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Abstract: In this paper, we introduce and study new geometric concepts in a general cubic structure.
We define the concept of the inflection point in a general cubic structure and investigate relationships
between inflection points and associated and corresponding points in a general cubic structure.
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1. Introduction and Motivation

When studying various third- and fourth-order curves and some other geometric
problems, the authors have often encountered abstract geometric structures, which seemed
worth studying. In [1], we named these cubic structures. In the same paper, numerous
examples of these structures are given, and the connection of these geometric structures
with algebraic structures are investigated. Additionally, the connection between cubic
structures and totally symmetric medial quasigroups, as well as commutative groups, was
thoroughly studied. Some simple properties of cubic structures were also proven.

Let Q be a nonempty set, whose elements are called points, and let [ ] ⊆ Q3 be a
ternary relation on Q. Such a relation and the ordered pair (Q, [ ]) is called a cubic relation
and a cubic structure, respectively, if the following conditions are fulfilled:

C1. For any two points a, b ∈ Q, there is a unique point c ∈ Q such that [a, b, c], i.e.,
(a, b, c) ∈ [ ].

C2. The relation [ ] is totally symmetric, i.e., [a, b, c] implies [a, c, b], [b, a, c], [b, c, a], [c, a, b],
and [c, b, a].

C3. [a, b, c], [d, e, f ], [g, h, i], [a, d, g], and [b, e, h] imply [c, f , i], which can be clearly written
in the form shown in the following table:

a b c
d e f
g h i

Throughout the paper, we use the property C2 without explicitly mentioning it.
Given a nonempty set Q and a binary operation · on Q, the pair (Q, ·) is called a

quasigroup if, for each a, b ∈ Q, unique elements x and y exist, such that ax = b and ya = b.
(From now on, whenever there is no risk of confusion, the product is simply denoted by a
juxtaposition.) A quasigroup (Q, ·) in which the identity (ab) · (cd) = (ac) · (bd) is valid is
called medial, and it is totally symmetric if it satisfies the identities (ab) · b = a, a · (ab) = b.
A totally symmetric medial quasigroup is called TSM-quasigroup for short.

One can prove that if the equivalence

[a, b, c]⇔ ab = c
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links the ternary relation [ ] and the binary operation ·, then (Q, [ ]) is a cubic structure if
and only if it is a TSM-quasigroup [1] (Th. 1). The properties of TSM-quasigroups were
thoroughly studied in [2].

Some geometric examples of cubic structures were considered in [1], the most impor-
tant of which is perhaps [1] (Example 2.1). Let Γ be a planar cubic curve, Q ⊆ Γ, the set of
all nonsingular points on Γ, and let [a, b, c] mean that the points a, b, c ∈ Q lie on the same
line. Then, one can prove that (Q, [ ]) is a cubic structure. In this paper, some well-known
relationships that are valid on a cubic curve motivate the introduction of new concepts in a
general cubic structure.

Two concepts in cubic structures are defined in [3]. The point a′ is the tangential of
point a if the statement [a, a, a′] holds. Each point has one and only one tangential. If
point a′ is the tangential of point a, then we can also say that point a is an antecedent of
point a′. If a′ is the tangential of point a and a′′ is the tangential of point a′, then we can
say that a′′ is the second tangential of point a. Two points are said to be corresponding if they
have a common tangential. If the maximum number of mutually corresponding points is
finite, then it is of the form 2m for some fixed number m ∈ N∪ {0}.

In such a case, we can say that the distinct points a1, . . . , an, n ≤ 2m with the common
tangential are associated. The number m is called the rank of the observed cubic structure
(Q, [ ]).

2. Inflection Points

We say that point a in a cubic structure is an inflection point, so the statement [a, a, a]
holds, i.e., if that point is self-tangential.

Lemma 1. If points a and b are inflection points and if the statement [a, b, c] holds, then point c is
also an inflection point.

Proof. The proof follows by applying the table

a b c
a b c
a b c

.

Example 1. For a more visual representation of Lemma 1, consider the TSM-quasigroup given by
the Cayley table

a b c
a a c b
b c b a
c b a c

Lemma 2. If inflection point a is the tangential point of point b, then a and b are corresponding
points.

Proof. Point a is the common tangential of points a and b.

Example 2. For a more visual representation of Lemma 2, consider the TSM-quasigroup given by
the Cayley table

a b c d
a a b d c
b b a c d
c d c b a
d c d a b

Proposition 1. If a′ and b′ are the tangentials of points a and b, respectively, and if c is an inflection
point, then [a, b, c] implies [a′, b′, c].
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Proof. According to [3] (Th. 2.1), [a, b, c] implies [a′, b′, c′], where c′ is the tangential of c.
However, in our case c′ = c.

Lemma 3. If a′ and b′ are the tangentials of points a and b respectively, and if [a, b, c] and [a′, b′, c],
then c is an inflection point.

Proof. The statement is followed by applying the table

a b c
a b c
a′ b′ c

.

Example 3. For a more visual representation of Proposition 1 and Lemma 3, consider the TSM-
quasigroup given by the Cayley table

a b c d e
a d c b a e
b c e a d b
c b a c e d
d a d e b c
e e b d c a

Lemma 4. If a′ and b′ are the tangentials of points a and b, respectively, and if c is an inflection
point, then [a, b, d] and [a′, b′, c] imply that c and d are corresponding points.

Proof. From the table

a b d
a b d
a′ b′ c

it follows that point d has the tangential c, which itself is self-tangential.

Example 4. For a more visual representation of Lemma 4, consider the TSM-quasigroup given by
the Cayley table

a b c d e f g h
a e d g b a h c f
b d f h a g b e c
c g h c d f e a b
d b a d c e f h g
e a g f e d c b h
f h b e f c d g a
g c e a h b g f d
h f c b g h a d e

Lemma 5. If the corresponding points a1, a2, and their common second tangential a′′ satisfy
[a1, a2, a′′], then a′′ is an inflection point.

Proof. The statement follows on from the table

a1 a2 a′′

a1 a2 a′′

a′ a′ a′′

where a′ is the common tangential of points a1 and a2.



Mathematics 2021, 9, 2819 4 of 6

Example 5. For a more visual representation of Lemma 5, consider the TSM-quasigroup given by
the Cayley table

a1 a2 a3 a4
a1 a3 a4 a1 a2
a2 a4 a3 a2 a1
a3 a1 a2 a4 a3
a4 a2 a1 a3 a4

Lemma 6. Let a1, a2, and a3 be pairwise corresponding points with the common tangential a′,
such that [a1, a2, a3]. Then, a′ is an inflection point.

Proof. The proof follows from the table

a1 a1 a′

a2 a2 a′

a3 a3 a′
.

Example 6. For a more visual representation of Lemma 6, consider the TSM-quasigroup given by
the Cayley table

a1 a2 a3 a4
a1 a4 a3 a2 a1
a2 a3 a4 a1 a2
a3 a2 a1 a4 a3
a4 a1 a2 a3 a4

Corollary 1. Let a1, a2, and a3 be pairwise corresponding points with the common tangential a′,
which is not an inflection point. Then, [a1, a2, a3] does not hold.

Lemma 7. Let [b, c, d], [a, b, e], [a, c, f ], and [a, d, g]. Point a is an inflection point if and only if
[e, f , g].

Proof. Each of the if and only if statements follow on from one of the respective tables:

b e a
c f a
d g a

a b e
a c f
a d g

.

Example 7. For a more visual representation of Lemma 7, consider the TSM-quasigroup given by
the Cayley table

a b c d e f g
a a e f g b c d
b e f d c a b g
c f d g b e a c
d g c b e d f a
e b a e d c g f
f c b a f g d e
g d g c a f e b

3. Inflection Points in Cubic Structures of Rank 2

Let (Q, [ ]) be a cubic structure of rank 2, i.e., associated points form quadruples.

Lemma 8. Let inflection point a′ be the common tangential of distinct points a1 and a2, and let a3
be a point such that [a1, a2, a3]. Then, a′ is also the tangential of point a3, i.e., a′, a1, a2, and a3 are
associated points.
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Proof. The proof follows by applying the table

a′ a′ a′

a1 a2 a3
a1 a2 a3

.

Proposition 2. Let a′ be the common tangential of points a1, a2, and a3, and let these four points
be distinct. If a′ is an inflection point, then [a1, a2, a3].

Proof. Let b be a point such that [a1, a2, b]. By Lemma 8, points a′, a1, a2, and b are
associated, and b = a3.

Theorem 1. Let a1, a2, a3, and a4 be associated points, and let [a1, a2, a3]. Then, a4 is an inflection
point and it is also the common tangential of points a1, a2, and a3.

Proof. Let a′ be the common tangential of points a1, a2, a3, and a4. By Lemma 6, a′ is an
inflection point, i.e., the common tangential of points a1, a2, a3, a4, and a′. Therefore, point
a′ is actually one of points a1, a2, a3, or a4. If a′ = a1, then a1 would be an inflection point
and the common tangential of points a2, a3, and a4, and by Proposition 2, it follows that
[a2, a3, a4], which is, by C1, impossible because [a1, a2, a3] holds. In the same way, we get
contradictions by assuming a′ = a2 or a′ = a3. Therefore, a′ = a4.

For a more visual representation of Lemma 8, Proposition 2, and Theorem 1 consider
the TSM-quasigroup in Example 6.

In [3] (Th. 4.3), we proved the following: If a1, a2, a3, and a4 are associated points
with the common tangential a′, then points p, q, and r exist such that [a1, a2, p], [a3, a4, p],
[a1, a3, q], [a2, a4, q], [a1, a4, r] and [a2, a3, r], and points a′, p, q, and r are associated.

Theorem 2. Let a1, a2, a3, and a4 be associated points with the first and second tangentials a′ and
a′′, where a′ 6= a′′. If a′′ is an inflection point, then it is one of points p, q, or r, such that [a1, a2, p],
[a3, a4, p], [a1, a3, q], [a2, a4, q], [a1, a4, r], and [a2, a3, r]. If, e.g., a′′ = r, then [a′, p, q].

Proof. The points a′, p, q, and r are associated, and their common tangential is the tan-
gential a′′ of point a′. Point a′′ is self-tangential. Because of the rank 2, there are only four
different associated points, and since a′′ 6= a′, point a′′ must be equal to one of points p, q,
or r. Let, e.g., a′′ = r. Since a′′ is an inflection point and also the tangential of points a′, p,
and q, it follows from Proposition 2 that [a′, p, q].

Example 8. For a more visual representation of Theorem 2, consider the TSM-quasigroup given by
the Cayley table

a1 a2 a3 a4 a5 a6 a7 a8
a1 a5 a6 a7 a8 a1 a2 a3 a4
a2 a6 a5 a8 a7 a2 a1 a4 a3
a3 a7 a8 a5 a6 a3 a4 a1 a2
a4 a8 a7 a6 a5 a4 a3 a2 a1
a5 a1 a2 a3 a4 a8 a7 a6 a5
a6 a2 a1 a4 a3 a7 a8 a5 a6
a7 a3 a4 a1 a2 a6 a5 a8 a7
a8 a4 a3 a2 a1 a5 a6 a7 a8

4. Conclusions

Various concepts, which appear in any cubic structure, and relations between them,
are introduced and studied in [3] and in this paper. In the future, the authors intend to use
cubic structures to study the properties of some types of configurations (see [4–7]) among
which are, for example, Steiner’s triplets.
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