a short list of improvements, we can mention more flexible functional
shapes, tail characteristics, kurtosis, and skewness. Thus, the ECSG family can be useful
for a variety of applications. With this in mind, this work develops both the practical side
and the crucial theoretical results of the proposed family in an extensive manner.

The rest of the paper is arranged as follow: In Section 2, the ECSG family is presented in
detail, along with proof of some important properties and descriptions of special members
of interest. In Section 3, various parameter estimation and simulation studies are given.
Section 4 concerns the real data illustration of the findings. In Section 5, some conclusions
are provided.

2. The ECSG Family
2.1. Presentation

The generalization of classical distributions proposed by [18] allowed us to introduce
one additional parameter to the existing distribution in an exponentiated fashion. This
technique is widely known in the literature. In our study, we considered an alternative
way of the exponentiation technique that, combined with the SG family, gives the ECSG
family of distributions. The details are given below.

Let s(x; ξ) be the survival function (sf) related to a baseline cumulative distribution
function (cdf) of a continuous distribution, denoted by G(x; ξ), with a vector of parameters
ξ. That is, s(x; ξ) = 1− G(x; ξ). Let g(x; ξ) be the pdf corresponding to G(x; ξ). Then, the
cdf of the ECSG family with parameter α > 0 is given by:

F(x) = 1−
[
1− cos

(π

2
s(x; ξ)

)]α
, (1)

and the corresponding pdf is indicated as:

f (x) = α
π

2
g(x; ξ) sin

(π

2
s(x; ξ)

)[
1− cos

(π

2
s(x; ξ)

)]α−1
. (2)

In full generality, functions F(x) and f (x) characterize the entire ECSG family in the
probabilistic sense. Since cos((π/2)(1− x)) = sin((π/2)x), we had:

cos
(π

2
s(x; ξ)

)
= sin

(π

2
G(x; ξ)

)
,
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which corresponds to the cdf of the SG family. For the purposes of this study, it was,
however, more practical to work with the sf of the baseline distribution instead of its cdf.
Some motivations and remarks on the ECSG family are formulated below:

• We could write F(x) = K[cos((π/2)s(x; ξ))], where K(u) = 1− (1− uβ)α is the cdf of
the Kumaraswamy distribution with β = 1 (see [19]). This exponentiation technique
is an alternative to the one of [18].

• Clearly, when α = 1, the ECSG family was reduced to the SG family.
• The pdf of the ECSG family is a weighted version of the pdf of the SG family; indeed,

if we denoted the pdf of the SG family by f∗(x), we could write:

f (x) = wα(x) f∗(x),

where wα(x) = α[1− cos((π/2)s(x; ξ))]α−1. We, thus, saw how the parameter α
modulated the functionalities of wα(x), and the strong relationship existing with the
respective pdfs. Naturally, the presence of the weight function wα(x) completely
modified the analytical structure of f (x); the mode and tail properties of fα(x) truly
depend on the variations of wα(x).

• When α is a positive integer, F(x) is the cdf of the random variable Yα = min(X1, . . . , Xα),
where X1, . . . , Xα are independent random variables with the cdf of the SG family. Thus,
the ECSG family has an interpretation in terms of the distribution of minimum of several
random variables.

• The function F(x) increased with respect to α. This implies a first-order stochastic
dominance with the SG family, which differs in nature according to α ∈ (0, 1) and
α ≥ 1.

• More secondary, since sin(x)2 = [1− cos(2x)]/2, we could rewrite F(x) as:

F(x) = 1− 2α
[
sin
(π

4
s(x; ξ)

)]2α
.

As main reliability functions, the sf, hazard rate function (hrf), and cumulative hrf
(chrf) of the ECSG family were given as:

R(x) =
[
1− cos

(π

2
s(x; ξ)

)]α
,

h(x) =
α(π/2)g(x; ξ) sin((π/2)s(x; ξ))

1− cos((π/2)s(x; ξ))

and

T(x) = −α log
[
1− cos

(π

2
s(x; ξ)

)]
,

respectively.
The cdf, pdf, and hrf are involved in many modeling and statistical tools and, thus,

were of particular interest in the rest of the study.
Following the structure of the studies in [9,11,12], based on the functions above,

the rest of the theoretical study focused on some asymptotic results, quantile function,
a series representation of the cdf and pdf, moments, moments of residual life, reliability
parameter, and order statistics.

2.2. Asymptotic Study

The following lemma allowed us to understand the asymptotic behavior of the cdf,
pdf, and hrf according to the asymptotic behavior of s(x; ξ).

Lemma 1. The following equivalence results held:
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On the one hand, as s(x; ξ)→ 1, we had:

F(x) ∼ α
π

2
(1− s(x; ξ)),

f (x) ∼ h(x) ∼ α
π

2
g(x; ξ).

On the other hand, as s(x; ξ)→ 0, we had:

F(x) ∼ 1− π2α

8α
s(x; ξ)2α,

f (x) ∼ 2α
π2α

8α
g(x; ξ)s(x; ξ)2α−1,

h(x) ∼ 2α
g(x; ξ)

s(x; ξ)
.

The role of α on the asymptotic behavior of the main functions of the ECSG family
was now clarified; it had a constant effect when s(x; ξ)→ 0, and an exponentiated effect
when s(x; ξ) → 1, except on h(x) when the effect was constant. As s(x; ξ) → 0, we saw
that h(x) was equivalently proportional to the hrf of the baseline distribution.

2.3. Quantile Function

Let qG(u) be the quantile function (qf) corresponding to G(x; ξ). The qf of the ECSG
family can be presented as:

Q(u) = qG

(
1− 2

π

[
arccos

(
1− (1− u)1/α

)])
, 0 ≤ u ≤ 1. (3)

In particular, M = Q(1/2) is the median. The qf served as a means of model parameter
estimation, and was used in generating random data. In addition, the qf was used in
computations of some distribution properties and goodness-of-fit measures. The qf of a
distribution could be used to analyze its skewness and kurtosis by means of Bowley’s
skewness and Moor’s kurtosis, defined as:

B =
Q(3/4)− 2Q(2/4) + Q(1/4)

Q(3/4)−Q(1/4)
, M =

Q(7/8)−Q(5/8) + Q(3/8)−Q(1/8)
Q(6/8)−Q(2/8)

,

respectively.

2.4. Functional Series Representation
2.4.1. For the cdf

We provided a series representation of the cdf of the ECSG family. In this regard, we
needed to use several existing series expansion results. First, for |z| ≤ 1 and b > 0 that we
supposed to be a non-integer, we had:

(1− z)b = 1 +
∞

∑
i=1

(−1)i
(

b
i

)
zi, (4)

where (b
i) refers to the generalized binomial coefficient. In addition, the following trigono-

metric representations held:

cos x =
∞

∑
n=0

(−1)nx2n

(2n)!
, sin x =

∞

∑
n=0

(−1)nx2n+1

(2n + 1)!
. (5)

As the last important known result, for a power series raised to the power of a positive
integer, we had the representation provided by [20], and recalled it in the next lemma.
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Lemma 2 (Established by [20]). For a given power series of the form ∑∞
k=0 akxk and a positive

integer n, we had: (
∞

∑
k=0

akxk

)n

=
∞

∑
k=0

ckxk,

where c0 = an
0 , cm = [1/(ma0)]∑m

k=1(kn−m + k)akcm−k for m ≥ 1.

By applying Equation (4), the cdf of the ECSG family could be represented as:

F(x) = 1−
[
1− cos

(π

2
s(x; ξ)

)]α
=

∞

∑
k=1

wk(α)
[
cos
(π

2
s(x; ξ)

)]k
,

where wk(α) = (−1)k+1(α
k). It followed from the expansion of the cosine function in

Equation (5), that:

F(x) =
∞

∑
k=1

wk(α)

[
∞

∑
n=0

ans(x; ξ)2n

]k

,

where an = (−1)n(π/2)2n/[(2n)!]. By applying Lemma 2 to the above equation, we obtained:

F(x) =
∞

∑
k=1

∞

∑
n=0

wk(α)cns(x; ξ)2n,

where c0 = ak
0, cm = [1/(ma0)]∑m

n=1(nk−m + n)ancm−n for m ≥ 1. Thus,

F(x) =
∞

∑
k=1

∞

∑
n=0

bk,ns(x; ξ)2n,

where bk,n = wk(α)cn. From the approximation point-of-view, the following approximation
involving finite sums was valid:

F(x) ≈
ν

∑
k=1

ν

∑
n=0

bk,ns(x; ξ)2n,

where ν is a large integer that operates on sums truncation.

2.4.2. For the pdf

Now, we expressed the pdf of the ECSG family in a series form. We started by applying
Equations (4) and (5) to obtain:

[
1− cos

(π

2
s(x; ξ)

)]α−1
= 1 +

∞

∑
i=1

(−1)i
(

α− 1
i

)[ ∞

∑
n=0

ans(x; ξ)2n

]i

,

where an = (−1)n(π/2)2n/[(2n)!]. By Lemma 2, we obtained:

[
1− cos

(π

2
s(x; ξ)

)]α−1
= 1 +

∞

∑
i=1

∞

∑
n=0

di,ns(x; ξ)2n,

where di,n = (−1)i(α−1
i )cn, c0 = ai

0, cm = [1/(ma0)]∑m
n=1(ni−m + n)ancm−n for m ≥ 1.

Hence, by putting the above expression in f (x) and using the sine series representation
in Equation (5), we obtained:
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f (x) = α
π

2
g(x; ξ)

∞

∑
l=0

(−1)l(π/2)2l+1

(2l + 1)!
s(x; ξ)2l+1

[
1 +

∞

∑
i=1

∞

∑
n=0

di,ns(x; ξ)2n

]
.

Thus, the pdf of the ECSG family could be represented as:

f (x) =
∞

∑
l=0

ψ
(1)
l g(x; ξ)s(x; ξ)2l+1 +

∞

∑
i=1

∞

∑
l,n=0

ψ
(2)
i,l,ng(x; ξ)s(x; ξ)2(l+n)+1, (6)

where ψ
(1)
l = α(−1)l(π/2)2l+2/[(2l + 1)!], and ψ

(2)
i,l,n = ψ

(1)
l di,n. This expansion result

would be useful for the moment analysis. Again, from the approximation point-of-view,
we could reduced the “sophisticated” function f (x) by the following approximation:

f (x) ≈
ν

∑
l=0

ψ
(1)
l g(x; ξ)s(x; ξ)2l+1 +

ν

∑
i=1

ν

∑
l,n=0

ψ
(2)
i,l,ng(x; ξ)s(x; ξ)2(l+n)+1,

where ν is a large integer that operates on sums truncation.
For some baseline distributions, the series expansions were more practical when they

involved the exponentiated cdf G(x; ξ). In this case, with the application of the standard
binomial formula, we could expand the pdf to:

f (x) =
∞

∑
l=0

2l+1

∑
w=0

ψ
∗(1)
l,w g(x; ξ)G(x; ξ)w +

∞

∑
i=1

∞

∑
l,n=0

2(n+l)+1

∑
w=0

ψ
∗(2)
i,l,n,wg(x; ξ)G(x; ξ)w, (7)

where ψ
∗(1)
l,w = (−1)w(2l+1

w )ψ
(1)
i and ψ

∗(2)
i,l,n,w = (−1)w(2(n+l)+1

w )ψ
(2)
i,l,n.

2.5. Moments

The moment analysis of the ECSG family was now under investigation. Let X be a
random variable with a certain distribution from the ECSG family. Then, the rth moment of
X was classically defined by µr = E[Xr] =

∫ ∞
−∞ xr f (x)dx. That is,

µr = α
π

2

∫ ∞

−∞
xrg(x; ξ) sin

(π

2
s(x; ξ)

)[
1− cos

(π

2
s(x; ξ)

)]α−1
dx, (8)

which could be expressed as the following integral over the unit interval:

µr =
∫ 1

0

[
qG

(
1− 2

π

[
arccos

(
1− (1− u)1/α

)])]r
du.

The above expressions may not have had a closed-form solution; thus, they could
be computed numerically via software such as R, MATLAB, and Mathematica. By using
the series representation in Equation (6), µr could be expressed as:

µr =
∞

∑
l=0

ψ
(1)
l υr,2l+1 +

∞

∑
i=1

∞

∑
l,n=0

ψ
(2)
i,l,nυr,2(l+n)+1, (9)

where υr,w =
∫ ∞
−∞ xrg(x; ξ)s(x; ξ)wdx. Coefficient υr,w was calculable in a scholarly manner

for most of the standard distributions.
From an alternative point of view, the following series representation followed from

Equation (7):

µr =
∞

∑
l=0

2l+1

∑
w=0

ψ
∗(1)
l,w

w + 1
µ∗r,w +

∞

∑
i=1

∞

∑
l,n=0

2(n+l)+1

∑
w=0

ψ
∗(2)
i,l,n,w

w + 1
µ∗r,w,
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where µ∗r,w is the rth moment of a random variable with the exponentiated baseline distri-
bution defined with the power parameter w + 1.

To complete the moment analysis of the ECSG family, we could also derive the rth

incomplete moment of X defined as Ir(t) =
∫ t
−∞ xr f (x)dx. That is,

Ir(t) = α
π

2

∫ t

−∞
xrg(x; ξ) sin

(π

2
s(x; ξ)

)[
1− cos

(π

2
s(x; ξ)

)]α−1
dx, (10)

which could be expressed in an alternative manner as:

Ir(t) =
∫ F(t)

0

[
qG

(
1− 2

π

[
arccos

(
1− (1− u)1/α

)])]r
du.

We could establish series expansions of Ir(t) via Equations (6) and (7) in the same way
as for µr.

The first incomplete moment I1(t) was derived from Equation (10) by taking r = 1. It
is an important measure; it is useful for obtaining the mean deviations of the mean and the
mean deviations of the median defined by:

δ1(X) = 2µ1F(µ1)− 2I1(µ1), δ2(X) = µ1 − 2I1(M),

respectively. The first incomplete moment was also the main ingredient in the definitions
of the Lorenz and Bonferroni curves, which are very useful and applicable in reliability,
economics, demography, and insurance. The Lorenz and Bonferroni curves are defined by
L(p) = I1(q)/µ1 and B(q) = I1(q)/(pµ1), respectively, where q = Q(p) from Equation (3).

Further, the first incomplete moment could be used to determine the two moments of
residual life. The mean residual life and mean reverse residual life functions are vital tools
in engineering, reliability, quality control, life testing, etc. They are also used in finding
the asymptotic distributions of order statistics. By assuming X as a lifetime distribution,
the mean residual life of X was defined as:

T(t) = E[X− t|X > t] =
∫ ∞

0

R(x + t)
R(t)

dx.

The mean reverse residual life of X was defined by:

T̄(t) = E[t− X|X ≤ t] =
∫ t

0

F(x)
F(t)

dx.

The asymptotic behavior of T(t) and T̄(t) are useful in extreme value theory, among oth-
ers. For special members of the ECSG family, some results of this nature were proven.

2.6. Reliability

The study of a system’s performance can be performed via a special parameter called
the stress–strength parameter. It is very important in engineering practice to have a good
design of a system in such a way that the strength is always greater than the assumed stress.
The system is certain to fail if and only if the stress applied is greater than the strength.
Suppose a component had stress modeled by a random variable X and was subjected
to a strength modeled by a random variable Y; then, Rs = P(Y < X) would determine
the system’s performance and define the stress–strength parameter. Some applications of
stress–strength reliability in various fields can be found in [21] (chap. 7). Parameter Rs
has been studied by many authors in the literature from various viewpoints. For exam-
ple, for the study based on independent random variables X and Y that follow normal
(N) distributions see [22,23], exponential (E) distributions see [24], generalized logistic
(GL) distributions see [25], Weibull (W) distributions see [26–28], generalized exponential
(GE) distributions see [29], generalized exponential Poisson (GEP) distributions see [30],
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beta-Erlang truncated exponential (BETE) distributions see [31], Poisson-generalized half-
logistic (PGHL) distributions see [32], and Poisson half-logistic (PHL) distributions see [33],
among others.

Here, we derived the expression of Rs by assuming X and Y had a distribution from
the ECSG family with a common parameter vector ξ. More precisely, let X be a random
variable with pdf f1(x) defined as in Equation (2) with the parameters α1 and ξ, and Y be a
random variable with the cdf F2(x) defined as in Equation (1) with the parameters α2 and
ξ. It was assumed that X and Y were independent. Then, the stress–strength reliability
parameter was expressed as Rs =

∫ ∞
−∞ f1(x)F2(x)dx. Therefore,

Rs = 1− α1π

2

∫ ∞

−∞
g(x; ξ) sin

(π

2
s(x; ξ)

)[
1− cos

(π

2
s(x; ξ)

)]α1+α2−1
dx.

By applying the change u = 1− cos((π/2)s(x; ξ)), we immediately obtained:

Rs = 1− α1

∫ 1

0
uα1+α2−1du = 1− α1

α1 + α2
=

α2

α1 + α2
.

In this setting, parameter Rs had a simple expression that could be used quite ef-
ficiently for various inferential purposes. This aspect was investigated later through a
computational analysis.

2.7. Order Statistics

Let (X1, . . . , Xn) be a random sample of size n from a distribution of the ECSG family.
Then, for i = 1, . . . , n, the pdf of the ith order statistic, denoted by fi:n(x), could be expressed
in the function of R(x) as:

fi:n(x) = i
(

n
i

)
f (x)R(x)n−i(1− R(x))i−1

= i
(

n
i

)
f (x)

i−1

∑
j=0

(
i− 1

j

)
(−1)jR(x)n−i+j.

By noticing that R(x)n−i+j is the sf of the ESCG family with power parameter
α(n− i + j), the pdf of the ith order statistic could be express as a mixture of pdfs of
the ECSG family as:

fi:n(x) =
i−1

∑
j=0

τi,j f (x; α(n− i + j + 1), ξ), (11)

where τi,j = [(−1)j/(n− i + j + 1)]i(n
i )(

i−1
j ) and f (x; α(n− i + j + 1), ξ) are the pdfs of the

ECSG family defined with power parameter α(n− i + j + 1). The rth moments of the ith

order statistic could be computed from Equation (11) by considering Equation (9) as:

E[Xr
i:n] =

i−1

∑
j=0

τi,jµ
∗∗
r,j ,

where µ∗∗r,j is the rth moment of a random variable with a certain distribution of the ECSG
family with power parameter α(n− i + j + 1).

In a coming subsection, we considered the asymptotic distributions for the extreme
order statistics, i.e., the minimum X1:n and maximum Xn:n, under some distributional
assumptions on X1, . . . , Xn. For the details, see [34].
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2.8. Special Members of the ECSG Family

Here, some special members of the ECSG family were derived and discussed. Namely,
they were the extended cosine Weibull (ECSW), extended cosine power (ECSP), and ex-
tended cosine generalized half-logistic (ECSGHL) distributions.

2.8.1. The ECSW Distribution

The cdf, pdf, and hrf of the ECSW distribution were obtained by considering the
baseline distribution of the W distribution with sf and pdf defined as s(x; λ, θ) = e−λxθ

and
g(x; λ, θ) = λθxθ−1e−λxθ

, respectively, where x, λ, θ > 0. That is, for x > 0, the cdf, pdf,
and hrf of the ECSW distribution were:

F(x) = 1−
[
1− cos

(π

2
e−λxθ

)]α
,

f (x) =
αλθπ

2
xθ−1e−λxθ

sin
(π

2
e−λxθ

)[
1− cos

(π

2
e−λxθ

)]α−1
,

and

h(x) =
αλθ(π/2)xθ−1e−λxθ

sin
(
(π/2)e−λxθ

)
1− cos

(
(π/2)e−λxθ

) ,

respectively. These functions were all equal to 0 for x < 0. In some parts of the study, this
distribution was denoted as ECSW(α, θ, λ), to specify the parameters. As a result, the ECSW
distribution was a new three-parameter lifetime distribution that aimed to improve on the
W distribution’s modeling capabilities. In order to illustrate this claim, Figure 1 shows
the plots of the corresponding pdf and hrf. We can state that the pdf could decrease or be
unimodal. Different curvature characteristics were observed, such as right-skewed and
almost symmetric forms, along with different platenesses of the curves. The bathtub and
reversed bathtub shapes were observed for the hrf, as well as increasing and decreasing
shapes. These observations were in favor of the application of the ECSW model for the
analysis of lifetime data of decreasing or right-skewed unimodal natures.
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Figure 1. Plots of the pdf and hrf of the ECSW distribution for some parameter values.

It is worth noting that the Rmpfr Package in R provided by [35] was used to obtain
high-precision numbers in the computation of term [1− cos((π/2)s(x; ξ))]α−1 in plots,
depending on the value of α.

All the general results stated for the ECSG family in the previous parts could be applied
for the ECSW distribution. In particular, the quantile function of the ECSW distribution
was given as:
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Q(u) =
{
− 1

λ
log
(

2
π

[
arccos

(
1− (1− u)1/α

)])}1/θ

, 0 ≤ u ≤ 1.

Based on Equation (8), the rth moment of a random variable X with the ECSW distri-
bution could be expressed as:

µr =
αλθπ

2

∫ ∞

0
xr+θ−1e−λxθ

sin
(π

2
e−λxθ

)[
1− cos

(π

2
e−λxθ

)]α−1
dx.

The software R, MATLAB, and Mathematica could be used to calculate this integral.
Alternatively, by using the series representation in Equation (6), µr could be expressed as:

µr =
∞

∑
l=0

ψ
(1)
l υr,2l+1 +

∞

∑
i=1

∞

∑
l,n=0

ψ
(2)
i,l,nυr,2(l+n)+1,

where

υr,w =
∫ ∞

−∞
xrg(x; ξ)s(x; ξ)wdx = λθ

∫ ∞

0
xr+θ−1e−(w+1)λxθ

dx

=
1

(w + 1)r/θ+1
1

λr/θ
Γ
( r

θ
+ 1
)

,

and Γ(a) is the standard gamma function. A similar treatment could be applied for the
incomplete moments, and the related functions.

The following theorem provides asymptotic results on the mean residual life and
mean reverse residual life.

Theorem 1. Let X be a random variable following the ECSW distribution. Then,

• As t→ ∞, the mean residual life of X satisfies

T(t) ∼ e2αλtθ

θ(2αλ)1/θ
Γ
(

1
θ

, 2αλtθ

)
,

where Γ(a, x) is the upper incomplete gamma function,
• As t→ 0, the mean reverse residual life of X satisfies

T̄(t) ∼ t
θ + 1

.

Proof. From Lemma 1, we could derive the asymptotic of the sf of the ECSW distribution
as t→ ∞, from which we established that:

T(t) =
∫ ∞

0

R(x + t)
R(t)

dx ∼ e2αλtθ
∫ ∞

0
e−2αλ(x+t)θ

dx.

If we applied the change of variable u = 2αλ(x + t)θ , we obtained:

T(t) ∼ e2αλtθ

θ(2αλ)1/θ

∫ ∞

2αλtθ
u1/θ−1e−udu =

e2αλtθ

θ(2αλ)1/θ
Γ
(

1
θ

, 2αλtθ

)
.

On the other hand, as t→ 0, from Lemma 1, we could derive the asymptotic of the
cdf of the ECSW distribution and obtain:

T̄(t) =
∫ t

0

F(x)
F(t)

dx ∼ 1
1− e−λtθ

∫ t

0
(1− e−λxθ

)dx ∼ 1
tθ

∫ t

0
xθdx =

t
θ + 1

.

This concludes the proof of Theorem 1.
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An application of Theorem 1 was given in the next result, which concerned the
asymptotic distributions of the extreme ordered statistics.

Theorem 2. Let {Xn}n be a sequence of independent random variables with the ECSW distribution.

• Suppose that θ = 1. Let Bn = (Xn:n − an)/bn where an = Q(1 − 1/n) and bn =
E[X− an|X > an], then:

lim
n→∞

P(Bn ≤ x) = e−e−x
,

for x ∈ R. The cdf of the standard Gumbel distribution was obtained as limit; {Bn}n converged
in distribution to a random variable with such a Gumbel distribution.

• Let B∗n = (X1:n − a∗n)/b∗n, where a∗n = 0 and b∗n = Q(1/n), then:

lim
n→∞

P(B∗n ≤ x) = 1− e−xθ
,

for x > 0. The cdf of the W distribution of parameters 1 and θ was obtained as limit; {B∗n}n
converged in distribution to a random variable with such a W distribution.

Proof. We aimed to apply Theorem 8.3.2 of [34]. Based on the asymptotic of T(t) in
Theorem 1, as t→ ∞, the following equivalence result held:

T(t) ∼ e2αλtθ

θ(2αλ)1/θ
Γ
(

1
θ

, 2αλtθ

)
∼ t1−θ

2αλ

Γ(1/θ, 2αλtθ)

e−2αλtθ (2αλtθ)1/θ−1
∼ t1−θ

2αθλ
.

Hence, for θ = 1, we had:

lim
t→∞

R(t + xT(t))
R(t)

= lim
t→∞

e−2αλ(t+(2αλ)−1x)

e−2αλt = e−x.

The desired result immediately followed from Theorem 8.3.2 of [34]. Now, let us point
out that, by virtue of Lemma 1 applied to the cdf of the ECSW distribution, we had:

lim
t→0

F(tx)
F(t)

∼ lim
t→0

1− e−λ(tx)θ

1− e−λtθ
= xθ .

The proof of Theorem 2 became a direct application of Theorem 8.3.6 of [34].

Theorem 2 was useful for the study of the extreme value theory involving the ECSW
distribution.

2.8.2. The ECSP Distribution

First of all, the ECSP distribution has the feature to have a bounded support, contrast-
ing with the ECSW distribution. The cdf, pdf, and hrf of the ECSP distribution were obtain
by considering the baseline distribution of the power (P) distribution with sf and pdf de-
fined as: s(x; λ, θ) = 1− (x/λ)θ and g(x; λ, θ) = θλ−θ xθ−1, respectively, where 0 ≤ x ≤ λ
and λ, θ > 0. That is, for 0 ≤ x ≤ λ, the cdf, pdf, and hrf of the ECSP distribution were:

F(x) = 1−
{

1− cos
[

π

2

(
1−

( x
λ

)θ
)]}α

,

f (x) =
αθλ−θπ

2
xθ−1 sin

[
π

2

(
1−

( x
λ

)θ
)]{

1− cos
[

π

2

(
1−

( x
λ

)θ
)]}α−1
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and

h(x) =
αθλ−θ(π/2)xθ−1 sin

[
(π/2)

(
1− (x/λ)θ

)]
1− cos

[
(π/2)

(
1− (x/λ)θ

)] ,

respectively. These functions could be completed by the appropriate values for x < 0 and
x > λ.

Figure 2 shows plots of the pdf and hrf of the ECSP distribution. We saw that the
pdf of the ECSP distribution was extremely flexible; increasing, decreasing, unimodal
left-skewed, unimodal right-skewed, and bathtub shapes were observed. The hrf was
mainly bathtub shaped. Thus, the ECSP distribution was ideal for modeling phenomena
whose values were bounded and presented such features.
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Figure 2. Plots of the pdf and hrf of the ECSP distribution for some parameter values.

A similar study as the one performed for the ECSW distribution could be conducted.
Here, we chose to perform something different by focusing on the quantile analysis. Thus,
the qf of the ECSP distribution was given as:

Q(u) = λ

(
1− 2

π

[
arccos

(
1− (1− u)1/α

)])1/θ

, 0 ≤ u ≤ 1.

From this qf, we could define diverse quantile measures, such as Bowley’s skewness
and Moors’ kurtosis of the ECSP distribution. Figure 3 displays the three-dimensional plots
of these skewness and kurtosis measures. It was clear that both the skewness and kurtosis
were increasing in α and decreasing in θ, and were independent of λ.

alpha
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e
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alpha theta

K
u
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Figure 3. Plots of Bowley’s skewness and Moors’s kurtosis of the ECSP distribution.

2.8.3. The ECSGHL Distribution

The ECSGHL distribution could be viewed as a trigonometric extension of the gen-
eralized half-logistic (GHL) distribution introduced by [36]. It is a new three-parameter
lifetime distribution such as the ECSW distribution. The cdf, pdf, and hrf of the ECSGHL
distribution were obtain by considering the baseline distribution of the GHL distribution,

with sf and pdf defined by: s(x; λ, θ) = 1 −
[
(1− e−λx)/(1 + e−λx)

]θ and g(x; λ, θ) =

[2λθe−λx/(1 + e−λx)2]
[
(1− e−λx)/(1 + e−λx)

]θ−1, respectively, where x, λ, θ > 0. That is,
for x > 0, the cdf, pdf, and hrf of the ECSGHL distribution were:
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F(x) = 1−
{

1− cos

[
π

2

(
1−

(
1− e−λx

1 + e−λx

)θ
)]}α

,

f (x) =
αλθπe−λx

(1 + e−λx)2

(
1− e−λx

1 + e−λx

)θ−1

sin

[
π

2

(
1−

(
1− e−λx

1 + e−λx

)θ
)]

×
{

1− cos

[
π

2

(
1−

(
1− e−λx

1 + e−λx

)θ
)]}α−1

and

h(x) =
αθλπe−λx

(1 + e−λx)2

(
1− e−λx

1 + e−λx

)θ−1

×

sin
[
(π/2)

(
1−

[
(1− e−λx)/(1 + e−λx)

]θ
)]

1− cos
[
(π/2)

(
1−

[
(1− e−λx)/(1 + e−λx)

]θ
)] ,

respectively. Figure 4 shows plots of the pdf and hrf of the ECSGHL distribution. We
observed that the pdf may have been decreasing, and was unimodal with right-skewed
or almost symmetrical shapes. The platykurtic shape property was sometimes observed.
The hrf had decreasing, increasing, and non-monotonic shapes. In light of the above
remarks, the ECSGHL distribution was appropriate to model lifetime data with decreasing
and right-skewed unimodal structures, with various symmetrical or platykurtic features.
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Figure 4. Plots of the pdf and hrf of the ECSGHL distribution for some parameter values.

Theoretical research comparable to that conducted for the ECSW and ECSP distri-
butions could be carried out. For the sake of space, we concentrated our efforts on the
statement of new results, with potential applications in the extreme value theory.

We began with a theorem on the asymptotic behavior of the mean residual life and
mean reverse residual life.

Theorem 3. Let X be a random variable following the ECSGHL distribution. Then,

• As t→ ∞, the mean residual life of X satisfies:

T(t) ∼ 1
2αλ

,

• As t→ 0, the mean reverse residual life of X satisfies:

T̄(t) ∼ t
θ + 1

.
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Proof. By applying Lemma 1 to the cdf of the ECSGHL distribution, as x → ∞, we had:

R(x) ∼ π2α

8α

[
1−

(
1− e−λx

1 + e−λx

)θ
]2α

∼ 2α
(π

2

)2α
θ2αe−2αλx.

This implies that, as t→ ∞,

T(t) =
∫ ∞

0

R(x + t)
R(t)

dx ∼ e2αλt
∫ ∞

0
e−2αλ(x+t)dx =

1
2αλ

.

On the other hand, as x → 0 from Lemma 1 adapted to the cdf of the ECSGHL
distribution, we had:

F(x) ∼ α
π

2

(
1− e−λx

1 + e−λx

)θ

∼ α
πλθ

2θ+1 xθ .

Thus, as t→ 0, we had:

T̄(t) =
∫ t

0

F(x)
F(t)

dx ∼ t−θ
∫ t

0
xθdx =

t
θ + 1

.

Theorem 3 was proved.

The results in Theorem 3 could be used for several theoretical purposes. One of them
on the extreme value theory was formulated in the next result.

Theorem 4. Let {Xn}n be a sequence of independent random variables with the ECSHL distribution.

• Let Bn = (Xn:n − an)/bn where an = Q(1− 1/n) and bn = E[X− an|X > an], then:

lim
n→∞

P(Bn ≤ x) = e−e−x
,

for x ∈ R. The cdf of the standard Gumbel distribution was obtained as limit; {Bn}n converged
in distribution to a random variable with such a Gumbel distribution.

• Let B∗n = (X1:n − a∗n)/b∗n where a∗n = 0 and b∗n = Q(1/n), then:

lim
n→∞

P(B∗n ≤ x) = 1− e−xθ
,

for x > 0. The cdf of the W distribution of parameters 1 and θ was obtained as limit; {B∗n}n
converged in distribution to a random variable with such a W distribution.

Proof. The application of Theorem 8.3.2 of [34] was the key of the first point of proof.
The asymptotic behavior of T(t) studied in Theorem 3 gave:

lim
t→∞

R(t + xT(t))
R(t)

∼ lim
t→∞

e−2αλ(t+x/(2αλ))

e−2αλt = e−x.

We obtained the desired result by applying Theorem 8.3.2 of [34].
On the other hand, notice that, thanks to Lemma 1 adapted to the cdf of the ECSGHL

distribution, we had:

lim
t→0

F(tx)
F(t)

∼ lim
t→0

α(πλθ/2θ+1)(tx)θ

α(πλθ/2θ+1)tθ
= xθ .

A direct application of Theorem 8.3.6 of [34] gave the expected result. This ended the
proof of Theorem 4.
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3. Estimation

In this section, we estimated the parameters of the ECSG family using maximum
likelihood estimation (MLE), least-square estimation (LSE), percentile estimation (PE),
and Bayes estimation (BE). Simulation studies were conducted using the ECSW distribution
to examine the performance of these estimation techniques. Moreover, the expression of
the stress–strength reliability parameter Rs, when parameter λ was common, was obtained,
and estimated by Bayes estimation (BE) under various loss functions.

3.1. MLE

Let (X1, . . . , Xn) be a random sample of size n from a distribution of the ECSG family,
and (x1, . . . , xn) be an observation of this sample. Let Θ = (α, ξ)T be a vector of parameters;
then, the maximum likelihood estimate of Θ, denoted by Θ̂ = (α̂, ξ̂)T , was computed by
the maximization of the log-likelihood function with respect to Θ given by:

L(Θ) = n log α + n log
(π

2

)
+

n

∑
i=1

log g(xi; ξ) +
n

∑
i=1

log sin
(π

2
s(xi; ξ)

)
+ (α− 1)

n

∑
i=1

log
[
1− cos

(π

2
s(xi; ξ)

)]
.

This maximization could be performed by solving the following nonlinear system of
equations given by ∂L(Θ)/∂α = 0 and ∂L(Θ)/∂ξ = 0. Here, we had:

∂L(Θ)

∂α
=

n
α
+

n

∑
i=1

log
[
1− cos

(π

2
s(xi; ξ)

)]
(12)

and

∂L(Θ)

∂ξ
=

n

∑
i=1

gξ(xi; ξ)

g(xi; ξ)
+

π

2

n

∑
i=1

sξ(xi; ξ) cot
(π

2
s(xi; ξ)

)
+ (α− 1)

π

2

n

∑
i=1

sξ(xi; ξ) sin((π/2)s(xi; ξ))

1− cos((π/2)s(xi; ξ))
,

where gξ(xi; ξ) and sξ(xi; ξ) indicate the partial derivative of g(xi; ξ) and s(xi; ξ), respec-
tively, with respect to ξ. We gave the existence and uniqueness of the MLE of α: Let U(α; ξ)
be the right hand side of Equation (12). Then, from Equation (12), limα→0 U(α; ξ) = ∞,
and limα→∞ U(α; ξ) = ∑n

i=1 log[1− cos((π/2)s(xi; ξ))] < 0, thus, U(α; ξ) is a decreasing
function from positive to negative values. Since ∂2L(Θ)/∂α2 = −n/α2 < 0, U(α; ξ) = 0
has a unique real root.

The observed Fisher information matrix was required for the interval estimation of
the parameters. In the setting of the ECSG family, it was defined by:

Î = −∂2L(Θ)

∂Θ∂ΘT |Θ=Θ̂ .

The asymptotic distribution underlying Θ̂ could be approximated as the multivariate
normal, Nk(Θ, Î−1) under the usual condition for the parameters in the interior of the
parameter space, but not on the boundary where k is the total number of parameters.
The elements of matrix Î−1 can be requested from the authors.

For r = 1, 2, 3, . . . , k, let Θr be the rth component of Θ. Then, a 100(1− ε)% asymptotic
confidence interval for Θr was given by:

ACIr =

(
Θ̂r − wε/2

√
îrr, Θ̂r + wε/2

√
îrr

)
,
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where Θ̂r is the rth component of Θ̂, îrr is the (r, r)th diagonal element of Î−1, and wε/2 is
the quantile 1− ε/2 of the standard normal distribution.

3.2. LSE

Here, we provided the LSE technique for the parameters of the ECSG family. Let
(X1:n, . . . , Xn:n) be an ordered version of (X1, . . . , Xn), and (x1:n, . . . , xn:n) be an observation
of this sample. Then, the least-square estimate for Θ = (α, ξ)T , denoted by Θ̄ = (ᾱ, ξ̄)T ,
could be obtain by minimizing function `(Θ) with respect to Θ defined by:

`(Θ) =
n

∑
i=1

{
1−

[
1− cos

(π

2
s(xi:n; ξ)

)]α
− i

n + 1

}2
.

It was the solution of the following nonlinear equations, ∂`(Θ)/∂α = 0 and ∂`(Θ)/∂ξ =
0, where

∂`(Θ)

∂α
= −2

n

∑
i=1

{
1−

[
1− cos

(π

2
s(xi:n; ξ)

)]α
− i

n + 1

}
uα

i log(ui)

and

∂`(Θ)

∂ξ
= −απ

n

∑
i=1

{
1−

[
1− cos

(π

2
s(xi:n; ξ)

)]α
− i

n + 1

}
×

uα−1
i sin

(π

2
s(xi:n; ξ)

)
sξ(xi:n; ξ),

with ui = 1− cos((π/2)s(xi:n; ξ)).

3.3. PE

Based on Equation (3), the ECSG family could have a closed-form qf provided the
baseline cdf had a closed-form qf. Hence, the unknown vector of parameters Θ could be
estimated by equating the sample percentile points to the population percentile points. Let
ui denote an estimate of F(xi:n); then, the percentile estimate of Θ, denoted by Θ̃ = (α̃, ξ̃)T ,
could be obtained by minimizing function P(Θ) with respect to Θ defined by:

P(Θ) =
n

∑
i=1

{
xi:n − qG

(
1− 2

π

[
arccos

(
1− (1− ui)

1/α
)])}2

,

which also corresponds to the solutions of the following nonlinear equations: ∂P(Θ)/∂α =
0 and ∂P(Θ)/∂ξ = 0.

3.4. BE

In this part, we proposed the use of the BE to estimate Θ under the square error loss
function (SEL). The Bayes estimate of Θ, denoted by Θ̂, was derived from the posterior
distributions given the sample data. Let N be the number of iterations and K be the number
of the burn-in samples; then, the SEL for the assumed prior distribution was (Θ̂−Θ)2 that
minimized by the posterior mean as Θ̂ = [1/(N − K)]∑N

i=K+1 Θ̂(i). The highest posterior
pdf (HPD) credible interval for Θ̂ could be constructed using the technique derived by [37].

Let (X1, . . . , Xn) be a random sample of size n from a distribution of the ECSG family,
and (x1, . . . , xn) be an observation of this sample. Assume that Θ is a random vector
with components that are independent and follow a certain gamma distribution, e.g.,
α ∼ Gamma(a1, b1) = v1(α) and ξ ∼ Gamma(ar, br) = vr(ξ), r = 1, . . . , m, assuming
that ξ has m parameters, i.e., gamma distributions are the prior distributions. Then, the
likelihood function could be expressed as:
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L(Θ|data) = αn
(π

2

)n n

∏
i=1

g(xi; ξ)
n

∏
i=1

sin
(π

2
s(xi; ξ)

) n

∏
i=1

(
1− cos

[π

2
s(xi; ξ)

)]α−1
.

The joint posterior pdf of Θ|data was given by:

π(Θ|data) =
L(Θ|data)v1(α)v1(ξ) . . . vk(ξ)∫ ∫ ∫

ζ(data; Θ)dαdξ
, (13)

where ζ(data; Θ) = L(Θ|data)v1(α) . . . vk(ξ) is the join pdf for the data. We could obtain
the marginal posterior pdf of α and ξr for r = 1, . . . , m from Equation (13) as:

π1(α) ∝ αn+a1−1e−b1α
n

∏
i=1

[
1− cos

(π

2
s(xi; ξ)

)]α−1

and

πr(ξ) ∝ ξar−1
r e−brξr

n

∏
i=1

g(xi; ξ)
n

∏
i=1

sin
(π

2
s(xi; ξ)

) n

∏
i=1

[
1− cos

(π

2
s(xi; ξ)

)]α−1
.

It was clear that the related posterior distributions were not from well-known distri-
butions. Consequently, we could use the Metropolis–Hastings algorithm with the normal
distribution and the Gibbs sampling technique to generate samples from the posterior
distributions. The algorithm was described step by step below (see [38–40]).

1. Start by initial guess (α(0), ξ(0));
2. Set t = 1;
3. Use the Metropolis–Hastings algorithm to generate α(t) from π1(α);
4. Use the Metropolis–Hastings algorithm to generate ξ(t) from πr(ξ);
5. Set t = t + 1;
6. Repeat steps three to five, T times.

For a very large T, Θ̂ could be obtained based on the SEL, and the HPD credible
interval could be constructed.

3.5. Simulation Studies and Practice of the ECSW Model

Simulation results from the ECSW model were collected to assess the MLE, LSE, PE,
and BE of Θ under SEL. We proceed as follows: To begin, we generated 1000 samples
of size n ∈ {50, 60, 70, . . . , 300} from the ECSW distribution for some parameter values.
The bias and mean square error (MSE) of the estimates were computed using R3.5.3 [41].
In the case of BE, we used N = 1000 number of iterations and the first 10% as burn-in
samples. We noticed that the estimation was good when all the hyperparameters were
greater than one. The results of the simulation studies are illustrated in Figures 5–7. It was
indicated that the MLE, SLE, PE, and BE showed consistency, and their MSE decreased as
the sample size increased; the bias of some parameters was negative in some cases.
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Figure 5. Plots of the bias and MSE for the different estimates of α = 0.3, λ = 0.5 and θ = 0.5.
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Figure 6. Plots of the bias and MSE for the different estimates of α = 0.1, λ = 0.9 and θ = 0.6.
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Figure 7. Plots of the bias and MSE for the different estimates of α = 0.1, λ = 0.3 and θ = 0.5.

In practice, we fitted the ECSW model to real data using the MLE, LSE, PE, and BE.
We compared the obtained fits using Kolmogorov–Smirnov (KS), Anderson–Darling (AD),
and Cramér–von Mises (CVM), along with the p-values of their corresponding tests.
The considered dataset represented 30 successive values for precipitation (in inches) in
March for the Minneapolis/St. Paul area over 30 years, given in [42], and also studied
by [43]. The data were: 0.77, 1.74, 0.81, 1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51,
2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, and 2.05.

The numerical results are given in Table 1. It can be seen that the performance of the
different estimation techniques gave a satisfactory result, with p-values almost equal to 1.
Therefore, each of them could be a good choice in the estimation of the parameters of the
ECSG family in practice. Figure 8 shows the plots of the estimated pdfs and histogram,
empirical cdf, and estimated cdfs. In particular, it was clear that the shape of the histogram
was well captured by the estimated pdf curve. To complete this analysis, Figure 9 shows
the iteration obtained from the BE. Figure 10 presents the posterior pdfs of each parameter
from the BE.

Table 1. MLE, LSE, PE, BE, KS, AD, and CVM with their p-value in parenthesis of the precipita-
tion data.

ECSW α λ θ KS AD CVM

MLE 0.2182 0.8029 1.7340 0.0647 (0.9987) 0.1522 (0.9545) 0.0196 (0.9690)
LSE 0.1992 0.9374 1.6669 0.0598 (0.9997) 0.1429 (0.9668) 0.0184 (0.9787)
PE 0.2057 0.9962 1.4871 0.0838 (0.9727) 0.1232 (0.9853) 0.0157 (0.9914)
BE 1.8027 0.1192 1.7202 0.0729 (0.9936) 0.1889 (0.8928) 0.0253 (0.9007)
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Figure 8. Plots of the estimated pdfs and histogram, empirical cdf and estimated cdfs for the
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Figure 9. Plots of the iteration obtained from the BE for the precipitation data.
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Figure 10. Plots of the posterior pdfs of each parameter from the BE for the precipitation data.

3.6. BE of the Reliability Parameter of the ECSW Distribution

Here, we obtained the expression of the stress–strength reliability parameter Rs in
the setting of the ECSW distribution when parameter λ was common to both the stress
and strength random variables. The parameter estimation was performed via the BE using
gamma prior under various loss functions.

First, after a change of variable, we could express Rs as:

Rs = 1− α1

∫ π
2

0
sin(u1)(1− cos(u1))

α1−1(1− cos(u2))
α2 du1, (14)

where u2 = (π/2)e−λvu1 and vu1 = [−(1/λ) log(2u1/π)]θ2/θ1 .
Let (X1, . . . , Xn) be a random sample of size n from the ECSW1(α1, θ1, λ) distribution,

and (Y1, . . . , Yn) be a random sample of size m from the ECSW2(α2, θ2, λ) distribution. Let
(x1, . . . , xn) and (y1, . . . , yn) be observations of (X1, . . . , Xn) and (Y1, . . . , Yn), respectively.
Then, by using these observations, Rs could easily be computed using mathematical
software, such as R and MATLAB. We illustrated this claim via the BE of Rs under the
SEL, absolute error loss function (AEL), maximum a posteriori (MAP), general entropy loss
function (GEL), and linear exponential loss function (LINEX).

Assume that Θ = (α1, α2, θ1, θ2, λ) is a random vector with independent components
that are independent and follow a gamma distribution, meaning that gamma distributions
are the prior distributions. More precisely, suppose that α1 ∼ Gamma(a1, b1) = v1(α1),
α2 ∼ Gamma(a2, b2) = v2(α2), θ1 ∼ Gamma(a3, b3) = v3(θ1), θ2 ∼ Gamma(a4, b4) =
v4(θ2), and λ ∼ Gamma(a5, b5) = v5(λ). In this setting, the likelihood function was
given by:
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L(Θ|data) = αn
1 λn+mθn

1 αm
2 θm

2

(π

2

)n+m n

∏
i=1

xθ1−1
i

m

∏
j=1

yθ2−1
j e−λ ∑n

i=1 x
θ1
i e−λ ∑m

j=1 yθ2
j

×
n

∏
i=1

sin
(

π

2
e−λx

θ1
i

) m

∏
j=1

sin
(

π

2
e−λyθ2

j

) n

∏
i=1

[
1− cos

(
π

2
e−λx

θ1
i

)]α1−1

×
m

∏
j=1

[
1− cos

(
π

2
e−λyθ2

j

)]α2−1
.

The joint posterior pdf of θ|data was given by:

π(Θ|data) =
L(Θ|data)v1(α1)v2(α2)v3(θ2)v4(θ2)v5(λ)∫ ∫ ∫ ∫ ∫

ζ(data; Θ)dα1dα2dθ1dθ2dλ
, (15)

where ζ(data; Θ) = L(Θ|data)v1(α1)v2(α2)v3(θ2)v4(θ2)v5(λ) is the join pdf for the data.
The marginal posterior pdf of Θ could be obtained from Equation (15) as:

π1(α1) ∝ αn+a1−1
1 e−b1α1

n

∏
i=1

[
1− cos

(
π

2
e−λx

θ1
i

)]α1−1
,
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2 e−b2α2

m

∏
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π

2
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j

)]α2−1
,
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2
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×
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(
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and

π5(λ) ∝ λn+m+a5−1e−b5λ−λ
(

∑n
i=1 x
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) n
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The posterior distributions were not from any recognized distributions. Therefore,
we employed the use of the Metropolis–Hasting algorithm with the normal distribution
and the Gibbs sampling technique to generate samples from the posterior distributions.
The step-by-step algorithm could be deducted from Section 3.4.

The estimate of Rs = Rs(Θ) as defined in Equation (14) was R̂s = Rs(Θ̂), where
Θ̂ = (α̂1, α̂2, θ̂1, θ̂2, λ̂)T was derived from the BE. Here, Θ̂ was computed from the posterior
distributions given the sample data. Let N be the number of iterations and M be the
burn-in. The estimate that minimized SEL for the assumed prior distribution was the
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estimates mean defined by R̂s,SEL = [1/(N −M)]∑N
i=M+1 R̂(i)

s ; the AEL was minimized by
the posterior median as R̂s,AEL; the MAP depended on the likelihood function and prior
distribution, R̂s,MAP was defined by the value that maximized the posterior distribution;

the GEL was minimized by R̂s,GEL =
{
[1/(N −M)]∑N

i=M+1(R̂(i)
s )−c

}−1/c
; the LINEX was

minimized by estimate R̂s,LIN = (−1/c) log
{
[1/(N −M)]∑N

i=M+1 ecR̂(i)
s

}
. In addition,

the HPD credible interval for Rs could be constructed as discussed in [37].

3.7. Simulation Studies for the Reliability Parameter from the ECSW Distribution

In this part, simulation studies were conducted to examine the Bayes estimates of
Rs. A sample size of 1000 was generated for various sample sizes n and m from the
ECSW1(α1, θ1, λ) and ECSW2(α2, θ2, λ) distributions, respectively, for some different pa-
rameter values. We considered various cases of (n, m) as (20, 20), (30, 20), (30, 40), (50, 40),
and (60, 60). The Bayes estimates of Rs under various loss functions were computed,
and the bias, MSE, 95% credible interval, and coverage probability (CP) were obtained. We
considered a number of 1000 iterations, and the first 20% as the burn-in; in a similar way,
the estimation was satisfactory when all the hyperparameters selected were greater than
one. The results of the simulation are given in Table 2.

We saw that, as the two sample sizes increased, the MSE decreased; the estimated
value of Rs went to its actual value, and the average length of the confidence interval
(ALCI) decreased as the sample size increased. Furthermore, the CP went to the nominal
level of 95%.

Table 2. Actual parameter values and Rs; Bayes estimates of Rs under various loss functions; MSE
with bias in parenthesis, ALCI with CP in parenthesis of the estimates.

(α1, α2, θ1, θ2, λ, Rs) (n, m) R̂s,SEL MSESEL R̂s,AEL MSEAEL R̂s,MAP MSEMAP R̂s,GEL MSEGEL R̂s,LIN MSELIN ALCI

(1.0, 1.0, 1.0, 1.0, 1.0, 0.5000) (20, 20) 0.4995 0.0059 0.5008 0.0061 0.5028 0.0071 0.4751 0.0072 0.4925 0.0060 0.3186
(−0.0005) (0.0008) (0.0023) (−0.0249) (−0.0075) (0.96)

(30, 20) 0.4613 0.0057 0.4619 0.0054 0.4624 0.0066 0.4394 0.0058 0.4554 0.0051 0.2907
(0.0082) (0.0088) (0.0094) (−0.0137) (0.0024) (0.95)

(30, 40) 0.5017 0.0035 0.5024 0.0036 0.5029 0.0044 0.4876 0.0039 0.4974 0.0035 0.2511
(0.0017) (0.0024) (0.0029) (−0.0124) (−0.0026) (0.96)

(50, 40) 0.4998 0.0029 0.5003 0.0030 0.5011 0.0034 0.4884 0.0032 0.4962 0.0029 0.2272
(−0.0002) (0.0003) (0.0011) (−0.0116) (−0.0037) (0.96)

(60, 60) 0.5018 0.0024 0.5021 0.0025 0.5027 0.0029 0.4935 0.0026 0.4991 0.0024 0.1964
(0.0018) (0.0021) (0.0027) (−0.0066) (−0.0009) (0.95)

(2.0, 3.5, 0.9, 0.6, 2.0, 0.8396) (20, 20) 0.8302 0.0034 0.8371 0.0034 0.8493 0.0039 0.8226 0.0040 0.8264 0.0037 0.2213
(−0.0094) (−0.0025) (0.0097) (−0.0017) (−0.0132) (0.93)

(30, 20) 0.8289 0.0030 0.8348 0.0030 0.8443 0.0034 0.8225 0.0035 0.8256 0.0032 0.2060
(−0.0107) (−0.0048) (0.0047) (−0.0171) (−0.0139) (0.94)

(30, 40) 0.8385 0.0022 0.8428 0.0023 0.8493 0.0026 0.8344 0.0024 0.8363 0.0023 0.1698
(−0.0011) (0.0033) (0.0097) (−0.0052) (−0.0032) (0.91)

(50, 40) 0.8359 0.0017 0.8392 0.0017 0.8452 0.0019 0.8326 0.0018 0.8341 0.0018 0.1526
(−0.0037) (−0.0003) (0.0056) (−0.0069) (−0.0054) (0.93)

(60, 60) 0.8404 0.0012 0.8429 0.0012 0.8469 0.0015 0.8381 0.0013 0.8392 0.0012 0.1307
(0.0008) (0.0034) (0.0074) (−0.0015) (−0.0004) (0.93)

(1.3, 1.4, 0.5, 0.6, 0.5, 0.4995) (20, 20) 0.4970 0.0063 0.4985 0.0066 0.5009 0.0080 0.4704 0.0078 0.4891 0.0064 0.3261
(−0.0025) (−0.0009) (0.0014) (−0.0291) (−0.0099) (0.96)

(30, 20) 0.5005 0.0059 0.5016 0.0062 0.5030 0.0074 0.4779 0.0068 0.4940 0.0059 0.3039
(0.0010) (0.0021) (0.0036) (−0.0216) (−0.0055) (0.95)

(30, 40) 0.4962 0.0044 0.4971 0.0045 0.4978 0.0054 0.4807 0.0049 0.4916 0.0044 0.2585
(−0.0032) (−0.0024) (−0.0016) (−0.0188) (−0.0079) (0.95)

(50, 40) 0.4959 0.0030 0.4964 0.0031 0.4967 0.0038 0.4838 0.0034 0.4922 0.0031 0.2317
(−0.0035) (−0.0031) (−0.0027) (−0.0156) (−0.0072) (0.96)

(60, 60) 0.4974 0.0024 0.4978 0.0024 0.4986 0.0029 0.4887 0.0026 0.4947 0.0024 0.1995
(−0.0020) (−0.0017) (−0.0009) (−0.0108) (−0.0048) (0.96)

(1.3, 1.2, 1.5, 1.5, 1.5, 0.4800) (20, 20) 0.4873 0.0064 0.4883 0.0067 0.4890 0.0080 0.4609 0.0077 0.4800 0.0064 0.3265
(0.0073) (0.0084) (0.0099) (−0.0190) (−0.0001) (0.95)

(30, 20) 0.4850 0.0062 0.4856 0.0064 0.4859 0.0075 0.4626 0.0072 0.4786 0.0062 0.3038
(0.0050) (0.0056) (0.0059) (−0.0174) (−0.0014) (0.93)

(30, 40) 0.4841 0.0042 0.4846 0.0044 0.4849 0.0053 0.4687 0.0047 0.4796 0.0043 0.2574
(0.0041) (0.0045) (0.0049) (−0.0113) (−0.0004) (0.94)

(50, 40) 0.4824 0.0032 0.4827 0.0033 0.4832 0.0038 0.4701 0.0035 0.4787 0.0032 0.2319
(0.0024) (0.0027) (0.0032) (−0.0099) (−0.0013) (0.96)

(60, 60) 0.4810 0.0024 0.4813 0.0025 0.4809 0.0029 0.4720 0.0026 0.4783 0.0025 0.2005
(0.0010) (0.0013) (0.0009) (−0.0080) (−0.0017) (0.95)
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Table 2. Cont.

(α1, α2, θ1, θ2, λ, Rs) (n, m) R̂s,SEL MSESEL R̂s,AEL MSEAEL R̂s,MAP MSEMAP R̂s,GEL MSEGEL R̂s,LIN MSELIN ALCI

(2.0, 3.0, 1.0, 1.0, 1.0, 0.6000) (20, 20) 0.5924 0.0077 0.5953 0.0080 0.6000 0.0095 0.5711 0.0094 0.5851 0.0080 0.3231
(−0.0076) (−0.0047) (0.0001) (−0.0289) (−0.0149) (0.93)

(30, 20) 0.5941 0.0063 0.5966 0.0065 0.6016 0.0076 0.5766 0.0075 0.5880 0.0065 0.2974
(−0.0059) (−0.0034) (0.0016) (−0.0234) (−0.0120) (0.93)

(30, 40) 0.5955 0.0043 0.5975 0.0044 0.6009 0.0050 0.5830 0.0049 0.5909 0.0044 0.2557
(−0.0045) (−0.0025) (0.0009) (−0.0169) (−0.0091) (0.94)

(50, 40) 0.5970 0.0033 0.5986 0.0034 0.6006 0.0039 0.5875 0.0037 0.5935 0.0034 0.2268
(−0.0030) (−0.0014) (0.0006) (−0.0125) (−0.0065) (0.95)

(60, 60) 0.5948 0.0028 0.5960 0.0027 0.5975 0.0032 0.5877 0.0029 0.5921 0.0027 0.1977
(−0.0052) (−0.0040) (−0.0025) (−0.0123) (−0.0079) (00.94)

(0.9, 0.8, 0.6, 0.7, 0.8, 0.4531) (20, 20) 0.4633 0.0059 0.4641 0.0062 0.4661 0.0078 0.4362 0.0066 0.4562 0.0056 0.3195
(0.0102) (0.0110) (0.0131) (−0.0169) (0.0031) (0.96)

(30, 20) 0.4565 0.0045 0.4569 0.0047 0.4568 0.0057 0.4330 0.0053 0.4504 0.0045 0.2987
(0.0035) (0.0039) (0.0037) (−0.0201) (−0.0027) (0.96)

(30, 40) 0.4617 0.0036 0.4622 0.0038 0.4619 0.0045 0.4459 0.0039 0.4573 0.0036 0.2531
(0.0087) (0.0091) (0.0089) (−0.0072) (0.0043) (0.96)

(50, 40) 0.4542 0.0027 0.4541 0.0028 0.4543 0.0032 0.4416 0.0030 0.4507 0.0027 0.2267
(0.0012) (0.0011) (0.0012) (−0.0114) (−0.0024) (0.97)

(60, 60) 0.4579 0.0022 0.4580 0.0022 0.4579 0.0027 0.4488 0.0023 0.4553 0.0022 0.1952
(0.0049) (0.0049) (0.0048) (−0.0042) (0.0022) (0.96)

(1.1, 1.5, 1.2, 1.3, 1.0, 0.5551) (20, 20) 0.5380 0.0067 0.5412 0.0068 0.5447 0.0079 0.5146 0.0089 0.5315 0.0070 0.3285
(−0.0161) (−0.0139) (−0.0105) (−0.0405) (−0.0237) (0.95)

(30, 20) 0.5463 0.0060 0.5482 0.0062 0.5513 0.0071 0.5264 0.0074 0.5399 0.0062 0.3037
(−0.0089) (−0.0069) (−0.0039) (−0.0289) (−0.0153) (0.94)

(30, 40) 0.5422 0.0044 0.5435 0.0045 0.5455 0.0053 0.5281 0.0053 0.5376 0.0046 0.2598
(−0.0129) (−0.0116) (−0.0097) (−0.0269) (−0.0176) (0.94)

(50, 40) 0.5477 0.0032 0.5488 0.0033 0.5501 0.0038 0.5369 0.0037 0.5441 0.0033 0.2311
(−0.0074) (−0.0063) (−0.0050) (−0.0183) (−0.0111) (0.95)

(60, 60) 0.5478 0.0026 0.5487 0.0026 0.5496 0.0030 0.5399 0.0029 0.5451 0.0026 0.2004
(−0.0072) (−0.0064) (−0.0054) (−0.0152) (−0.0100) (0.96)

4. Real Data Illustration

We provided an illustrative performance of the ECSG family through the ECSP, ECS-
GHL, and ECSW models using real datasets. The performance of the ECSP and ECSGHL
models were compared with some other existing models, while the ECSW model was
demonstrated as a good candidate in stress–strength parameter estimation in practice.
The model parameters were estimated by the MLE. We compared the fit of the models by
the Akaike information criterion (AIC), consistent Akaike information criterion (CAIC),
Bayesian information criterion (BIC), KS, AD, and CVM, along with the p-values for the re-
lated test when possible. The model with the smallest value of AIC, BIC, KS, AD, and CVM,
and the greatest value of p-values, fit the data better than the other. The competing models
included the generalized modified Weibull–Poisson (GMWP) model, generalized modified
Weibull-Geometric (GMWG) model, generalized modified Weibull-logarithmic (GMWL)
model by [44], Poisson-odd generalized uniform (POGE-U) model by [45], exponenti-
ated generalized linear exponential (EGLE) model by [46], gamma-uniform (GU) model
by [47], generalized linear failure rate (GLFR) model by [48], beta Weibull (BW) model
by [49], generalized modified Weibull (GMW) model by [50], modified Weibull distribution
(MW) model by [51], generalized linear exponential (GLE) model by [52], beta-modified
Weibull (BMW) model by [53], power (P) model, exponentiated generalized standardized
half-logistic (EGSHL) model by [54], Poisson half-logistic (PHL) model by [55], Olapade
half-logistic (OHL) model by [56], beta half-logistic (BHL) model by [57], half-logistic
Poisson (HLP) model by [58], generalized half-logistic (GHL) model by [59], and comple-
mentary Poisson generalized half-logistic (CPGHL) model [60].

4.1. Real Data I

We fitted the ECSP model to the given data and compared it with some popular
models, including those used previously in the study of that set. The dataset provided
by [61] contained the lifetimes of fifty devices. They were given by: 21, 32, 36, 40, 45, 46, 47,
50, 55, 60, 63, 63, 67, 67, 67, 67, 72, 75, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86, 0.1, 0.2, 1, 1, 79,
82, 82, 1, 1, 1, 2, 3, 6, 7, 11, 12, 18, 18, 18, 18, and 18.

The total time on the test (TTT) is presented in Figure 11. This figure indicated that
the data had an underlying hrf with a bathtub shape. This case was covered by the hrf of
the ECSP model. Table 3 gives the numerical results obtained. It is shown that the ECSP
model provided a better fit than the other considered models. Figure 12 illustrates the
histogram with the estimated pdf, and empirical cdf with the estimated cdf of the ECSP
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model. Figure 13 shows the plots of the empirical and estimated hrf, and the empirical and
estimated chrf of the ECSP model. Figure 14 shows the plots of the profile-log likelihood
functions to illustrate the uniqueness of the estimates, and the quantile–quantile (QQ) plot
to check the adequacy of the estimated ECSP model.
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Figure 11. TTT plots for the lifetimes for real data I.

Table 3. Maximum likelihood estimates, L, AIC, CAIC, BIC, KS (p-value) for real data I.

Distributions α̂ β̂ λ̂ â b̂ γ̂ θ̂ L AIC CAIC BIC KS (p-Value)

ECSP 0.2118 − 86.0100 − − − 0.3551 −202.59 411.19 411.71 416.92 0.0821 (0.862)
GU 0.267 51.942 − 0.09 86.713 − − −207.33 418.65 414.83 426.30 0.1520 (0.198)
TUq − − −0.1900 0.0999 86.0000 0.9262 − −212.86 433.72 434.61 441.37 0.1212 (0.421)
BMW 2.4× 10−4 0.054 − 0.197 0.165 1.380 − −220.28 450.56 440.78 460.12 0.1303 (0.364)
BW 1.0× 10−5 − − 0.129 0.070 3.320 − −223.11 454.22 446.40 461.87 0.1246 (0.419)
MW 0.062 0.023 − − - 0.355 − −226.16 460.31 452.44 466.05 0.1338 (0.332)
EGLE − − − 3.3× 10−3 1.7× 10−4 4.564 0.112 −224.34 456.67 448.85 464.32 0.1475 (0.206)
GLE − − − 9.6× 10−3 4.5× 10−4 0.730 − −235.93 477.85 471.98 483.59 0.1598 (0.139)
GLFR − − − 3.8× 10−3 3.1× 10−4 − 0.533 −233.15 472.29 466.42 478.03 0.1620 (0.129)
POGE-U 0.022 0.371 1.769 − 87.010 − − −206.68 419.34 413.47 425.08 0.0923 (0.754)
GMWP 5.4× 10−8 0.134 0.084 − - 2.137 0.638 −220.88 451.75 441.98 461.31 0.1400 (0.281)
GMWL 2.130 2.682 0.013 − - 0.278 1.000 −217.77 445.53 435.76 455.09 0.1311 (0.357)
GMWG 9.4× 10−8 0.123 0.075 − - 2.228 0.464 −220.78 451.55 441.78 461.11 0.1346 (0.326)
GMW 1.0× 10−5 0.065 − 0.223 - 1.371 − −221.40 452.81 442.99 460.46 0.1464 (0.234)
P − − 86.0100 − − − 0.7270 −219.89 433.78 444.03 447.60 0.9999 (8.9× 10−16)
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Figure 12. Plots of the histogram with the estimated pdf, and empirical cdf with estimated cdf of the
ECSP model for real data I.
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Figure 13. Plots of the empirical and estimated hrf, and the empirical and estimated chrf of the ECSP
model for real data I.
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Figure 14. Plots of the profile-log likelihood functions, and the quantile–quantile plot of the ECSP
model for real data I.

4.2. Real Data II

The ECSGHL model was considered to fit the dataset provided by [62]. The dataset
consisted of the 100 observations on the breaking stress of carbon fibers (in Gba). The data
were: 2.76, 4.91, 3.68, 1.84, 1.59, 3.19,1.57, 0.81, 5.56, 1.73, 1.59, 2, 1.22, 1.12, 1.71, 2.17, 1.17,
5.08, 2.48, 1.18, 3.51, 2.17, 1.69, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.7, 2.03, 1.8,
1.57, 1.08, 2.03, 1.61, 2.12, 1.89, 2.88, 2.82, 2.05, 3.65, 3.7, 2.74, 2.73, 2.5, 3.6, 3.11, 3.27, 2.87,
1.47, 3.11,4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.9, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96,
2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.2, 3.33, 2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59,
2.38, 2.81, 2.77, 2.17, 2.83, 1.92, 1.41, 3.68, 2.97, 1.36, and 0.98. The fit of the ECSGHL model
was compared with some existing models using some of the model selection criteria and
goodness-of-fit tests mentioned above.

Figure 15 displays the TTT plot, showing that the data possessed an underlying
increasing hrf. The ECSGHL model was able to treat this case. The numerical results are
given in Table 4. From this table, it was clear that the ECSGHL model provided a better
fit than the other competing models. Figure 16 shows the plots of the histogram with
the estimated pdf, and the empirical cdf with the estimated cdf of the ECSGHL model.
Figure 17 shows the plots of the empirical and estimated hrf, the empirical and estimated
chrf model, and the QQ plot of the ECSGHL model, while Figure 18 shows the plots of the
profile-log likelihood functions of the fitted ECSGHL model.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.4

0
.8

i/n

T
(i
/n

)

Figure 15. TTT plot for real data II.

Table 4. Maximum likelihood estimates, L, AIC, CAIC, BIC, KS, AD, CVM with p-value in parenthesis
for real data II.

Distributions α̂ β̂ λ̂ â b̂ θ̂ L AIC CAIC BIC KS AD CVM

ECSGHL 2942.23 - 0.0033 − − 2.7980 −141.42 289.04 283.11 296.86 0.0604 (0.860) 0.4118 (0.334) 0.0619 (0.353)
GHL 1.0795 − − − − 4.9029 −144.73 293.45 293.58 298.66 0.0977 (0.295) 0.9859 (0.013) 0.1923 (0.007)
PHL 1.2004 − 7.2596 − − − −143.12 290.24 290.36 295.45 0.0895 (0.399) 0.7502 (0.049) 0.1492 (0.024)
EGSHL − − − 1.1133 5.0189 − −144.55 293.10 293.22 298.31 0.1011 (0.258) 0.9685 (0.014) 0.1891 (0.007)
CPGHL 1.2860 − 2.9110 − − 3.1660 −142.45 290.90 291.15 298.71 0.0827 (0.501) 0.6271 (0.099) 0.1248 (0.051)
BHL 0.1328 − − 4.6873 6.7492 − −142.20 290.41 290.66 298.22 0.0849 (0.467) 0.5847 (0.125) 0.1141 (0.071)
HLP 0.1250 − 6.0979 − − − −197.92 399.85 399.97 405.06 0.3202 (2.5e-9) 0.8115 (0.034) 0.1588 (0.018)
OHL 0.7987 − − − − 0.6459 −180.92 365.85 365.97 371.06 0.2778 (3.9e-7) 0.6329(0.096) 0.1247 (0.051)
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Figure 16. Plots of the histogram with the estimated pdf, and the empirical cdf with the estimated
cdf of the ECSGHL model for real data II.
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Figure 17. Plots of the empirical and estimated hrf, the empirical and estimated chrf, and QQ plot of
the ECSGHL model for real data II.
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Figure 18. Plots of the profile-log likelihood functions of the fitted ECSGHL model for real data II.

4.3. Real Data III

Here, the performance of the ECSW model in reliability studies was demonstrated
using a real dataset. The stress–strength reliability parameter Rs, when parameter λ was
common, was estimated using the BE using gamma prior distributions under the SEL,
AEL, MAP, GEL, and LINEX. The HPD credible interval of Rs was obtained for the GEL
and LINEX (with the choice c = 2). We considered 1000 iterations and the first 20% as
the burn-in. The dataset was the strength data measured in GPA, for single carbon fibers
and impregnated 1000-carbon fiber tows provided by [63]. Single fibers were tested under
tension at gauge lengths of 1, 10, 20, and 50 mm. Impregnated tows of 1000 fibers were
tested at gauge lengths of 20, 50, 150, and 300 mm. We considered the single fibers of 20 mm
as (first data, n = 69), and 10 mm (second data, m = 63) in gauge lengths. These datasets
were also studied by [64]. The data were given below:

First data: 0.312, 0.314, 0.479, 0.552, 0.700, 0.803, 0.861, 0.865, 0.944, 0.958, 0.966, 0.997,
1.006, 1.021, 1.027, 1.055, 1.063, 1.098, 1.140, 1.179, 1.224, 1.240, 1.253, 1.270, 1.272, 1.274,
1.301, 1.301, 1.359, 1.382, 1.382, 1.426, 1.434, 1.435, 1.478, 1.490, 1.511, 1.514, 1.535, 1.554,
1.566, 1.570, 1.586, 1.629, 1.633, 1.642, 1.648, 1.684, 1.697, 1.726, 1.770, 1.773, 1.800, 1.809,
1.818, 1.821, 1.848, 1.880, 1.954, 2.012, 2.067, 2.084, 2.090, 2.096, 2.128, 2.233, 2.433, 2.585,
and 2.585.

Second data: 0.101, 0.332, 0.403, 0.428, 0.457, 0.550, 0.561, 0.596, 0.597, 0.645, 0.654,
0.674, 0.718, 0.722, 0.725, 0.732, 0.775, 0.814, 0.816, 0.818, 0.824, 0.859, 0.875, 0.938, 0.940,
1.056, 1.117, 1.128, 1.137, 1.137, 1.177, 1.196, 1.230, 1.325, 1.339, 1.345, 1.420, 1.423, 1.435,
1.443, 1.464, 1.472, 1.494, 1.532, 1.546, 1.577, 1.608, 1.635, 1.693, 1.701, 1.737, 1.754, 1.762,
1.828, 2.052, 2.071, 2.086, 2.171, 2.224, 2.227, 2.425, 2.595, and 3.220.

The KS measure was used to show how the ECSW model provided a good fit to
the two datasets. The numerical results for the Bayes estimates of the parameters under
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the SEL were: α̂1 = 0.7594, α̂2 = 1.4136, θ̂1 = 2.8335, θ̂2 = 2.0313, and λ̂ = 0.1921. The
KS value for the first dataset was KS1 = 0.0675 (p-value = 0.8901), while for the second
dataset was KS2 = 0.0787 (p-value = 0.8016). Figure 19 shows the cdf of the first and
second datasets with the fitted ECSW1 and ECSW2 models, respectively, indicating how
well the ECSW model fit the two datasets by the proposed BE. The estimated values of the
reliability parameter under various loss functions were R̂s,SEL = 0.5897, R̂s,AEL = 0.5890,
R̂s,MAP = 0.5859, R̂s,GEL = 0.5844, and R̂s,LINEX = 0.5877, with a confidence interval of
(0.5006, 0.6794). It was clear that the estimated values of Rs under the various loss functions
were very close, and the confidence interval was good. Thus, the ECSW model could be
considered as a good candidate for stress–strength reliability studies. Figure 20 shows the
plots of the histogram and estimated values of Rs obtained from the Metropolis–Hastings
algorithm and the Gibbs sampling technique of the Bayes estimates.

0.5 1.0 1.5 2.0 2.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

c
d

f

ECSW1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Y

c
d

f

ECSW2

Figure 19. Plots of the cdf of first data with the fitted ECSW1 model, and second data with the fitted
ECSW2 model.
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Figure 20. Plots of the histogram and estimated values of Rs obtained from the Bayes estimates.

5. Conclusions

In this work, we proposed the new extended cosine-generated (ECSG) family of
distributions. It contributed to the development of the trigonometric families by extending
the famous sine-generated (SG) family, which has demonstrated a lot of success in recent
years. Original and flexible distributions were derived, thanks to the joint oscillating nature
of the involved trigonometric functions and the modulation of one additional parameter.
Some important mathematical and statistical properties were derived, such as asymptotic
results, quantile function, the series representation of the cumulative distribution and
probability density functions, moments, moments of residual life, reliability parameter,
and order statistics. Three special members were proposed and discussed, including the
extended cosine Weibull (ECSW), extended cosine power (ECSP), and extended cosine
generalized half-logistic (ECSGHL) distributions. The unknown parameters estimation was
performed using the maximum likelihood estimation, least-square estimation, percentile
estimation, and Bayes estimation under the SEL. All the proposed techniques provided
a good result as examined by simulation studies of estimates’ bias and mean square
error. The stress–strength reliability studies from the ECSW distribution were discussed
under common scale parameters and estimated using the BE with a gamma prior under
the square error loss function (SEL), absolute error loss function, maximum a posteriori,
general entropy loss function, and linear exponential loss function. A simulation was
considered to study the Bayes estimates of the stress–strength parameter as discussed by
the bias, mean square error, confidence interval, and coverage probability. Finally, three real
data applications of the ECSG family were provided for illustration; one of them was stress–
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strength data discussed using the ECSW distribution. The real data studies showed the
ECSG family’s nice performance and illustrate that the ECSW model could be considered a
good candidate for stress–strength reliability studies. Possible perspectives of the ECSG
family were the construction of trigonometric regression models, skewed trigonometric
distributions, and copulas functions. All these directions need more investigations, which
we leave for future work. We hope that the new model will attract broader applications in
various fields of study.
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