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Abstract: The peaks-over-threshold (POT) method has a long tradition in modelling extremes in
environmental variables. However, it has originally been introduced under the assumption of
independently and identically distributed (iid) data. Since environmental data often exhibits a time
series structure, this assumption is likely to be violated due to short- and long-term dependencies
in practical settings, leading to clustering of high-threshold exceedances. In this paper, we first
review popular approaches that either focus on modelling short- or long-range dynamics explicitly.
In particular, we consider conditional POT variants and the Mittag–Leffler distribution modelling
waiting times between exceedances. Further, we propose a new two-step approach capturing
both short- and long-range correlations simultaneously. We suggest the autoregressive fractionally
integrated moving average peaks-over-threshold (ARFIMA-POT) approach, which in a first step
fits an ARFIMA model to the original series and then in a second step utilises a classical POT
model for the residuals. Applying these models to an oceanographic time series of significant wave
heights measured on the Sefton coast (UK), we find that neither solely modelling short- nor long-
range dependencies satisfactorily explains the clustering of extremes. The ARFIMA-POT approach,
however, provides a significant improvement in terms of model fit, underlining the need for models
that jointly incorporate short- and long-range dependence to address extremal clustering, and their
theoretical justification.

Keywords: peaks-over-threshold; extremal clustering; long-range dependence; ARFIMA models;
extreme value theory; significant wave heights; Sefton coast

1. Introduction

Extreme value theory (EVT) has emerged as an invaluable toolkit for a broad range
of sciences in recent decades. It attempts to predict the occurrence of extreme events by
making the best use of limited available data. They can be divided into two fundamental
approaches: the block maxima method and the peaks-over-threshold (POT) method, while
the former splits the observation period into non-overlapping, equally-sized periods and
then only analyses the maximum of each period, the latter picks extreme observations ex-
ceeding a specific high threshold [1]. In the following, we focus on the POT method, which
has proven useful in a variety of applications including financial risk management [2,3], in-
surance [4], coastal engineering [5,6], and oceanography [7,8]. We regard the POT approach
from the perspective of a marked point process (MPP): exceedances over a high threshold
u will be referred to as extreme events. Such an event is associated with an occurrence time
and a mark size, the latter corresponding to the size of the excess above the threshold.

The motivation for the classical POT model can be found in the asymptotic behaviour
of high threshold exceedances for identically and independently distributed (iid) data.
The approach assumes that if the threshold u is chosen high enough, the extreme events
follow a marked Poisson process, i.e., the number of extremes events occurring can be
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described by a homogeneous Poisson process and their mark sizes are iid with a generalised
Pareto distribution (GPD). This process also characterises the inter-event times as being iid
exponentially distributed.

In many practical settings, however, the iid assumption is violated. Short-range de-
pendencies arising from local serial correlation of the underlying time series may cause
extreme events to occur in clusters [2]. Therefore, assuming independent exponential
inter-event times may seem unreasonable. These practical issues are often tackled by using
declustering methods and then fitting the marked Poisson process to the largest value
of each cluster only (see, e.g., [9]). This approach however disregards the information
contained within the clusters (cf. [10,11]), and gives rise to the challenge of appropriately
and consistently identifying clusters from given data. Relevant literature includes works
on statistical declustering using the extremal index due to Leadbetter et al. [10,12–15],
on physical declustering [10,16,17], or on double threshold approaches combining statis-
tical and physical declustering [18,19]. However, all these declustering methods have in
common that they avoid modelling the short-range dependence directly.

It is impossible to universally characterise the short-term behaviour of stationary
sequences as it can take countless different forms, but imposing certain constraints on
the local dependence structure enables parametric modelling thereof. One approach
builds on a marked point process with a self-exciting structure to model the clustering
of extreme events, leading to conditional POT approaches. The Hawkes-POT model
introduced by Chavez-Demoulin et al. [2] belongs to the general class of self-exciting
Hawkes processes [20] and allows the intensity of the occurrence of extreme events to
depend on both past event times and marks. A related approach is the so-called self-exciting
POT (SEPOT) suggested by McNeil et al. [21], where one Hawkes process influences the
intensity of both event times and marks. The various conditional POT models were
reviewed in [3,22–24], and extended to a multivariate framework by Grothe et al. [25]
and Hautsch and Herrera [26]. Conditional POT models are based on similar ideas as
the epidemic-type aftershock sequence (ETAS) model proposed by Ogata [27], which is
designed to describe the occurrence of earthquakes based on previous ones and was further
explored for example by Helmstetter and Sornette [28].

In the aforementioned approaches, the conditional intensities of the events depend
exponentially on the characteristics of past events implying a focus on modelling short-term
dependencies explicitly, but neglecting any possible long-term correlations. However, we
also have to consider settings in which long-range dependence in the underlying sequence
influences the clustering behaviour so that we cannot per se assume that widely separated
events are independent. Many time series of practical interest ranging from finance [29] to
hydrology [30] and forestry [31] have long been known to exhibit long-range dependence,
implying a power-like decay of the autocovariance function γ(h), h ∈ Z, i.e.,

γ(h) ∼ c|h|2d−1 as h→ ∞ (1)

where c > 0 and 0 < d < 0.5 for a stationary process [32]. An alternative definition is based
on the spectral density f (λ) = 1

2π ∑∞
h=−∞ γ(h) exp(−ihλ) with λ ∈ [−π, π]. The spectral

density of a long-range dependent series has a pole at the origin and decays hyperbolically
thereafter, i.e., the spectral density is described by

f (λ) ∼ c|λ|−2d as λ→ 0 (2)

where c > 0 and 0 < d < 0.5 [33].
Modelling the extreme events of long-range dependent time series hence requires spe-

cial attention to the characteristics that event times and marks inherit from the underlying
process. Generally, long-range dependence in the underlying time series has been observed
to lead to pronounced clustering of extreme events [34,35]. There is empirical evidence that
the inter-event times may follow a Weibull [36], a stretched exponential distribution [37–39]
or the product of a power law and a stretched exponential [40], but these observations
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lack analytical justification. The inter-event times themselves have also been found to
exhibit long-range dependence [35,41]. In numerical experiments, maxima sequences were
as well found to exhibit long-range dependence and, depending on the distribution and
the strength of the long-term correlations of the underlying sequence, the distribution of
maxima may deviate from the asymptotics for finite block sizes [42]. It could be suspected
that the effects on the whole tail of the mark distribution might be more pronounced than
when considering only a sequence of maxima.

In the context of EVT, not many parametric approaches exist that incorporate explicit
modelling of the long-term dependence structure in the underlying series. One exam-
ple is suggested by Hees et al. [43] and motivated by so-called bursty extremes where
event clusters are separated by long periods without any event. Hees et al. [43] provide
a parametric approach to modelling a setting in which the event occurrences follow a
fractional Poisson process which was proved to be long-range dependent by Biard and
Saussereau [44]. They focus on characterising the inter-event times via the Mittag–Leffler
distribution, which generalises the exponential distribution [45,46]. This framework can
easily be complemented by additionally modelling the mark sizes through a GPD [43].

All these variants of the POT model have in common that they explicitly model the
dependence structure of the underlying times series to capture the clustering behaviour
of the extreme events, either by taking into account short-term or long-term correlations.
However, none of the models embeds short- and long-range dynamics at the same time.
Considering real world applications, it is very likely that many financial and physical
processes are governed by both short- and long-range dependencies affecting the cluster
formation of their extreme events.

The focus of this paper lies on oceanographic variables which are frequently identified
to be long-range dependent. Especially near the coast, sea level observations [47,48] and
sea surface temperatures [49,50] were found to exhibit long-range dependence. Similar
findings are reported for sea-ice thickness [51] and significant wave height [52–54]. The
dataset we consider in our application in Section 4 also consists of significant wave heights
that were measured on the Sefton coast (UK). Figure 1 depicts the observed time series
and illustrates the exceedances of the high threshold u = 2.5 m, i.e., the extreme events.
It is obvious that the extreme events appear in widely separated clusters implying strong
local dependencies, which is confirmed by the empirical autocorrelation functions (ACFs)
of both observations and their squares (cf. Figure 2). Therefore, it is not surprising that
the inter-event times appear to have a distribution clearly differing from the exponential
distribution expected for iid observations, as can be observed from the quantile-quantile
(QQ) plot in Figure 1. The periodogram of the significant wave heights in Figure 2 further
hints at the presence of long-range dependence due to the pole at the origin, which is in
line with the aforementioned literature.

Figure 1. Offshore significant wave heights at Sefton coast from 10 September to 9 December 2013.
Exceedances above a threshold u = 2.5 m, corresponding to 7.9% of the observations, and QQ plot of
the inter-event times compared to a unit exponential distribution.
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Figure 2. Autocorrelation functions and periodogram of the significant wave heights.

Thus, the visual inspection of the considered dataset implies that the dependence
structure of the significant wave heights exhibits both short- and long-term correlations.
Of course this has to be accounted for when attempting to explicitly characterise the
extremal clustering.

Therefore, with the aim of jointly modelling short- and long-range dependencies,
we suggest a two-step approach in the spirit of McNeil and Frey [55] which we will call
autoregressive fractionally integrated moving average peaks-over-threshold (ARFIMA-
POT) approach. Addressing the issue of heteroscedasticity in financial data, McNeil and
Frey [55] introduced the so-called GARCH-EVT approach which first fits a GARCH model
to a return series and then applies standard EVT techniques to the pseudo-iid residuals
from the first step. Even though there is no theory that mathematically characterises the
clustering behaviour of the extremes from GARCH model residuals [56], the two-stage
method has proven to work well in practice [57–61]. In a similar fashion, we propose a
two-stage method combining a parametric model with a classical EVT model.

Our ARFIMA-POT approach is based on first fitting an autoregressive fractionally
integrated moving average (ARFIMA) model [62,63] to the original oceanographic dataset
and then applying the standard POT model to the ARFIMA residuals. Given that the
ARFIMA model captures both short- and long-range dependence in the underlying time
series, the model residuals are supposed to be iid, so that all difficulties arising for the
distribution of event times and mark sizes due to the short- and long-term behaviour in
the original series can be avoided. The method is inspired by the idea of prewhitening the
underlying series as suggested for example by Davison and Smith [9] to deal with non-
stationarity and seasonality in POT modelling. For Hill’s estimator of the tail index, Resnick
and Stărică [64,65] show that using the residuals of an autoregressive (AR) process is
superior in terms of asymptotic variance than estimation based directly on the observations,
given that the series follows an AR process and the AR model has a causal representation.
This clearly indicates that prewhitening can have favourable properties in the context of
EVT. Further, the idea of utilising an ARFIMA model to describe a time series in the context
of oceanography is not new. ARFIMA models are a popular choice for characterising
levels and trends in weather-related, hydrological and oceanographic data [66]. Specifically,
Ercan at al. [48] for instance model the Caspian sea level using ARFIMA processes. Thus,
our ARFIMA-POT approach can be interpreted as filtering the underlying oceanographic
time series using an ARFIMA model before applying the classical POT method.

This paper contributes to the line of literature that aims to model the clustering
behaviour of extreme events. Specifically, we consider strongly dependent significant wave
height data for which high level exceedances appear in an extremely clustered manner. As
this setting poses a particular challenge for traditional POT approaches, we analyse whether
popular models dealing with short- or long-range dependence convey enough information
about the dependence structure in the data. Moreover, we suggest the two-step ARFIMA-
POT approach that captures both short- and long-range dependence in the underlying time
series. Further, we verify our conclusions from the application to significant wave heights
in a simulation study. The range of models reviewed is not meant to be exhaustive, but is
rather supposed to present a selection of commonly used approaches modelling either the
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short- or long-term behaviour of extreme events, but not both simultaneously. Our results
are meant to provide a basis for further discourse on the modelling of extremal clustering
behaviour in EVT. We show that current tools are not flexible enough to simultaneously
capture the short- and long-range dependence of the underlying process. Therefore, we
want to spark new interest in researching the intersection of modelling local clustering
behaviour and long-range dependence to find solutions to a question of practical interest.

The paper is organised as follows. Section 2 reviews the basic concepts around
POT modelling. Section 3 presents the considered models. This section is divided into
established models characterising extremal clustering by taking into account short- and
long-range dependence, respectively, and the presentation of the two-step ARFIMA-POT
approach incorporating short- and long-term dynamics simultaneously. Section 4 applies
the considered approaches to significant wave heights and discusses their performance in
the presence of extremal clustering and long-range dependence. Section 5 examines the
conclusions from the application in a simulation study and Section 6 concludes.

2. Peaks-over-Threshold Modelling

In the following, we review the univariate POT approach through the lens of point pro-
cesses as introduced by Pickands [67]. In the presentation, we loosely follow McNeil et al. [21].

Consider a sequence of iid random variables X1, . . . , Xn with some continuous distri-
bution function F that is in the maximum domain of attraction of a non-degenerate limiting
distribution, i.e., F ∈ MDA(Hξ) for some ξ ∈ R, so that limn→∞ nF̄(anx+ bn) = − ln Hξ(x)
holds for normalising sequences an > 0 and bn where F̄(x) = 1− F(x). It follows that Hξ

is a generalised extreme value (GEV) distribution with distribution function

Hξ(x) =

exp
(
−
(

1 + ξ
x−µ

σ

)−1/ξ

+

)
, ξ 6= 0,

exp
(
− exp

(
− x−µ

σ

))
, ξ = 0,

(3)

where (·)+ := max (0, ·), and µ, ξ, σ > 0 denote location, shape and scale parameters,
respectively.

The number of exceedances above a high threshold u can be expressed by K := #{i ∈
{1, . . . , n} : (Xi − bn)/an > u}. Since the Xi are iid, K is binomially distributed with
parameters (n, p), where p is the probability of crossing u, i.e., p = P((Xi − bi)/an) > u) =
F̄(anu + bn) = − 1

n ln Hξ(u). Thus, as n → ∞, K converges to a Poisson random variable
with mean ν(u) = − ln Hξ(u). However, not only the total number of extreme events is
asymptotically Poisson, but also their occurrences can be described by a Poisson point
process. We can define the point process of event times as N(t)(A) = ∑n

i=1 1{Yi,n∈A},

where Yi,n = i
n1{Xi>anu+bn} for 1 ≤ i ≤ n is either the time of an event re-scaled to

X1 = (0, 1] or zero, and A ⊂ X1. Then N(t) converges in distribution to a homogeneous
Poisson point process on the space X1 with intensity measure T(A) = (t2 − t1)τ(u) for
A = (t1, t2) ⊂ X1, where the constant intensity is given by τ(u) = τ = − ln Hξ,µ,σ(u) and
the scaling sequences are absorbed into the parameters of H (see, e.g., [14]).

One way to describe the POT model is by means of a non-homogeneous two-dimensional
Poisson point process, for which a two-dimensional pattern of points (t, x) is recorded
representing the times and magnitudes of exceedances of a high threshold u [21,68]. On
a space X2 = (0, 1]× (u, ∞), we assume for A ⊂ X2 that the point process N(t,x)(A) =

∑n
i=1 1{(i/n,Xi)∈A} is a Poisson process with intensity function

λ(t, x) =

 1
σ

(
1 + ξ

x−µ
σ

)−1/ξ−1
,
(

1 + ξ
x−µ

σ

)
> 0,

0, otherwise.
(4)
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This intensity function does not depend on t, but on x, so that the two-dimensional
Poisson process N(t,x) is non-homogeneous. Considering A = (t1, t2)× (z, ∞) ⊂ X2, the
intensity measure of the process is given by

Λ(A) =
∫ t2

t1

∫ ∞

z
λ(t, x)dxdt = −(t2 − t1) ln Hξ,µ,σ(z). (5)

It follows that for any z ≥ u the implied one-dimensional process of occurrences of
exceedances with level z forms a homogeneous Poisson process with intensity τ(z) =
− ln Hξ,µ,σ(z), which is similar to the previous result.

From this representation, we can also retrieve the GPD as the limiting distribution
of the mark sizes: the limiting conditional probability that (Xi − bn)/an > u + v given
(Xi − bn)/an > u, i.e., the tail of the excess distribution function over the threshold u, is
obtained from the ratio of the rates of exceeding the levels u + v and u:

τ(u + v)
τ(u)

=

(
1 + ξ

v
σ + ξ(u− µ)

)−1/ξ

= Ḡξ,β(v) (6)

for a positive scaling parameter β = σ + ξ(u− µ). Ḡξ,β exactly corresponds to the tail of
the GPD model for excesses of a high threshold u.

Hence, this representation of the POT model incorporates a homogeneous Poisson
process when only considering the re-scaled event times j/n and iid marks Yj = Xj − u,
following the GPD with distribution function

Gξ,β(y) =

1−
(

1 + ξ
y
β

)−1/ξ

, ξ 6= 0,

1− exp
(
− y

β

)
, ξ = 0,

(7)

so that we can regard this POT model as an MPP.
To fit the POT model, it is sufficient to fit the Poisson point process with the intensity

function (4) for A = X2. Due to the non-homogeneity of N(t,x), we define λ(x) := λ(t, x).
Then the likelihood for N(t,x)(A) := N∗ exceedances Xj can be formulated as

L(ξ, µ, σ; X1, . . . , XN∗) = exp(−τ(u))
N∗

∏
j=1

λ(Xj). (8)

Alternatively, the POT model can be reparameterised using τ := τ(u) = − ln Hξ,µ,σ(u)
for the intensity of the one-dimensional Poisson process of event times, and β = σ + ξ(u−
µ) for the GPD scaling parameter that is implied for the mark sizes. In that case, the
intensity function in (4) can be reformulated using the definition λ(x) := λ(t, x) and the
mark sizes Yj = Xj − u as

λ(y) =
τ

β

(
1 + ξ

y
β

)−1/ξ−1
, (9)

with ξ ∈ R and τ, β > 0. The logarithm of the likelihood in (8) can then be shown to
become

ln L(ξ, σ, µ; X1, . . . , XN∗) = ln L1(ξ, β; X1, . . . , XN∗) + ln L2(τ; N∗) (10)

where L1 corresponds to the likelihood of fitting a GPD to the mark sizes and L2 to the
likelihood of a one-dimensional homogeneous Poisson process with intensity τ. Thus, we
can make inferences about the parameters for each partition of the log-likelihood separately.

In the POT framework, a central question is how to choose the threshold u. Coles [69]
suggested a graphical diagnostic based on the criterion of stability domains. The method
aims at identifying regions for the shape parameter ξ and the modified scale parameter
σ = β − ξu, in which the estimates remain constant for an increasing u. Mazas and
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Hamm [18] propose to select the lowest threshold of the highest domain of stability in
order to balance the trade off between choosing a high threshold to minimise the bias
and choosing a lower threshold to retain enough data for minimising the variance of
the estimates.

This classical POT approach relies on the assumption that the underlying series is
independent. Leadbetter [70] extended this theory to stationary sequences satisfying
certain weak dependency conditions. More specifically, stationary sequences can be shown
to behave like iid series if they satisfy (i) a mixing condition to restrict the long-range
dependence, and (ii) a condition restricting the local clustering of extremes. When the
local condition is violated due to the short-range dependence structure of the underlying
sequence, the extremal behaviour can still be accommodated in the asymptotic theory
using the extremal index, but the exact clustering behaviour cannot be fully described
providing the justification for explicit modelling of the short-range dependence structure.
For detailed discussions on EVT for stationary sequences and the respective conditions for
point processes, we refer to Leadbetter et al. [12] and Beirlant et al. [71].

There is no general asymptotic theory for the extremal behaviour of long-range depen-
dent times series. Although the mixing condition for stationary sequences is meant to limit
the effect of long-term correlations, certain processes exhibiting long-range dependence still
satisfy it. For example, the autocovariances of Gaussian linear processes are known to fulfil
Berman’s condition γ(h) ln h→ 0 for h→ ∞, which is sufficient to establish that Gaussian
sequences satisfy mixing and local conditions. This also includes the long-range dependent
Gaussian ARFIMA model (see, e.g., [14]). Linear processes with heavy-tailed and possibly
long-range dependent innovations however exhibit local clustering of extremes measured
by the extremal index (Theorem 4.47 [33]). In practical applications, the observed effects of
a long-range dependence structure in the underlying series suggest deviations from the
asymptotic iid limits and pronounced clustering (cf. Section 1). Thus, independent from the
challenge of developing a more general asymptotic theory for the extremes of long-range
dependent series, the presence of long-range dependence has to be accommodated for
when modelling the dependency structure of extremes in finite datasets.

3. Modelling Approaches for Dependent Data

This section reviews existing POT models that attempt to explicitly model short- or
long-range dependencies to address the clustering of high threshold exceedances. We
then suggest a two-step method to incorporate both types of dependencies jointly. This is
motivated by observations from the considered wave height dataset, which appear to be
governed by both local dependency structures and long-range correlations as illustrated in
Section 1.

3.1. Models Capturing Short-Range Dependence

We begin by presenting selected well-known conditional POT approaches that ex-
plicitly model the short-range behaviour affecting extremal clustering. Chavez-Demoulin
et al. [2] and McNeil et al. [21] suggest conditional POT models to capture short-range
dynamics. The conditional approach to POT modelling constructs an MPP for the high
threshold exceedances and introduces dependence structures by utilising a self-exciting
process for the intensity based on past event times and marks. This self-exciting pro-
cess is also referred to as a Hawkes process [20] and is commonly used in the context of
seismology [27].

Following the more general notation from Herrera and Schipp [3], we consider an
event process (Tj, Yj)j∈N defined on the space (0, T] × (u, ∞) with event times Tj and
mark sizes Yj = Xj − u. Thus, the set of observed events (tj, yj)j≥1 only records the
times and marks of extreme events. Further, let the internal history of the process be
given by Ht := {(tj, yi) : j = 1, . . . , N(t) − 1} where N(t) := ∑j≥1 1{(tj≤t,yj)} defines
an MPP. Following Daley and Vere-Jones [72], the conditional intensity of this MPP can
be factorised into the ground intensity λg(t), which describes the event times, and the
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conditional probability density function of the marks g(y|Ht, t) if we assume conditional
independence of the times and marks given the history of the process up to time t. The
factorised conditional intensity function is then given by

λ(t, y|Ht) = λg(t|Ht) g(y|Ht, t). (11)

Similar to the classical POT approach, the contributions of the mark sizes are assumed
to follow a GPD, but the scale parameter β(y|Ht, t) is allowed to depend on the process
history. The conditional probability density function of the GPD then becomes

g(y|Ht, t) =


1

β(y|Ht ,t)

(
1 + ξ

y
β(y|Ht ,t)

)−1/ξ−1
, ξ 6= 0,

1
β(y|Ht ,t)

exp
(
− y

β(y|Ht ,t)

)−1/ξ−1
, ξ = 0.

(12)

It follows from the factorised conditional intensity function that the log likelihood of
the MPP can be expressed as log L = log L1 + log L2 with

log L1 =
N(T)

∑
j=1

log λg(tj|Ht)−
∫ T

0
λg(v|Hv)dv (13)

and

log L2 =
N(T)

∑
j=1

g(yj|Ht, t). (14)

In the case of iid data, the intensity of the ground process λg(t,Ht) would be constant
and the mark distribution would follow an unconditional GPD, so that we retrieve the
likelihood of the two-dimensional non-homogeneous Poisson process in Equation (10).

A wide range of functional forms has been proposed for the conditional intensity
function of the ground process, whereof Chavez-Demoulin et al. [2] choose a self-exciting
process of the shape

λg(t|Ht) = µ0 + µ1 ∑
j:tj<t

ω
(
t− tj; yj

)
, (15)

where µ0 is a positive constant loading, µ1 is a positive constant, and ω(v) is non-negative
for v > 0 and zero otherwise. Such a conditional intensity function triggers clustering
of the extreme events, since each previous event contributes to the conditional intensity
and the amount may depend on both the time (t− tj) elapsed since the last event and
the mark size yj. Thus, the conditional intensity itself is a stochastic process depending
on ω throughHt. For ω, Chavez-Demoulin et al. [2] specify a monotonically decreasing
ETAS-type functional form

ω(t− tj; yj) =
exp

(
δyj
)(

t− tj + γ
)1+ρ

, t > tj (16)

with parameter restrictions δ, γ, ρ > 0.
An alternative parametric specification of ω was suggested by McNeil et al.

(Section 7.4.3 [21]) and picked up by Chavez-Demoulin and McGill [23] consisting of a
Hawkes process with exponential decay:

ω(t− tj; yj) = exp
(
δyj − γ(t− tj)

)
(17)

for δ, γ > 0.
For the scale parameter of the conditional GPD, Chavez-Demoulin et al. [2] select a

form that only depends on the previous mark size:

β(yj|Ht, t) = β(yj|Ht) = exp
(
a + byj−1

)
, (18)
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where a, b ∈ Z. This specification is referred to as Hawkes-POT.
An alternative approach is the SEPOT model suggested by McNeil et al. [21] and

reviewed by Herrera and Schipp [22]. The SEPOT model uses an ETAS or exponential
decay parameterisation also for the scale parameter of the conditional GPD:

β(yj|Ht, t) = β0 + β1ω(t− tj; yj), (19)

where β0, β1 > 0, and ω(t − tj; yj) as in Equation (16) or (17). In this case, the ground
intensity and the conditional probability density function of the marks are driven by the
same parameters δ, γ, and ρ (where necessary).

3.2. Models Capturing Long-Range Dependence

Next, we turn to a modelling approach that attempts to explain extremal clustering
by accounting for long-range dependence. Hees et al. [43] take a different perspective
on extreme events than the conditional POT approaches presented so far. They focus
on modelling the inter-event times using the heavy-tailed Mittag–Leffler distribution as
opposed to the exponential distribution that arises naturally from Poisson distributed
event times. In this heavy-tailed inter-event time scenario, the event times form a fractional
Poisson process [45]. This process represents a renewal process with Mittag–Leffler dis-
tributed waiting times and is a generalisation of the Poisson process. Further, Biard and
Saussereau [44] demonstrate that the fractional Poisson process exhibits the long-range
dependence property, so that this process is well suited to a setting in which the event
times are long-term correlated.

Hees et al. [43] consider a continuous time random exceedance (CTRE) model for
the event times and the mark sizes. Assume that the kth observation Xk for k ∈ {1, . . . , n}
occurs at time Tk = W1 + · · · + Wk, where the Wi > 0 are the waiting times between
observations Xi and Xi−1 for 1 ≤ i ≤ k. Through defining stopping times for a marked
renewal process (MRP), Hees et al. [43] describe the CTRE model with the pair sequence
(Tj, Yj), j ∈ {1, . . . , N∗}, for N∗ exceedances above a given threshold u. The MRP and
therefore also the CTRE are called uncoupled if the waiting times W and the observations
X are independent, which implies that the sequences (Yj) and (Tj) are independent as
well. The CTRE process is referred to as bursty if the tail function F̄W(t) = P(W > t)
is regularly varying at infinity with index β ∈ (0, 1), that is lim

t→∞
F̄W(at)/F̄W(t) = aβ.

Hees et al. [43] strictly separate the term burst from the term cluster. The latter refers to a
stationary underlying process where successive events are connected, whereas bursts refer
to accumulations of events caused by a heavy-tailed waiting time distribution. For matters
of simplicity and consistence, we stick to the term cluster whenever several events occur
consecutively.

Assuming an uncoupled CTRE, Hees et al. [43] suppose that the sequence of obser-
vations (Xi) for i ∈ {1, . . . , n} has a distribution belonging to the maximum domain of
attraction of some non-degenerate limiting distribution. Further, the waiting times Wi are
assumed to be in the domain of attraction of a positively skewed sum-stable law with
stability parameter 0 < β < 1. For u → ∞, Hees et al. [43] then demonstrate that the
event times T converge weakly to a Mittag–Leffler distributed random variable with tail
parameter β and scale parameter σ = b(1/pu), where pu := P(X > u) and b(k) is a regular
varying function at infinity with parameter 1/β. For the distribution function of the waiting
times we therefore have

FW(t) = Eβ(−tβ), (20)

where Eβ(z) = ∑∞
k=0

zk

Γ(1+βk) defines the Mittag–Leffler function with z ∈ R, 0 < β ≤ 1 and
Γ(·) denotes the Gamma function [44]. Note that the exponential distribution is nested in
the Mittag–Leffler distribution with β = 1.

Similar to the methods suggested for the threshold choice in the classical POT frame-
work, Hees et al. [43] propose to choose the threshold u based on stability plots for the
parameters β and σ of the Mittag–Leffler distribution. The estimation of the parameters
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requires a dataset that only records the event times and mark sizes, i.e., (tj, yj)j where
yj = xj − u given xj ≥ u. Then the parameters can be estimated via fractional log-moment
estimation, or the less computationally efficient but more reliable maximum likelihood esti-
mation. For model inference, Hees et al. [43] provide an algorithm that also encompasses
choosing a suitable threshold. Let k denote the number of events. For a range of values for
k, the Mittag–Leffler distribution is fitted to the corresponding inter-event times. For the
stability plots, the estimates for the tail parameter β̂k and a rescaled version of the scale
parameter σ̂0 = k1/β̂ σ̂k are plotted against the considered range of values for k. Trading-off
bias and variance, representative parameter values in the respective regions of parameter
stability are selected for both β̂k and σ̂0.

Finally, Hees et al. [43] remark that this modelling approach can easily be extended
to a method in the line of POT modelling by fitting a GPD to the mark sizes. However, it
cannot be extended to incorporate short-range correlations.

3.3. Two-Step ARFIMA-POT Approach Capturing Both Short- and Long-Range Dependence

After having presented models explicitly dealing with either short or long-range
correlations, we now propose a method combining both types of dependencies. Our
approach follows a fundamentally different modelling strategy than the conditional POT
models and the Mittag–Leffler distribution previously. Instead of trying to model the
extremal behaviour exactly as it is observed, which includes the effects of either short- or
long-term dependencies, our method first captures both short- and long-range correlations
and then characterises the behaviour of the remaining, regularly occurring extremes. We
suggest a two-step approach in which short- and long-range dependencies are captured
with an ARFIMA model, and a classical POT model is fitted to the residuals of the first step.
The motivation for this approach was outlined in Section 1, where the considered dataset of
significant wave heights appeared to be governed by both short- and long-term dynamics.

Formally, we assume that the dynamics of the underlying time series Xt can be
summarised by a linear process dependent on innovations Zt that follow a white noise
process with marginal distribution function FZ(z). We make no further assumptions about
FZ(z) except for stationarity, but seek to model its tail behaviour using the classical POT
approach. Thus, we capture the short- and long-term correlations by only assuming that
Xt follows an ARFIMA process. The proposed two-step method can be summarised as
follows.

1. Fit an ARFIMA model to the original dataset making no assumptions about the
distribution of the innovations FZ(z). Calculate the implied model residuals to retrieve
a series resembling an iid white noise process.

2. Use the classical POT model on the ARFIMA residuals to describe the tail of the
residual distribution F̄Z(z).

In stage 1, we first want to give a model for the dynamics of the underlying series
Xt. The ARFIMA model due to Granger and Joyeux [62] and Hosking [63] combines the
short-ranged AR and MA dependence with additional long-term correlation. Assuming
that E(Xt) = 0, we can define a stationary ARFIMA(p, d, q) model for the dynamics of
Xt as

Φ(B)∇dXt = Θ(B)Zt, Zt
iid∼ WN(0, σ2

Z), (21)

where B denotes the backshift operator BXt = Xt−1, d ∈ (0, 0.5) the fractional integration
parameter, ∇d the fractional difference operator ∇d = (1− B)d = ∑∞

k=0 (
d
k)(−B)k, and

Φ(z) = 1−
p

∑
i=1

φizi (22)

Θ(z) = 1−
q

∑
j=1

θjzj (23)
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represent the AR and MA polynomials of order p and q, respectively. This ARFIMA(p, d, q)
process is causal and invertible if the respective roots of φ(z) and θ(z) lie outside the unit
circle. Given causality, there is a unique non-deterministic stationary solution for the
difference equation in (21) given by

Xt = Θ(B)Φ−1(B)∇−dZt, (24)

which forms a linear process and corresponds to an infinite moving average representa-
tion (Section 13.2 [73]). The fractional difference operator ∇−d can be computed using a
binomial expansion (see, e.g., Equations (1)–(4) [31]). For d ∈ (0, 0.5), the process exhibits
long-range dependence, while we recover the short-range dependent ARMA model for
d = 0.

Inference for the parameters of the ARFIMA(p, d, q) can be done via Whittle’s approx-
imation to the maximum likelihood estimator (see, e.g., [73]), which was first proposed
by [74] for short-range dependent models. For both Gaussian [75] and non-Gaussian
series [76], this approximation has been proved to provide asymptotically consistent and
normally distributed estimators. For a dataset of size n, the Whittle estimator is essentially
based on minimising

Q(Ψ) =
m

∑
j=1

I
(
λj
)(

f (λj, Ψ)
)−1, (25)

where I(λj) denotes the periodogram of the sample at the Fourier frequencies λj =
2π j

n ,
f (λj, Ψ) the spectral density of the model with parameters Ψ = (φ1, . . . , φp, d, θ1, . . . θq),
and m the integer part of n−1

2 . The minimum Q(Ψ̂) gives the estimate of the model
parameters Ψ̂. Further details on the Whittle estimator can be found in [33,73]. Suitable
model orders p and q can be chosen based on the Bayesian information criterion (BIC) [77]
or Akaike information criterion (AIC) [78].

From the fitted model, we can calculate the implied model residuals as

Ẑt = Φ̂(B)Θ̂−1(B)∇d̂Xt, (26)

where the estimated AR and MA polynomials Φ̂(B) and Θ̂(B) are based on the estimated
parameters (φ̂1, . . . , φ̂p) and (θ̂1, . . . θ̂q), respectively, and d̂ is the estimated fractional differ-
ence parameter. Given a perfect model fit, the sequence Ẑt is supposed to be a strict white
noise process.

In stage 2, we now want to apply the classical POT model to the residuals Ẑt. For
the application to significant wave heights, we are only interested in the right tail of the
residual distribution, so the extreme positive heights are of interest. Given a dataset of the
form (t, Ẑt), we can fit the non-homogeneous two-dimensional Poisson point process as
discussed in Section 2 with intensity function (9) and likelihood (10). Thus, the tail of the
residual distribution F̄Z, i.e., the mark sizes, is modelled by a GPD as given in Equation (7).
The threshold u can again be chosen according to parameter stability plots. The model
residuals that are identified as extreme in this stage can be traced back to those observations
which are very unlikely to occur under the ARFIMA model assumption. Our particular
interest lies in characterising these largest model deviations, since they cannot be forecast
using the parametric model describing the bulk of the data. In the case of significant wave
heights, the extreme model residuals can be translated to the most extreme wave heights
that cannot be predicted based on the average sea wave process, yet are most likely to
contribute to flooding and beach erosion.

The two-step ARFIMA-POT approach is closely related to other two-step approaches
incorporating long-term correlations that are popular in financial literature. In that context,
however, the focus is on modelling the heteroscedasticity that is known to be a stylised fact
of return series. Therefore, Youssef et al. [79] and Zhao et al. [80] suggest various types
of fractionally integrated GARCH-EVT models, which are long-range dependence aug-
mented versions of the original GARCH-EVT model by McNeil and Frey [55]. He et al. [81]
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additionally model the long-range correlated conditional mean of the return series by
an ARFIMA model, resulting in ARFIMA-GARCH-EVT type models. In hydrology, a
related approach only focusing on short-range dependence has been applied to river dis-
charges by Elek and Márkus [82]. They use an ARMA-GARCH-EVT variant in which the
conditional variance is rather dependent on the past values of the series than the lagged
innovations. In our ARFIMA-POT approach we deliberately exclude the modelling of
potential heteroscedasticity to be able to solely focus on finding an explicit representation
for the short- and long-range dependence of the underlying series. We concentrate on
oceanographic data which has of course fundamentally different characteristics than finan-
cial data (see, e.g., [48]). So assuming that the time series is described precisely enough by
an ARFIMA model, we would not expect to encounter heteroscedastic variances for the
residuals. Thus, our approach is closer to the concept of prewhitening than the modelling
of heteroscedasticity.

Clearly, though not assumed in our setup, a stationary Gaussian ARFIMA model is
covered by classical EVT theory using Berman’s condition and thus is supposed to exhibit
the same behaviour as Gaussian iid sequences in the limit (Section 4.4 [14]). So if the
underlying time series can be described by such a stationary Gaussian linear process, the
classical POT approach is applicable. However, there is no guarantee that the assumption of
Gaussian innovations is justified. Further, assuming the presence of long-range dependence
in the underlying time series, the convergence to the asymptotic limit can be slower [42],
which calls for larger datasets. Considering oceanographic data, however, longer time
series can actually complicate explicit modelling attempts, since the focus shifts from the
physics of the sea wave process to the impact of the climatology of a given location [83]:
the longer the sequence, the more deterministic elements such as long-term trends due to
climate change [84] and further cyclical or seasonal behaviour [85] have to be modelled
additionally to the dependencies already present in the shorter datasets. Thus, from a
practitioner’s point of view, it would be desirable to have an approach that is already appli-
cable to shorter observation horizons, in which it is reasonable to assume that the average
boundary conditions affecting the average wave height (e.g., average wind, temperatures
and atmospheric pressure) remain stationary [84]. Our two-step ARFIMA-POT approach
is, therefore, a practical attempt to solve the challenge of finding a POT formulation that
simultaneously models short- and long-range dependencies in significant wave heights for
shorter observation horizons.

4. Application to Significant Wave Heights

In the following, we will now present the results of applying the aforementioned
POT approaches for dependent data on significant wave heights. We consider a dataset of
significant wave height measured at the WaveNet buoy (22 m water depth and from the
Centre for Environment, Fisheries and Aquaculture Science: http://wavenet.cefas.co.uk,
accessed on 20 August 2021) on the Sefton coast in Liverpool Bay, UK. This dataset has
already been extensively studied by Dissanayake et al. [6,86] among others. Analogous
to Dissanayake et al. [6], we restrict our analysis to a subsample encompassing the obser-
vations from 10 September to 9 December 2013, which were recorded in 30-min intervals.
This subsample contains 4367 observations ranging from 0 to 4.55 m, amongst which are
268 missing values. The missing values were dealt with by replacing the small gaps of
up to 4 observations by linear interpolation. The initial threshold for the conditional POT
variants was chosen following the detailed discussion of Dissanayake et al. [86], who
selected a threshold of u = 2.5 m or equivalently 7.9% of the observations yielding a
total of 324 events. This threshold choice is in line with well-known EVT applications to
financial data in the literature, where 8%, or more generally a threshold between 5% and
10%, is commonly chosen (cf. [3,23]). Further, additional analyses using the thresholds
5% (u = 2.82 m) and 10% (u = 2.23 m) were conducted to examine the robustness of our
findings, but did not show any different results and are thus omitted for brevity.

http://wavenet.cefas.co.uk
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4.1. Results: Conditional POT Models

We begin by presenting the inference results for the Hawkes-POT and SEPOT models
as reviewed in Section 3.1 with both ETAS (16) and exponential (17) decay functions,
which aim at accommodating extremal clustering by explicitly modelling short-range
dependencies. We further compare how the results for significant wave heights differ from
the ones for financial data given in [2,3,23]. Since the considered conditional POT models
were initially introduced to capture the characteristics of financial data, this comparison is
essential to work out the unique features of significant wave heights.

Table 1 summarises the estimation results and log-likelihoods for the four considered
model variants given the threshold of 7.9%.

Table 1. Estimation results of the Hawkes-POT and SEPOT model. Italic numbers represent bounds
of the estimation region.

Model Parameter Estimates

µ̂0 µ̂1 γ̂ δ̂ ρ̂ â b̂ ξ̂ ln L

Hawkes-POT (ETAS) 0.0037 9.5390 1.1520 0.1410 2.6007 −0.9431 0.9932 −0.5907 −442.81
Hawkes-POT (exp.) 0.0040 1.6529 1.0623 0.1452 −0.9431 0.9932 −0.5907 −443.38

µ̂0 µ̂1 γ̂ δ̂ ρ̂ β̂0 β̂1 ξ̂ ln L

SEPOT (ETAS) 0.0040 0.4018 0.0000 1.0078 1.8276 0.1461 0.2811 −0.6850 −445.25
SEPOT (exp.) 0.0043 1.8542 1.5402 0.9819 0.1445 1.2888 −0.6741 −446.85

For the interpretation of these inference results, we first focus on the parameter esti-
mates influencing the conditional intensity of the MPPs through the conditional intensity of
the ground process λg governing the evolution of event times. Compared to the estimation
results from [2] for negative daily returns of Bayer shares and the Djind index, we find a
considerably lower base rate µ̂0, which underlines the distinct extremal structure in the
significant wave heights time series, where event clusters are followed by long periods
without any events (cf. Figure 1). We estimate a considerably higher factor µ̂1 further
stressing this particular behaviour, since the most recent event, depending on its mark size,
leads to a sudden, large increase in the conditional intensity of the ground process. For
the models with ETAS decay functions, we find the estimates ρ̂ to be significantly different
from zero as opposed to the findings of [2], where financial data is analysed. This indicates
a larger influence of the time passed since a previous event on the conditional intensity
for significant wave heights: the more time has passed, the smaller is the value of ω and,
therefore, the increasing impact on the λg.

Turning to the parameter estimates impacting the conditional intensity of the MPPs
through the conditional probability density function of the mark sizes g, we first consider
the two Hawkes-POT variants. Here, we observe a smaller estimate for â, indicating a
lower value for σ̂ in general, and an estimate for b̂ that is significantly different from zero,
stressing the strong influence of the previous on the following mark size. For ξ, we find
negative estimates implying a finite tail of the distribution of significant wave heights
and more probability mass concentrated on smaller mark sizes compared to the positive
estimate for ξ that is commonly found in financial data (see, e.g., [2,3]). For the two SEPOT
variants, we retrieve smaller estimates for β̂0 and larger estimates for β̂1 compared to the
results in Herrera and Schipp [3] for the return series of various stock indices. This again
shows a stronger dependence of the GPD scale parameter on past event times and mark
sizes. Similar to the Hawkes-POT model variants, the estimate for ξ̂ is found to be negative
with the same implications as before. Overall, the estimation results for the significant wave
height dataset differ significantly from the results reported in the literature for financial
data for which the conditional POT models were originally suggested, stressing that the
characteristics of this oceanographic time series are fundamentally different. Comparing
the results for the four considered model variants, all specifications fit the significant wave
height data similarly well.
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To evaluate the fit of the considered conditional POT models to the significant wave
heights, we separately consider diagnostics for event time and mark modelling. For the
evaluation of the fit to the event times, we look at two visual diagnostic tools: a plot of
the estimated conditional intensity λ̂ and a plot of the cumulative intensity ΛH(tj) =∫ tj

0 λH(u)du against the time transformed based on the number of events. Figure 3 shows
these diagnostics for the Hawkes-POT model with ETAS decay for the 7.9% threshold,
whereas the very similar looking plots for the exponential decay variant and both SEPOT
models can be found in the Appendix A.1 in Figure A1.

The plotted estimated conditional intensities for the Hawkes-POT on the left of
Figure 3 strongly differ from the results found for financial data by (e.g., [2,23]). The
occurrence of an event causes the conditional intensity to instantly increase by an amount
dependent on the mark size, which is followed by a rather sudden decline towards the
estimated base rate µ̂ after the last event of the cluster, likely due to the large estimated
weight on the exponential dependence on past values. This is of course not realistic, but
illustrates that the time span between observed events is so long that the dependencies cap-
tured by the conditional intensity fully disappear between clusters. Given the very small
estimated ground intensities, it is actually very unlikely to see another event during the
observation period based on these models, which contradicts the intuition that, the further
away from the last event, the more likely it should be to see another cluster of events. The
spiky appearance of the estimated conditional intensity results in a cumulative intensity
resembling rather a step function than a line close to the bisecting one and therefore not
lying within the 95% confidence bands of the diagonal. From these visual diagnostics, we
can conclude that of the conditional POT model variants are appropriate to model the
event times in the significant wave height dataset. Their conditional intensities do not seem
to sufficiently capture the dependencies in the data to explain the clustering behaviour.

Figure 3. Estimated intensity and cumulative intensity of the Hawkes-POT model (with ETAS
decay). Ticks on the upper axis represent event occurrences. 95% confidence bands are based on the
Kolmogorov–Smirnov statistic [87].

To evaluate the model fit for the event marks, we consider unit exponential QQ plots

and plots of the ACF for the GPD residuals Rj = 1
ξ̂

ln(1 +
ξ̂yj

β̂
). Figure 4 depicts these

visual diagnostics for the Hawkes-POT model with ETAS decay function. Similar results
for the exponential decay and both SEPOT models can be found in the Appendix A.2
(Figure A2). The QQ plots reveal that in none of the considered setups the residuals are
well-described by a unit exponential distribution as would be expected from a perfect fit.
Although the Hawkes-POT model variants seem to give a more reasonable picture than
the SEPOT model variants, the QQ plots confirm that there are still dependencies present
that are not accounted for in the modelling of the mark sizes. This is validated by the ACF
of the GPD residuals, which clearly depicts remaining autocorrelations for the first five
lags indicating that the approach neglects dependencies. The squared residuals in contrast
exhibit no systematic autocorrelations. From the residual diagnostics we can conclude
that neither the considered Hawkes-POT nor SEPOT models can satisfactorily characterise
the mark sizes in the significant wave height data. We may suspect that the long-range
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correlation found in the underlying series is responsible for depedencies that cannot be
captured by the considered Hawkes-POT and SEPOT models. For this reason, we now
turn to the next model that incorporates long-range dependence.

Figure 4. Unit exponential QQ plot and autocorrelation functions for the GPD residuals of the
Hawkes-POT model.

4.2. Results: Mittag–Leffler Distribution

Following Hees et al. [43], we fit the Mittag–Leffler distribution to the inter-event
times using the R packages MittagLeffleR [88] and CTRE [89]. We begin by checking the
necessary assumptions. Firstly, the inter-event times and event marks are not supposed to
exhibit any (inter-)dependencies. The ACF of the logarithmic inter-event times in Figure 5
reveals small autocorrelations for low lags, whereas the ACF of the event marks in Figure 5
shows strong autocorrelation for many lags.

Figure 5. Autocorrelation functions of logarithmic inter–event times, event marks, and their cross-
correlation function.

Considering the cross-correlation function (CCF) of inter-event times and event marks,
we observe that the series are also cross-correlated, so that we clearly have to reject the
independence assumption. The coupling of inter-event times and event marks is further
confirmed by the empirical copula presented on the left of Figure 6. If both were uncoupled,
the points would be evenly distributed over the [0, 1]× [0, 1] space. What we find instead is
that the empirical copula is dominated by strong extremal clustering. The particular shape
can be explained by events being mostly separated by a single time unit, so that there is an
accumulation of points for this inter-event time combined with all possible values of event
marks. After a long inter-event time, i.e., a long period without an event, we rather record
smaller event marks, indicating that event clusters usually start with smaller marks which
then magnify for the successive events.
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Figure 6. Empirical copula plot for inter–event times and marks, and logarithmic Mittag–Leffler QQ
plot of the logarithmic inter-event times.

According to Hees et al. [43], the suitability of the Mittag–Leffler distribution can
be verified using a logarithmic Mittag–Leffler QQ plot for the logarithmic inter-event
times, displayed on the right of Figure 6. The tail parameter is determined via log-moment
estimation yielding β̂ = 1.1055 with a 95% confidence interval of [1.0586; 1.1524], which
again strongly contradicts the model assumptions, while the scale is set to 1 for this
diagnostic. It is obvious that the Mittag–Leffler distribution does not fit the inter-event
times of the significant wave heights. Again, it appears that we have too much probability
mass concentrated on lower, or more precisely, unit inter-event times, indicating that the
present extremal clustering is too strong to be captured with this approach. Representing
the long gaps between clusters, we further find a few inter-event times that are too large
to appear under a Mittag–Leffler distribution. Given these results, we can conclude that
the Mittag–Leffler distribution does not provide a better fit to the inter-event times of the
significant wave heights than the exponential distribution arising in the limit of iid data.
Even though this approach incorporates long-range dependence, it does only account
for it in the event times and disregards any local, short-range dependencies affecting the
distribution of event and inter-event times.

Although the assumptions are obviously violated, we include the parameter estimates
of the Mittag–Leffler distribution for the significant wave height data for completeness.
The stability plots for the tail and re-scaled scale are presented in Figure 7 and do not give
clear stable regions for the parameter estimates. For the tail parameter, the only rather
stable region we can identify is around the estimate β̂ = 1.12, which is consistent with the
previous estimation and again clearly violates the model assumptions. Additionally, the
scale parameter is dependent on the number of events, indicating that the model is not
suitable for the significant wave height dataset.

Figure 7. Mittag–Leffler parameter stability plots for the inter-event times.

To date, neither the applied conditional POT methods nor the fitted Mittag–Leffler
distribution satisfactorily explain the extremal clustering in the significant wave height
data. Either the models fail to account for the long-range dependence in the mark sizes
inherited from the dependence structure of the underlying observations, or the short-
range dependencies between the event times are disregarded. Therefore, we continue
with applying the two-step ARFIMA-POT approach which aims at capturing the full
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dependence structure of the underlying observations, in order to avoid the need for explicit
modelling of inherited properties in the event times and mark sizes all together.

4.3. Results: Two-Step ARFIMA-POT Approach

In the first stage of the two-step ARFIMA-POT approach, we seek to identify and
fit the ARFIMA(p, d, q) model that is most suitable for describing the significant wave
heights. Using the R package arfima [90], we systematically estimate the model parameters
including d for various combinations of p and q orders and find the ARFIMA model with
p = 4 and q = 4 to minimise both AIC and BIC. Table 2 reports the parameter estimates
for the selected ARFIMA model. The corresponding fractional difference parameter is
estimated as 0.1398 indicating the presence of mild long-range dependence.

Table 2. Estimation results of the ARFIMA(p, d, q) model. Standard errors in parentheses.

ϕ̂1 ϕ̂2 ϕ̂3 ϕ̂4 d̂ θ̂1 θ̂2 θ̂3 θ̂4

1.1787 −0.3177 0.8687 −0.7375 0.1398 0.3660 −0.2593 0.7555 −0.1270
(0.0874) (0.1591) (0.1126) (0.0528) (0.1634) (0.2104) (0.1041) (0.1138) (0.0905)

ln L AIC BIC

10,354.4 −20,686.8 −20,616.6

Comparing the theoretical ACF of the chosen ARFIMA model to the empirical ACF of
the dataset in Figure 8, we can conclude that the selected model specification satisfactorily
captures the autocorrelation structure of the significant wave heights.

Figure 8. Autocorrelation function of the significant wave height data, compared to the theoretical
autocorrelation function of the estimated ARFIMA(4, 0.1398, 4)-model.

Further, Figure 9 provides visual diagnostics for the ARFIMA model residuals in
the form of plotted ACFs of residuals and squared residuals as well the periodogram
of the residuals. These diagnostic suggest that, apart from some variance clustering,
there are no dependencies left in the residuals. Since we deliberately refrained from
modelling the conditional variance of the significant wave heights in order to solely find
an explicit representation of the dependence structure of the underlying series, the residual
diagnostics confirm suitability of the classical POT model for the ARFIMA model residuals.
An additional Ljung-Box test for the smallest possible lag choice, which results from the
model orders and corresponds to 9 lags in this case (see [91]), does not reject the null
hypothesis of no autocorrelation in the ARFIMA residuals for the considered lags on a 10%
level (p-value: 0.1642).
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Figure 9. Autocorrelation functions and periodogram of the ARFIMA(4, 0.1398, 4) residuals.

In the second stage of the ARFIMA-POT approach, we apply the classical POT method
to the ARFIMA residuals using the R packages POT [92] and extRemes [93]. The threshold
is chosen from the mean residual life plot and GPD parameter stability plots given in
Figure 10. The mean excess plot shows a course linear in u from 0 to 0.12 and is rather
constant between 0.12 and 0.28. Choosing a higher threshold is not sensible due to the
erratic course of the mean excess and too few remaining observations. The GPD parameter
stability plots suggest a long stable region for both GPD parameter estimates following a
threshold of u = 0.12 that corresponds to 7.3% of data and matches the threshold from the
mean residual life plot. Thus, we base the second step of the ARFIMA-POT approach on a
threshold corresponding to 7.3% of data.

Figure 10. Mean residual life plot and GPD parameter stability plots for the ARFIMA(4, 0.1398, 4)
residuals.

Based on the ARFIMA residuals, Figure 11 displays the exceedances of the selected
threshold. In line with the autocorrelations found in the ACF of the squared ARFIMA
residuals (cf. Figure 9), the extreme events still appear to be slightly clustered, but the
long gaps without clusters that governed the original significant wave height series are
no longer as distinct. The QQ plot of the inter-event times on the right of Figure 11 still
depicts the tails of the inter-event times as lying outside the confidence bands of the
exponential distribution, but this is much closer to the exponential distribution than what
was observable for the original time series (cf. Figure 1). We can note that the two-step
ARFIMA-POT approach improves the predictability of event times over the original series,
but the dynamics of the significant wave height series affecting the distribution of event
times are not captured in their entirety.
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Figure 11. Exceedances for ARFIMA(4, 0.1398, 4) residuals with threshold u = 0.12 and QQ plot of
the inter-event times.

We fit a GPD to the ARFIMA residuals via maximum likelihood estimation and obtain
the estimates β̂ = 0.0944 (0.0074) and ξ̂ = −0.0189 (0.0554) for scale and shape parameters,
respectively. Similar to the results for the conditional POT approaches, the estimated shape
parameter is negative, indicating a finite tail of the distribution of ARFIMA residuals and
a concentration of probability mass on the smaller mark sizes. Based on the estimated
GPD residuals, Figure 12 provides visual diagnostics. The QQ plot illustrates that the GPD
residuals are following a unit exponential distribution very closely. Compared with the
results for the Hawkes-POT in Figure 4, we find a clearly improved model fit. Considering
the ACF of the GPD residuals and squared residuals, we observe that, apart from lag
2, there is no autocorrelation left, indicating that the two-step ARFIMA-POT approach
satisfactorily models the dependencies in the underlying significant wave height series
which may affect the distribution of the mark sizes.

Figure 12. Unit exponential QQ plot and auto-correlation functions for the GPD residuals of the
ARFIMA-POT.

In summary, the two-step ARFIMA-POT approach improves upon the considered
conditional POT approaches in terms of model fit for the mark sizes, and upon the fit of
the Mittag–Leffler distribution for the inter-event times. Clearly, the two-step method is an
imperfect solution to modelling significant wave heights, but we show that incorporating
both short- and long-range dependencies in a parametric approach can be a more successful
pathway than focusing on short- or long-term dynamics alone. To review these conclusions,
we systematically break down the effects of short- and long-range dependence on the
model fits in the following section.

5. Simulation Study

In Section 4, we argued that the combination of short- and long-range dependence
is pivotal to the unsatisfactory fits of the conditional POT models and the Mittag–Leffler
distribution to the significant wave height data. In order to verify these results and the
appropriateness of the two-step ARFIMA-POT approach, we conduct a simulation study.
The overall objective is to rule out the possibility of spurious results. Therefore, we aim at
demonstrating that the observations for significant wave heights and our corresponding
conclusions are of a systematic nature and can be reproduced.
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The two-step ARFIMA-POT approach is based on the assumption that dependencies
in the underlying time series are well-characterised by an ARFIMA model. Therefore,
we consider a base setting in which we simulate data from an ARFIMA model with a
specification that is similar to the one estimated for the significant wave height dataset
in Section 4.3, i.e., we simulate from an ARFIMA(4, 0.1398, 4) with parameters given in
Table 2 (setting A). Further, we consider two additional settings in which either the ARMA
orders p and q are set to zero (setting B) or the fractional difference parameter d (setting C).
Thus, the settings B and C correspond to data in which the short- or long-range correlations
are eliminated, respectively. Analogous to the size of the significant wave height dataset,
we simulate 4367 data points for each setting and then apply all considered methods to the
resulting datasets to evaluate the model fits.

5.1. Simulation Results: Conditional POT Models

We begin by examining the estimation results for the conditional POT models based
on a threshold of 7.9% in the considered settings A, B, and C, which are presented in Table 3.
The parameter estimates in the settings A and B are mostly found to be in a similar range
as reported for the significant wave height dataset in Table 1. For setting C, however, we
observe quite different results, i.e., for the setting that only includes long-range dependence:
for both Hawkes- and SEPOT model variants, the base rate of the conditional intensity of
the ground process µ̂0 has increased approximately tenfold, which already suggests a more
homogeneous behaviour of the conditional intensity. The estimates for the factor µ̂1 are
generally smaller implying less pronounced reactions on previous events, but this effect is
potentially balanced out for the mark sizes by the mostly larger estimates δ̂. With respect
to the ETAS decay model variants, we find a smaller estimate ρ̂ in setting C, resulting in
a higher impact of distant events. A similar effect is observed for the exponential decay
models through a smaller estimate γ̂.

Table 3. Estimation results of the Hawkes-POT and SEPOT model for the simulated settings A, B
and C. Italic numbers represent bounds of the estimation region.

Model Parameter Estimates

µ̂0 µ̂1 γ̂ δ̂ ρ̂ â b̂ ξ̂ ln L

Setting A
Hawkes-POT (ETAS) 0.0032 1.5319 0.4026 0.1131 1.6573 −1.4181 1.7329 −0.7442 −284.34
Hawkes-POT (exp.) 0.0039 1.2625 0.8652 0.1151 −1.4181 1.7329 −0.7442 −287.29

Setting B
Hawkes-POT (ETAS) 0.0061 25.0000 1.6975 0.5433 2.8912 −2.0768 3.0946 −0.4550 −244.51
Hawkes-POT (exp.) 0.0063 1.1710 0.8903 0.5201 −2.0768 3.0946 −0.4550 −243.66

Setting C
Hawkes-POT (ETAS) 0.0631 0.2191 1.3713 4.2724 0.6793 −3.0999 0.8702 −0.1139 −459.20
Hawkes-POT (exp.) 0.0686 0.0641 0.3523 4.2263 −3.0999 0.8702 −0.1139 −459.80

µ̂0 µ̂1 γ̂ δ̂ ρ̂ β̂0 β̂1 ξ̂ ln L

Setting A
SEPOT (ETAS) 0.0179 0.0895 0.0769 0.9464 0.4790 0.4468 0.4588 −2.0036 −746.99
SEPOT (exp.) 0.0042 0.9184 1.0045 1.3580 0.1622 0.3504 −0.6942 −337.26

Setting B
SEPOT (ETAS) 0.0062 0.7576 0.2879 2.0363 1.6669 0.1032 0.1784 −0.5555 −256.88
SEPOT (exp.) 0.0065 0.8785 0.9632 2.0715 0.1014 0.2057 −0.5494 −254.48

Setting C
SEPOT (ETAS) 0.0677 0.2445 0.0441 0.7526 0.4411 0.4411 0.0442 −2.1149 −959.58
SEPOT (exp.) 0.0688 0.0629 0.3583 4.8278 0.0461 0.0015 −0.1118 −460.01

For the Hawkes-POT variants, we find estimates for b̂ which are noticeably smaller,
indicating that the scale parameter of the conditional GPD is less dependent on the previous
mark size. This observation is even more apparent for the parameter β̂1 in case of the
SEPOT model variants where the estimates are close to zero, indicating a rather constant
GPD scale parameter. Thus, we can conclude that the strongly time-varying nature of
the scale parameter of the conditional GPD in settings A and B is rather the result of
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short-term, ARMA-type correlations in the data. Considering the estimation results, the
dataset in setting C appears to have properties that can be handled more realistically by
the conditional POT approaches than the settings A and B.

To verify this presumption, we provide various visual diagnostics. As an example, we
present the diagnostics for the Hawkes-POT with ETAS decay function, as the results for
the other conditional POT variants were found to be very similar. Figure 13 displays the
estimated conditional intensities and the cumulative conditional intensities for all three
simulation settings. The results for setting A show a similar pattern as was observed
for the significant wave heights in Figure 3, indicating that the conditional POT models
are not well-suited for ARFIMA-type time series. Setting B improves upon the results
for setting A, presumably because the events appear to exhibit less pronounced extremal
clustering, as can be seen from slightly more equally distributed event ticks. The simulated
fractional white noise in setting C, i.e., the ARFIMA(0, 0.1398, 0), follows completely
different dynamics with only slight extremal clustering. Fractional integration only seems
to intensify the particular clustering behaviour when short-range correlations are already
present, as visible when comparing settings A and B, while it has little effect when added
to a white noise sequence using a fractional difference parameter d that is this low. In
consequence, the conditional POT model seems to be an appropriate fit for the data of
setting C, leading to a well-shaped estimated conditional intensity and a cumulative
intensity that evenly spreads across events.

Setting A Setting B Setting C

Figure 13. Estimated conditional intensity and cumulative intensity of the Hawkes-POT model (with
ETAS decay) and for the simulated settings A, B and C. Ticks on the upper axis represent events. 95%
confidence bands are based on the Kolmogorov–Smirnov statistic [87].

The residual diagnostics in Figure 14, consisting of ACFs for GPD residuals and
squared residuals as well as unit exponential QQ plots for the three simulation settings,
confirm these findings. In the GPD residuals of the Hawkes-POT in setting A there is still a
large amount of autocorrelation left, which is similar, albeit more pronounced than what
was observed for the significant wave height dataset in Figure 4. This also leads to the
GPD residuals being far from unit exponentially distributed. The diagnostics improve
when switching to setting B, so a situation with short-range dependent, ARMA-type data.
In setting C, the conditional POT appears to capture all dependencies in the data, so that
assuming a unit exponential distribution for the GPD residuals seems reasonable, which
strengthens our previous findings.



Mathematics 2021, 9, 2817 22 of 33

Setting A Setting B Setting C

Figure 14. Unit exponential QQ plot and autocorrelation functions for the GPD residuals of the
Hawkes-POT (with ETAS decay) for the simulated settings A, B and C.

In summary, the simulation study for the conditional POT models shows that the
combination of short- and long-range dependence in the data leads to pronounced extremal
clustering. We can conclude that the more extreme the clustering behaviour in the extreme
events gets, the less appropriate this type of model is. The long-range dependence itself
does not appear to be causal for the unsatisfactory model fit, but rather the impact that
the long-range correlation has on the extremes in data that is already governed by short-
term dependencies. Therefore, we can note that the combination of short- and long-
range dynamics leads to a deterioration in the model fit for conditional POT approaches,
confirming the presumptions from Section 4.1.

5.2. Simulation Results: Mittag–Leffler Distribution

Next, we consider fitting the Mittag–Leffler distribution to the inter-event times for
the simulated settings A, B and C. Figure 15 provides the ACFs of logarithmic inter-event
times and event marks as well as their CCF for all simulation settings. For setting C,
we find no systematic correlations, implying that the Mittag–Leffler distribution may be
suitable to a pure long-range dependence setting. However, it is obvious from setting B
that the autocorrelation in the event marks and the cross-correlation between event times
and event marks are induced by the short-range, ARMA-type dependencies. Comparing
the results from settings A and B, we can further state that when combining the ARMA-
dependencies with a fractionally integrated component, the observed correlations appear
even more pronounced. Similar conclusions can be drawn from the empirical copulas for
the inter-event times and event marks, depicted in the Appendix A.2 in Figure A3.
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Setting A Setting B Setting C

Figure 15. Autocorrelation functions of logarithmic inter–event times, event marks, and their cross–
correlation function for simulated settings A, B, and C.

Figure 16 presents the logarithmic Mittag–Leffler QQ plots of the logarithmic inter-
event times for all settings. Again, it is apparent that in settings A and B the Mittag–Leffler
distribution does not seem to be appropriate for the inter-event times. For setting C, we
note a substantially improved fit, but still observe distinct deviations for lower quantiles.

Setting A Setting B Setting C

Figure 16. Logarithmic Mittag–Leffler QQ plot of the logarithmic inter–event times for simulated
settings A, B, and C.

The parameter stability plots for the tail and re-scaled scale estimates of the Mittag–
Leffler distribution are given in Figure 17 for all simulation settings. Clearly, the presence
of short-ranged ARMA dependencies in settings A and B leads to an absence of areas of
stability for tail and especially re-scaled scale estimates. In setting C, however, it is easy to
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identify stability regions, implying that the Mittag–Leffler distribution may be well-suited
for a situation in which the underlying data is only governed by long-range dependence.

Setting A Setting B Setting C

Figure 17. Mittag–Leffler parameter stability plots for the inter-event times of the simulated settings
A, B and C.

From these simulation results, we can conclude that modelling the inter-event times
by means of a Mittag–Leffler distribution is not appropriate when the underlying time
series not only exhibits long-range dependence, but also short-term correlations. This
confirms the findings from the application of the Mittag–Leffler distribution to significant
wave heights in Section 4, which posed a situation in which the dependence structure of
the data can only be characterised by a combination of short- and long-range dynamics.

5.3. Simulation Results: Two-Step ARFIMA-POT Approach

Lastly, we continue the simulation study by investigating whether the two-step
ARFIMA-POT approach is suitable for ARFIMA-type dependencies in the time series,
even when considering only either ARMA components or fractional integration. For this,
we make use of the same settings A, B, and C as before and apply the same two-step
ARFIMA-POT procedure as described in detail with the application to significant wave
heights in Section 4.3: we first estimate the ARFIMA model with the AR and MA orders
being selected according to the BIC, and calculate the ARFIMA residuals, to which we then
apply the classical POT model. The corresponding estimation results for all settings are
stated in Table A1 in Appendix A.2.

Similar to the results for the significant wave height data, the ARFIMA residuals
do not exhibit any remaining autocorrelation regardless of the considered setting (see
Figure A4 in Appendix A.2). Additional Ljung-Box tests for the smallest possible lags in
each setting support this. The null hypothesis of no autocorrelation cannot be rejected
on a 10% level for settings A and C (p-values: 0.1453 and 0.4606, respectively). Only for
setting B, the null hypothesis can be rejected on a 1% level (p-value: 0.0017). This, however,
is neither too surprising nor worrisome since the setting forces the ARMA parameters to
zero implying that any remaining random variations can hardly be captured systematically.
The thresholds for the three settings were again determined using mean residual life plots
and corresponding parameter stability plots, which can be found in Appendix A.2 in
Figure A5 for reference. The selected thresholds are uA = 0.165 m (4.78%), uB = 0.135 m
(7.70%), and uC = 0.1 m (14.36%) for the settings A, B, and C, respectively. For setting C, it
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is worth mentioning that the small fractional component induces a weaker dependence
structure compared to settings A and B, resulting in the GPD being appropriate for a lower
threshold and therefore larger tail of the residual distribution. For all three settings, the
estimation results of the second stage of the ARFIMA-POT method, i.e., fitting of a GPD to
the ARFIMA residuals, can be found in Table A2 in Appendix A.2.

Figure 18 provides visual diagnostics for the GPD residuals in the form of unit ex-
ponential QQ plots and ACFs of residuals and squared residuals. The GPD residuals of
the two-step ARFIMA-POT approach show a noticeably better fit than the GPD residuals
of the conditional POT approaches in Figure 14. In all three settings, there is no system-
atic autocorrelation left, and the distribution of the GPD residuals comes close to a unit
exponential distribution. Thus, the two-step ARFIMA-POT approach works equally well
regardless of whether we only find short-term ARMA correlations, fractional integration
or both types of dependencies in the underlying dataset.

Setting A Setting B Setting C

Figure 18. Unit exponential QQ plot and auto-correlation functions for the GPD residuals of the
ARFIMA-POT for the three simulated settings A, B and C.

This simulation study clearly highlighted that the two-step ARFIMA-POT approach is
advantageous in situations in which it is unclear what type of dependencies are present in
the data. As opposed to the conditional POT models and the Mittag–Leffler distribution,
the approach still provides a useful characterisation of the extremal behaviour in cases in
which both short- and long-range correlations govern the underlying time series, as found
for the significant wave height dataset.
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6. Conclusions

We considered a setting in which short- and long-range dependencies in the under-
lying time series of significant wave heights lead to pronounced clustering behaviour of
high threshold exceedances. We reviewed commonly used conditional POT models which
parametrically model the short-term dynamics underlying the extremal clustering, as well
as the Mittag–Leffler distribution for inter-event times incorporating long-range correla-
tions in the implied event times. For both approaches, we found that long- or short-term
dependencies were neglected, respectively, resulting in unsatisfactory model fits to the
significant wave height data. In a simulation study, we confirmed that the combination of
short- and long-range correlations is pivotal to this observation.

To prevent event times and mark sizes from inheriting properties of the dependence
structure of the underlying series that would have to be modelled explicitly, we suggested
the two-step ARFIMA-POT approach. This two-step approach first fits an ARFIMA model
to the significant wave heights capturing the short- and long-term correlations of the
observations, and then applies a classical POT model to the residuals. We found that the
two-step ARFIMA-POT approach provides significant improvements in terms of model
fit for the significant wave heights. Additionally, a simulation study confirmed that the
two-step ARFIMA-POT approach enables a sensible characterisation of extreme events in
case of ARFIMA-type dependencies in the time series, even when considering only either
ARMA components or fractional integration.

Our results illustrate the need for new methods filling the gap at the intersection of
modelling local clustering behaviour and long-range dependence. Clearly, our solution
to this issue is a pragmatic one, but it provides a strategy that is easily applicable and
interpretable by practitioners. However, future work should address this challenge by
developing models with a sound mathematical underpinning, possibly combining existing
approaches to focus on short-term dynamics with long-range dependent components and
vice versa.
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Abbreviations
The following abbreviations are used in this manuscript:

ACF Autocorrelation function
AIC Akaike information criterion
AR Autoregressive
ARFIMA Autoregressive fractionally integrated moving average
BIC Bayesian information criterion
CCF Cross-correlation function
CTRE Continuous time random exceedance
ETAS Epidemic-type aftershock sequence
EVT Extreme value statistics
GARCH Generalised autoregressive conditional heteroscedasticity
GPD Generalised Pareto distribution
iid Independently and identically distributed
MA Moving average
MPP Marked point process
POT Peaks-over-threshold
QQ Quantile-quantile
SEPOT Self-exciting peaks-over-threshold

Appendix A

Appendix A.1

This section contains supplementary figures for the application of the considered
models to the significant wave height dataset in Section 4.

Figure A1. Estimated intensity and cumulative intensity of the Hawkes-POT model (with exponential
decay) in the left column, the SEPOT model (with ETAS decay) in the middle column, and the SEPOT
model (with exponential decay) in the right column. Ticks on the upper axis represent event
occurrences. 95% confidence bands are based on the Kolmogorov–Smirnov statistic [87].
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Figure A2. Unit exponential QQ plot and autocorrelation functions for the GPD residuals of the
SEPOT model (with ETAS and exponential decay).

Appendix A.2

This section contains supplementary figures and tables for the simulation study in
Section 5.

Setting A Setting B Setting C

Figure A3. Empirical copula plot for inter-event times and marks for the simulated settings A, B and C.

Table A1. Estimation results of the ARFIMA(p, d, q) model for the simulated settings A, B, and C.
Standard errors in parentheses.

ϕ̂1 ϕ̂2 ϕ̂3 ϕ̂4 d̂ θ̂1 θ̂2 θ̂3 θ̂4

Setting A 0.7272 0.2389 0.2577
(0.0255) (0.0219) (0.0232)

Setting B 1.1527 −0.2355 0.8372 −0.7609 0.0842 0.3924 −0.1814 0.7920 −0.1216
(0.0495) (0.0912) (0.0936) (0.0487) (0.0786) (0.1025) (0.0640) (0.0732) (0.0607)

Setting C 0.1549
(0.0122)

ln L AIC BIC

Setting A 9228.0 −18445.9 −18414.5
Setting B 10355.7 −20689.4 −20619.3
Setting C 10353.8 −20701.7 −20682.5
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Setting A Setting B Setting C

Figure A4. Autocorrelation functions and periodogram of the ARFIMA residuals for the simulated
settings A, B and C.

Table A2. Estimation results of the GPD fit to the ARFIMA(p, d, q) residuals for the simulated settings
A, B, and C. Standard errors in parentheses.

β̂ ξ̂

Setting A 0.0486 (0.0048) −0.1962 (0.0684)
Setting B 0.0451 (0.0034) −0.1014 (0.0528)
Setting C 0.0514 (0.0026) −0.1224 (0.0324)
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Setting A Setting B Setting C

Figure A5. Mean residual life plot and GPD parameter stability plots for the ARFIMA residuals of
the simulated settings A, B and C.
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