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Abstract: The burgeoning advances in high-throughput technologies have posed a great challenge to
the identification of novel biomarkers for diagnosing, by contemporary models and methods, through
bioinformatics-driven analysis. Diagnostic performance metrics such as the partial area under the
ROC (pAUC) indexes exhibit limitations to analysing genomic data. Among other issues, the inability
to differentiate between biomarkers whose ROC curves cross each other with the same pAUC value,
the inappropriate expression of non-concave ROC curves, and the lack of a convenient interpretation,
restrict their use in practice. Here, we have proposed the fitted partial area index (FpAUC), which
is computable through an algorithm valid for any ROC curve shape, as an alternative performance
summary for the evaluation of highly sensitive biomarkers. The proposed approach is based on
fitter upper and lower bounds of the pAUC in a high-sensitivity region. Through variance estimates,
simulations, and case studies for diagnosing leukaemia, and ovarian and colon cancers, we have
proven the usefulness of the proposed metric in terms of restoring the interpretation and improving
diagnostic accuracy. It is robust and feasible even when the ROC curve shows hooks, and solves
performance ties between competitive biomarkers.

Keywords: ROC partial area; scaled partial area index; high sensitivity; negative diagnostic likelihood
ratio; variance of FpAUC; biomarker performance; genomic data

1. Introduction

Numerous medicinal sciences and life science issues dealing with data from high-
throughput experiments are focused on the identification of key biomarkers, and the
development of predictive models and medical prognosis systems. In the literature, two of
the most intensively statistical approaches used for evaluating and comparing the overall
binary diagnostic performance, both of single markers and scoring functions combining
several tests, have been the receiver operating characteristic (ROC) curve and the area
under this ROC curve (AUC).

The main goal of a diagnostic (bio)marker or classifier is basically to discriminate
instances with a condition of interest (D = 1) from those without such a condition (D = 0),
such as the presence of a suspect disease from absence of it, a positive response to a targeted
therapy from a negative one, transcriptional activity of a sequence from inactivity, and
faulty modules in software systems from non-faulty ones. A continuous marker, X, can be
dichotomised into positive and negative instances by choosing one of the marker scores
c as a cut-off point, also named the decision threshold. On the basis of the true status
(real diagnosis) of each instance being known, named the gold standard, the diagnostic
accuracy of a marker is mainly measured by its specificity and sensitivity. The first metric,
also named the true negative ratio (TNR), is the probability for a negative instance to be
correctly diagnosed as negative. The other one, also called the true positive ratio (TPR), is
the probability for a positive instance to be correctly diagnosed as positive. Notice that the
false-positive ratio (FPR or 1-specificity) and TPR (or sensitivity) represent the probability
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of type-I error and the complementary probability of type-II error, respectively. In addition,
both FPR and TPR are functions of such a threshold running over the entire range of
possible biomarker scores, defined formally as FPR(c) = P(X0 > c) and TPR(c) =
P(X1 > c), where X0 = (X|D = 0) and X1 = (X > c|D = 1). The accuracy of a classifier is
thereby measured by these two probabilities estimated at each diagnostic threshold through
the ROC curve. This two-dimensional plot displays the pairs (FPR(c), TPR(c)) for all the
thresholds c, and can be written either as (x, ROC(x)) with ROC(x) = TPR ◦ FPR−1(x) for
x = FPR(c) ∈ [0, 1], or analogously as (ROC−1(y), y) with ROC−1(y) = FPR ◦ TPR−1(y)
for y = TPR(c) ∈ [0, 1]. Graphically, it depicts the trade-offs available between both
aspects of biomarker diagnostic performance across all the range of possible thresholds.
An increase in the sensitivity comes at the expense of a decrease in the specificity and vice
versa [1–3].

The AUC is commonly used in many ROC-based analyses [4,5] as a single global
index or summary metric for evaluating the overall discriminative ability of a predictive
and prognostic test to correctly classify instances into one of the two mutually exclusive
states of the condition of interest. The empirical AUC is equivalent to the Mann–Whitney U
statistic, and its value is commonly interpreted as the probability that an instance randomly
drawn among the ones with the condition of interest shows a marker score higher than
an instance randomly selected from those instances without it [6,7]. It is assumed that the
ROC curve of a perfect biomarker would have AUC = 1; i.e., such a classifier discriminates
instances perfectly as with condition of interest or without it. Meanwhile, a completely
random classifier would have an ROC curve lying on the diagonal line (named chance
line), i.e., AUC = 0.5. In this case, the discriminatory predictive ability of this diagnostic
test is no better-than-chance (chance performance). Hence, AUC varies from 0.5 to 1 for
ROC curves reporting better-than-chance performance. The AUC has other convenient
interpretations, such as the average sensitivity value for all values of specificity or the
average specificity value for all values of sensitivity [2]. This overall evaluation metric does
not depend on both the cut-off value and the prevalence of the cases, and thus is invariant
under the case-control sampling [8].

Comprehensive surveys on the technical and statistical aspects of ROC analysis can
be found in [1,9,10], and more recently in [2,3,11–17].

Nevertheless, not all the regions of the ROC curve are of interest and importance in
many bioinformatics and screening medical applications [18–21], since low FPR and high
TPR are biologically relevant or clinically acceptable. For instance, a high specificity (low
FPR) range on the horizontal bandaxis would be demanded for the detection of a rare
disease or cancer screening in which it is important to “rule in” a disease (e.g., a disease
whose treatment implies major side effects), see [22]. On the other hand, a high sensitivity
(high TPR) range on the vertical axis would be a priority when it is important to “rule out”
a disease (e.g., a fatal disease if untreated) a range of relatively high TPRs would be chosen,
i.e., high sensitivities [3,23]. Thus, AUC may not be a meaningful ROC-based metric of
diagnostic performance in a pre-specified confined range. In such situations, the partial
area under the ROC curve (pAUC) attracts more attention as diagnostic accuracy metric
by summarising the portion of the ROC curve over a pre-specified range [23–26], such as
the rule-out (high sensitivity) or rule-in (high specificity) regions [27].

However, the pAUC has been questioned for the lack of a convenient interpretation,
since a biomarker describing locally better-than-chance performance might well yield
pAUC values close to 0, in contrast to the conventional AUC. In addition, the pAUC has
some limitations as a metric of predictive accuracy such as in the two classifier comparisons
with equal pAUC values derived from ROC curves crossing over the same restricted range,
which continues unsolved [28].

To address such shortcomings, some pAUC indexes have been developed by differ-
ent transformations. Thus, the standardised partial AUC (SpAUC) index provided by
McClish [24] is focused on a specificity range (FPR1, FPR2). Upper and lower plausible
bounds of the pAUC are proposed to scale the possible values into the interval (0.5, 1), and
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be thereby interpreted appropriately as a measure of diagnostic performance, see also [2,3].
As the upper limit of the pAUC for the SpAUC index, it was considered the rectangle with
high the unit and base (FPR2 − FPR1) corresponding to the pAUC of a perfect classifier
(ROC(x) = 1, for all x ∈ (0, 1)) restricted to the specificity range (FPR1, FPR2). Whereas
the lower one was established as the pAUC between FPR1 and FPR2 for a completely
non-informative biomarker (FPR(c) = TPR(c), for all c) given by the area of the trapezoid
(FPR1, 0), (FPR2, 0), (FPR2, FPR2) and (FPR1, FPR1). Furthermore, Ma et al. [5] derived
two important properties which facilitate a suitable use of this summary index for proper
ROC curves, i.e., ROC curves bounded below by the diagonal line, ROC(x) ≥ x. Never-
theless, the SpAUC index could still present some drawbacks that limit its widespread use,
since the lower bound used in the SpAUC is not well-defined for improper ROC curves,
i.e., ROC curves crossing the diagonal line which are frequent in practice [29–33]. Moreover,
the SpAUC is not able to distinguish between two crossing ROC curves with equal pAUC
values in the range of interest. Vivo et al. [26] have provided an alternative pAUC index for
any restricted specificity range named the tighter partial area index (TpAUC) index which
overcomes such limitations of the SpAUC. Recently, the TpAUC has been implemented in
the R/Bioconductor package ROCpAI [34], which also offers functions to estimate pAUC
and SpAUC, and their respective stabilities provided by their confidence intervals using
bootstrap resampling.

On the other hand, in order to summarise meaningfully the diagnostic performance
of a biomarker over a high sensitivity range in which “rule out” a disease is important,
Jiang et al. [23] proposed a dual pAUC index, conceptually similar to the SpAUC, within
the true-positive band (TPR0, 1). This normalised partial area (NpAUC) index comes
from dividing the pAUC by 1− TPR0, i.e., the area of the rectangle above the pre-selected
high sensitivity. The NpAUC can be interpreted as the average value of specificity for
all sensitivity values above TPR0 [2,3,23] and is also valid for use in improper settings.
Nevertheless, as the authors mentioned, the values of this NpAUC index might be less
than 0.5. Moreover, although this partial area index is a more meaningful summary of
diagnostic performance in high sensitivity situations, it could still present some drawbacks
for comparing two or more diagnostic performances over the same restricted interval of
TPR values, since two portions of ROC curves may differ in their shape but enclose the
same pAUC value.

In this work, to tackle such issues, an alternative pAUC index called the fitted partial
area index (FpAUC) is proposed to summarise the discriminatory performances of highly
sensitive markers satisfying the following characteristics: (a) to be equivalent to full
AUC when TPR0 = 0 for informative biomarkers, (b) to have a suitable interpretation
as a diagnostic performance metric, (c) to be applicable for any ROC curve shape, and
(d) to be capable of distinguishing between two or more crossing ROC curves with the
equal pAUC values. To do that, new upper and lower bounds are derived for the pAUC
over the interval (TPR0, 1) by adding an important characteristic of the ROC curve and
involving all the possible shapes. Through an algorithm, we provide a complete framework
for the evaluation of highly sensitive markers in terms of discriminatory capacity by the
proposed FpAUC, which does surpass the mentioned drawbacks of the NpAUC. Moreover,
our algorithm was implemented in the R programming language [35]. The code of the
FpAUC function and the required internal functions for its computing are available in the
Supplementary Materials.

The rest of this paper is organised as follows. In Section 2, we derive fitter bounds for
the pAUC above a pre-specified sensitivity threshold under flexible assumptions, which
do not only assume concave shapes as proper ROC curves; they also extend to any ROC
curve shape. From these bounds, the construction of the novel FpAUC index as a more
meaningful metric of the pAUC is discussed and provided through a general algorithm
to compute it for any ROC curve covering all possible situations in practice. In Section 3,
the variance of the FpAUC estimator is derived under the assumption of a binormal ROC
model, and the performance of the estimate of the FpAUC index is also assessed via the
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results of simulation studies to verify the appropriateness of the proposed index. Moreover,
applications to genomic datasets involving leukaemia and ovarian and colon cancers are
illustrated in Section 4. The paper is completed with a discussion in Section 5.

2. ROC Partial Area for Highly Sensitive Diagnostic Markers

In this section, lower and upper bounds involved in the standardisation of the pAUC
are derived. We show that the boundaries provided here are fitter than those given in [23].
In addition, the pAUC transformed into the FpAUC index can produce more reliable
performance estimates for highly sensitive markers with any ROC curve shapes, satisfying
the characteristics listed in the introduction.

2.1. Fitter Boundaries

We firstly considered the pAUC restricted to the interval (TPR0, 1) ⊆ (0, 1), which is
defined as the area that lies above TPR0 under an ROC curve, mathematically expressed
as follows:

ATPR0 =
∫ 1

TPR0

(
1− FPR ◦ TPR−1(y)

)
dy (1)

where the TPR0 is a pre-selected sensitivity threshold for a given diagnostic test, y ∈
[TPR0, 1] represents the y-coordinate of an ROC curve, TPR−1(y) is the decision threshold
for the diagnostic classification, and FPR(TPR−1(y)) corresponds to its x-coordinate of
such an ROC curve. The ATPR0 is bounded by 0 and 1. It is null when the interval is reduced
to a point, and becomes identical to the AUC when the interval (0, 1) is considered.

At first glance, ATPR0 is bounded above by the area of the rectangle of the ROC space
delimited by the band (TPR0, 1) that encompasses it, i.e., the rectangle of side-lengths 1 and
1− TPR0. Moreover, when the ROC curve is proper in (TPR0, 1), the ATPR0 is bounded
below by the area of the triangle with corners (TPR0, TPR0), (1, TPR0), and (1, 1) (see
Figure 1a). Therefore, the following boundaries can be established:

1
2
(1− TPR0)

2 ≤ ATPR0 ≤ 1− TPR0. (2)
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Figure 1. Plots of ROC curves. The regions filled by vertical lines correspond to the pAUCs over the high sensitivity
range (TPR0, 1). (a) Partial NLR upper bounded by NLR0. The region filled by horizontal lines corresponds to the lower
bound (4). (b) Partial NLR upper bounded by 1 but not by NLR0. The region filled by oblique lines corresponds to the
lower bound (5). (c) Partial NLR non-bounded.

It is easily observed that this lower bound is only applicable for proper ROC curves,
which, on the other hand, implies that the AUC is bounded by 0.5 and 1. In addition, notice
that the upper bound in (2) was used by Jiang et al. [23] to scale the ATPR0 , providing
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the NpAUC index, which is a more meaningful and more accurate index in such a high-
sensitivity region. This NpAUC index will be further discussed in the next subsection.

Nevertheless, boundaries fitter than those given in (2) can be derived for the ATPR0 .
Thus, considering that an ROC curve is determined by the representation of pairs of FPR
and TPR, a fitter upper bound can be found by looking at the rectangle with apexes
(FPR0, TPR0) and (1, 1), where FPR0 = FPR(TPR−1(TPR0)) (see Figure 1a). Thus, we
have that the ATPR0 is closely bounded above by the area of the rectangle of height 1−TPR0
and width 1− FPR0; i.e.,

ATPR0 ≤ (1− FPR0)(1− TPR0). (3)

On the other hand, a narrower lower bound can be established to be also valid
for any ROC curve shape, by incorporating the negative likelihood ratio (NLR) of the
ROC curve of a classifier to the assumptions. The NLR is defined as the false nega-
tive ratio (1− TPR) over true negative ratio (1− FPR), and can be mathematically ex-
pressed by NLR(x) = (1 − ROC(x))/(1 − x) for each point (x, ROC(x)) on the ROC
curve. It provides a diagnostic performance metric of how many times patients with a
disease are more (or less) likely to have a negative result than patients without the dis-
ease [36]. Furthermore, NLR(x) represents the slope of the straight line which passes
through the point of the ROC curve and the upper-right corner (1, 1). For concave ROC
curves, the NLR is monotone decreasing [5], and consequently, the portion of the curve in
the horizontal band (TPR0, 1) is above the straight line connecting (FPR0, TPR0) and (1, 1)
(see Figure 1a). By definition, the ROC curve is monotonous non-decreasing, but it is not
necessarily concave, since it might cross the chance line and/or display a hook showing
locally worse-than-chance performance.

Hence, a lower boundary of the ATPR0 can be provided when the NLR of the ROC
curve is bounded above by the lower extreme in the high sensitivity band (TPR0, 1), i.e.,
NLR(x) ≤ NLR0 for x ≥ FPR0 and NLR0 = NLR(FPR0), which will be called partially
bounded NLR. Thereby, a fitter lower bound for the ATPR0 can be found by looking at the
triangle with corners (FPR0, TPR0), (1, TPR0), and (1, 1) (Figure 1a):

1
2
(1− FPR0)(1− TPR0) ≤ ATPR0 . (4)

As is shown in Figure 1b, an ROC curve can be partially proper in (TPR0, 1). It is not
concave over the entire high sensitivity range and dips below the line with slope NLR0,
but it does not cross the chance line, which becomes a lower limit of the ROC curve in
(TPR0, 1). Thus, if there exists at least an x ≥ FPR0 such that NLR(x) > NLR0, and
NLR(x) ≤ 1 for all x ≥ FPR0, the pAUC is bounded below by the area of triangle with
vertices (TPR0, TPR0), (1, TPR0), and (1, 1) (see Figure 1b):

1
2
(1− TPR0)

2 ≤ ATPR0 . (5)

Finally, an ROC curve might cross the chance line having a hook at the upper-right
corner (see Figure 1c), which corresponds to grades of discriminatory accuracy worse
than that of chance alone [37,38]. Thus, if there exists at least an x ≥ FPR0 such that
NLR(x) > max{1, NLR0}, then a positive lower bound of the pAUC cannot be found:

0 ≤ ATPR0 . (6)

Therefore, the pAUC above a pre-selected sensitivity threshold TPR0 of any diagnostic
test can be classified in one of these three types based on the partial boundary of its NLR,
providing fitter bounds to be used for building the FpAUC index.

2.2. The Fitted Partial Area Index: FpAUC

In order to summarise the diagnostic performance in the horizontal band (TPR0, 1),
the pAUC in (1) might be straight scaled by dividing it by the upper bound given in (2),
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which is the interval length of high sensitivity. Thereby, Jiang et al. [23] introduced the
NpAUC for highly sensitive diagnostic tests, which is mathematically expressed as follows:

A′TPR0
=

ATPR0

1− TPR0
. (7)

This normalisation satisfies the two first characteristics mentioned in the introduction.
As is easy to see from (8), the NpAUC becomes identical to the entire area when TPR0 = 0.
It may be interpreted as an average specificity value of the diagnostic marker over all values
of TPR between TPR0 and 1 when such a marker is used to provide the high sensitivity
range of practical interest. However, despite the fact that the value of the NpAUC is
bounded above by 1, its lower bound (1− TPR0)/2 can have values of less than 0.5 for
any classifier whose pAUC is less than the half area of the horizontal band (TPR0, 1).
Furthermore, the NpAUC index might still poorly compare diagnostic performances when
two ROC curves cross each other over the same high sensitivity range, inasmuch as two
portions of ROC curves may differ in shape but encompass the same pAUC value, reporting
the same NpAUC value.

For illustrative purposes, let us suppose a clinical task demanding a high sensitivity,
TPR0 = 0.8, such as the discovery of new biomarkers for the detection of breast cancer
in vast clinical samples. Amongst some diagnostic classifiers, there are two suitable
candidates with the same performance for that sensitivity threshold, i.e., with the same
pAUC value, A0.8 = 0.142298. Furthermore, their respective performances are described
by the ROC curves that cross the minimum sensitivity level at FPR0 = 0.1233548 and
FPR0 = 0.2362306, respectively. Figure 2 displays these ROC curves for highly sensitive
diagnostic tests, from among others with the same pAUC above the pre-selected sensitivity
threshold TPR0 = 0.8, which correspond to the conventional binormal model with the
following binormal parameters: a = 2 and b = 1 for ROC1; and a = 3.4070515591 and
b = 3.5706342338 for ROC2. The NpAUC index provides the same value for both ROC
curves, A′0.8 = 0.711491. Thus, it is not appropriate for classifier comparison in such
scenarios, since it is not sensitive for determining the best performance diagnostic test.
Clearly, a new partial area index is necessary to assist in the identification of key biomarkers
for biomedical decision making.
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Figure 2. Plots of two ROC curves with the same pAUC and NpAUC values in the horizontal
band (0.8, 1).

One alternative for measuring the discriminatory performance of the highly sensitive
classifiers is to use a novel pAUC index in the interval of practical interest. To do that, we
propose the following transformation of the ATPR0 :
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A∗TPR0
=

1
2

(
1 +

ATPR0 −min ATPR0

max ATPR0 −min ATPR0

)
(8)

where min ATPR0 and max ATPR0 are the fitter lower and upper bounds of ATPR0 , respectively.
The FpAUC index given by (8) reaches its minimum value of 1/2 when A∗TPR0

=
min ATPR0 , and its maximum value of 1 when A∗TPR0

= max ATPR0 . Furthermore, the
characteristics mentioned in the introduction are satisfied, since it becomes identical to the
entire area when TPR0 = 0 for classifiers with better-than-chance performance, and can
be interpreted as an average specificity value of a diagnostic test for all sensitivity values
above TPR0. In addition, the proposed FpAUC index is mathematically well motivated
and defined for any ROC curve shape from their corresponding fitter bounds derived in
Section 2.1. Hence, Algorithm 1 is provided to compute the FpAUC value in the high
sensitivity threshold TPR0 according to the ROC curve shape with respect to its NLR over
(TPR0, 1).

Algorithm 1 Computing the FpAUC value.

1: Set the high sensitivity threshold TPR0.

2: FPR0 = FPR ◦ TPR−1(TPR0).

3: NLR0 = (1− TPR0)/(1− FPR0).

4: max ATPR0 = (1− FPR0)(1− TPR0).

5: If NLR(x) ≤ NLR0 for all x ≥ FPR0 then min ATPR0 = 1
2 (1− FPR0)(1− TPR0), and

A∗TPR0
=

ATPR0

(1− FPR0)(1− TPR0)
(9)

else if NLR(x) ≤ 1 for all x ≥ FPR0 then min ATPR0 = 1
2 (1− TPR0)

2, and

A∗TPR0
=

ATPR0 + (1− TPR0)(TPR0 − FPR0)

(1 + TPR0 − 2FPR0)(1− TPR0)
(10)

else

A∗TPR0
=

ATPR0 + (1− TPR0)(1− FPR0)

2(1− FPR0)(1− TPR0)
. (11)

It is also worth remarking that the novel FpAUC index involves both aspects of diag-
nostic performance represented in the restricted portion of an ROC curve, FPR and TPR.

Regarding the capacity of distinguishing between two or more classifiers, the FpAUC
index is more sensitive than the NpAUC. In practice, two ROC curves might cross at
a point where the sensitivity is higher than TPR0, as shown in Figure 2, but they could
encompass the same pAUC in the horizontal band (TPR0, 1). As in the above example,
from the NpAUC index, both curves cannot be compared above the pre-specified sensitivity
threshold 0.8, but this can be done with the FpAUC index because it always emphasises
the performance differences for highly sensitive diagnostic tests.

In particular, for the above case study, the pAUC transformed to A∗0.8 reaches the value
of 0.811606 for ROC1, and the value is A∗0.8 = 0.931551 for ROC2. In other words, the pro-
posed FpAUC index allows us to unambiguously compare both diagnostic performances
from the same sensitivity threshold. Thus, it might help with choosing the best tests for
biomedical decision making, since the diagnostic test evaluated by the second ROC curve
has more relevance when a minimum sensitivity TPR0 = 0.8 is clinically demanded; i.e.,
when its average specificity value is higher than the other in this region.
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In Figure 2, it is clearly shown that ROC1 has a higher AUC value than ROC2 does,
namely, AUCROC1 = 0.921350 and AUCROC2 = 0.820908, which might drive one to discard
the classifier ROC2. However, the reported FpAUC values revealed that the classifier ROC2
performs much better than ROC1 in the horizontal band (0.8, 1).

Similarly to [39] for pAUC, it was found that the FpAUC as a metric is different from
AUC, because a classifier with a higher value of AUC does not necessarily lead to a higher
value of FpAUC.

3. Performance of the Estimate of the F pAUC Index

The performance of the FpAUC index was assessed under the assumption of binormal
ROC models, by the variance of the FpAUC estimator, and also through simulation studies
in all plausible scenarios. The binormal model plays an important role in the signal
detection theory for continuous classifiers [1], and is one of the most popular parametric
models in ROC-based analyses, since it is obtained from the normality assumption of
both groups, diseased or healthy subjects, or a monotone transformation of them [5,40]. In
addition, the binormal ROC model involves a wide variety of possible curve shapes, proper
curves, and improper curves crossing the chance line either at the upper-right corner or at
the lower-left corner, which enables us to describe the performance in different situations.

3.1. Variance of the FpAUC Estimator

The variance of the FpAUC estimator in the horizontal band (TPR0, 1) can be ob-
tained by using the first-order Taylor series approximation under the assumption of a
parametric model, also known as the delta method (see among others [5,23,24,26]), or by
using nonparametric resampling methods such as bootstrapping, an application of which
to publicly available datasets is shown in the next section.

As aforementioned, the two-parametric binormal model is assumed to analyse the
stochastic behaviour of the FpAUC estimate and its variance. Concretely, the binormal
model is derived from the assumption that the classifier scores are normally distributed
in the group of healthy subjects, X0 ∼ N(µ0, σ2

0 ), and in the group of the disease subjects,
X1 ∼ N(µ1, σ2

1 ). Thus, the ROC curve for normally distributed test scores can be written
as ROC(x) = Φ(a + bΦ−1(x)), where Φ represents the standarised normal cumulative
distribution function; a = (µ1 − µ0)/σ1 and b = σ0/σ1. Analogously, it can also be
expressed by ROC−1(y) = Φ

((
Φ−1(y)− a

)
/b
)
. It is named the binormal ROC curve,

having parameters a and b, and without loss of generality, it can be assumed µ0 = 0,
σ0

2 = 1 and µ1 ≥ 0 due to the invariance of the ROC curve under strictly increasing
transformations of the classifier.

Under this theoretical framework, the pAUC above a pre-specified sensitivity thresh-
old TPR0 given in (1) can be rewritten as

ATPR0 =
∫ 1

TPR0

(
1−Φ

(
Φ−1(y)− a

b

))
dy =

∫ ∞

Φ−1(TPR0)

∫ ∞

t−a
b

φ(x)φ(t)dxdt

where the last equality follows by substituting t = Φ−1(y). Moreover, taking into account
the change (t = −u, x = (ρu− v)(1− ρ2)−1/2), the former equation can be expressed as

ATPR0 =
∫ −Φ−1(TPR0)

−∞

∫ a√
1+b2

−∞
φB(u, v; ρ)dudv

= ΦB

(
−Φ−1(TPR0),

a√
1 + b2

; ρ =
−1√
1 + b2

)
(12)

where φB and ΦB are the density and cumulative distribution functions of the standard bi-
variate normal model with correlation coefficient ρ, respectively. An equivalent expression
was used in [23].

Therefore, for an admissible minimum TPR0, the partial area estimate ÂTPR0 can be
computed through (12) using the maximum likelihood estimates of the binormal ROC
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curve parameters, â and b̂, as functions of the estimated mean and variance for the healthy
and disease groups, respectively, â = (µ̂1 − µ̂0)/σ̂1 and b̂ = σ̂0/σ̂1 (see among others [2,3]).
Hence, the FpAUC can be estimated from ÂTPR0 by using the expressions (9)–(11) given in
Algorithm 1 according to the ROC curve shape with respect to its NLR in the horizontal
band (TPR0, 1).

For any high sensitivity range (TPR0, 1), the variance of the FpAUC estimate for the
fitted binormal ROC curve can be approximated by using the delta method as follows:

V̂ar(Â∗TPR0
) =

(
∂Â∗TPR0

∂a

)2

V̂ar(â) +

(
∂Â∗TPR0

∂b

)2

V̂ar(b̂) + 2
∂Â∗TPR0

∂a
∂Â∗TPR0

∂b
Ĉov(â, b̂) (13)

where

V̂ar(â) =
n0(a2 + 2) + 2n1b2

2n0n1
, V̂ar(b̂) =

(n0 + n1)b2

2n0n1
, Ĉov(â, b̂) =

ab
2n1

,

and n0 and n1 are the sample sizes of the healthy and disease groups, respectively, (e.g.,
see [5]).

Therefore, the partial derivatives of the FpAUC estimator with respect to a and b are
required to compute the variance (13) in the three cases, (9)–(11), established by Algorithm 1,
which are represented for some particular binormal ROC models in Figure 3. To do that,
we also need to calculate the partial derivatives of the pAUC given in (12):

∂ATPR0

∂a
= h0(a, b), and

∂ATPR0

∂b
= − ab

1 + b2 h0(a, b),

where

h0(a, b) =
1√

1 + b2
φ

(
a√

1 + b2

)
Φ

(√
1 + b2

b

(
a

1 + b2 −Φ−1(TPR0)

))
.

In the first case, when the binormal ROC curve has partially bounded NLR in the
horizontal band (TPR0, 1), i.e., NLR(x) ≤ NLR(FPR0) for all x ≥ FPR0, the FpAUC
estimator can be written in terms of the parameters a and b, by substituting (12) into (9), as

A∗TPR0
=

ΦB

(
−Φ−1(TPR0), a√

1+b2 ; ρ = −1√
1+b2

)
(1− TPR0)(1−Φ(−g0(a, b)))

, (14)

where g0(a, b) = a−Φ−1(TPR0)
b , and hence, its partial derivatives can be expressed as

∂A∗TPR0

∂a
=

h0(a, b)
(1− TPR0)Φ(g0(a, b))

−
φ(g0(a, b))A∗TPR0

bΦ(g0(a, b))
∂A∗TPR0

∂b
= − abh0(a, b)

(1 + b2)(1− TPR0)Φ(g0(a, b))
+

g0(a, b)φ(g0(a, b))A∗TPR0

bΦ(g0(a, b))
,

which enable us to compute the variance (13).
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Figure 3. Plots of the FpAUC index for binormal ROC curves in the horizontal band (TPR0, 1) as a function of TPR0. The
first three graphics (first row) correspond to binormal models with b = 0.5: (a) FpAUC estimates and (b,c) variances of the
FpAUC estimates for sample sizes n = 100 and n = 1000, respectively. The second three graphics (second row) correspond
to binormal models with b = 1: (d) FpAUC estimates and (e,f) variances of the FpAUC for n = 100 and n = 1000,
respectively. Furthermore, the last three graphics (third row) correspond to binormal models with b = 2: (g) FpAUC
estimates and (h,i) variances of the FpAUC for n = 100 and n = 1000, respectively.
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In the second case, the binormal ROC curve does not have a partially bounded NLR,
but it is above the chance line, i.e., NLR(x) ≤ 1 for all x ≥ FPR0, and there exists at least
an x′ > FPR0 such that NLR(x′) > NLR0. Here, the FpAUC estimator can be written in
terms of a and b parameters by substituting (12) into (10), as

A∗TPR0
=

ΦB

(
Φ−1(TPR0), a√

1+b2 ; ρ = −1√
1+b2

)
+ (1− TPR0)(TPR0 −Φ(−g0(a, b)))

(1− TPR0)(1 + TPR0 − 2Φ(−g0(a, b)))
, (15)

whose partial derivatives with respect to the parameters a and b can be written as

∂A∗TPR0

∂a
=

h0(a, b) + (1−TPR0)φ(g0(a,b))
b

1− TPR2
0 − 2(1− TPR0)Φ(−g0(a, b))

+
2φ(g0(a, b))A∗TPR0

b(1 + TPR0 − 2Φ(−g0(a, b)))

∂A∗TPR0

∂b
= −

abh0(a,b)
(1+b2)

− (1−TPR0)g0(a,b)φ(g0(a,b))
b

1− TPR2
0 − 2(1− TPR0)Φ(−g0(a, b))

+
2g0(a, b)φ(g0(a, b))A∗TPR0

b(1 + TPR0 − 2Φ(−g0(a, b)))
.

Finally, in the third case, the NLR of the binormal ROC curve cannot be upper
bounded in the horizontal band (TPR0, 1), and thus, by substituting (12) into (11), the
FpAUC estimator can be written in terms of a and b as

A∗TPR0
=

ΦB

(
Φ−1(TPR0), a√

1+b2 ; ρ = −1√
1+b2

)
+ (1− TPR0)Φ(g0(a, b))

2(1− TPR0)Φ(g0(a, b))
, (16)

and then, its variance can be computed from (13) by using the following partial derivatives
with respect to the parameters a and b:

∂A∗TPR0

∂a
=

h0(a, b) + (1−TPR0)φ(g0(a,b))
b

2(1− TPR0)Φ(g0(a, b))
−

φ(g0(a, b))A∗TPR0

bΦ(g0(a, b))

∂A∗TPR0

∂b
= −

abh0(a,b)
(1+b2)

+ (1−TPR0)g0(a,b)φ(g0(a,b))
b

2(1− TPR0)Φ(g0(a, b))
−

g0(a, b)φ(g0(a, b))A∗TPR0

bΦ(g0(a, b))
.

In order to illustrate the stochastic behaviour of the FpAUC estimate and its variance,
Figure 3 displays examples of binormal ROC models, including each one of possible curve
shapes: concave ROC curves for b = 1 (Figure 3d–f), improper ROC curves crossing the
chance line in the upper-right corner for b = 0.5 < 1 (Figure 3a–c), and improper ROC
curves crossing the chance line in the lower-left corner for b = 2 > 1 (Figure 3g–i).

For each value of b, five binormal ROC curves with AUC values of 0.55, 0.65, 0.75,
0.85, and 0.95 were considered, and consequently, the parameter a =

√
1 + b2Φ−1(AUC)

was derived from the values of b and AUC, since AUC = Φ
(

a√
1+b2

)
[10]. The three

graphics on the left column (Figure 3a,d,g) depict the behaviour of the FpAUC estimates
(14)–(16) as a function of high sensitivity threshold TPR0. As is shown in Figure 3g for
b > 1, the binormal ROC curves have a hook at the beginning, causing a change in the
boundary of the NLR above TPR0, whereas this is not the case for b ≤ 1. The remaining
six graphics on the central and right columns display the behaviour of the variances of the
FpAUC as functions of TPR0. Obviously, (13) depends on the sample sizes assumed for
the healthy and disease groups, n0 and n1, respectively. Thus, we have considered two
different settings. The central column shows Figure 3b,e,h for n0 = n1 = 50, and the right
column corresponds to Figure 3c,f,i for n0 = n1 = 500. In general, all variance estimates
suggest relatively good accuracy by the FpAUC index, since they are very small and tend
to 0 as the high sensitivity range increases. In particular, this behaviour is also shown for
b > 1 in Figure 3h,i, although the hook at the beginning produced a discontinuity point
due to the change of the NLR boundary.
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3.2. Simulation Studies

Through a set of simulation studies, the performance of the FpAUC estimates was
assessed in terms of biases, standard deviations, and percentile confidence intervals (CI),
proving the operating properties of the proposed FpAUC index, such as its robustness and
feasibility, even when the fitted ROC curve has hooks and/or crosses the chance line over
a high sensitivity range.

Similarly to the simulation studies in [5,26], test scores both for healthy (X0) and
diseased (X1) subjects were generated from normal distributions with parameters set
appropriately to obtain binormal ROC curves: AUC = 0.55, 0.65, 0.75, 0.85, and 0.95; and
b = 0.5, 1, 2, and 3. Such settings for parameter b allowed us to analyse the different shapes
of the underlying binormal ROC curve, concave ROC curves (b = 1), and improper ROC
curves (b 6= 1), including curves crossing the chance line with a hook at the upper-right
corner (b < 1) and with a hook at the lower-left corner (b > 1).

In all scenarios, 10, 000 random samples were generated with sample sizes equal
to 100 (n0 = n1 = 50) and 1000 (n0 = n1 = 500), as the ones taken in [23]. Without
loss of generality, the n0 healthy subjects were drawn from N

(
µ0 = 0, σ2

0 = 1
)

and the
n1 diseased ones from N

(
µ1 = a/b, σ2

1 = 1/b2), and as aforementioned, the separation
coefficient a =

√
1 + b2Φ−1(AUC) was derived from the values of b and AUC of the

binormal ROC curve.
Within each one of the simulation scenarios, empirical means and standard deviations

were computed from the 10, 000 estimations of the FpAUC index, for five high sensitivity
thresholds TPR0 = 0.9, 0.8, 0.7, 0.6, and 0.5. Biases of the FpAUC estimates are also
reported. Furthermore, the percentile method was applied to construct the 95% CI for the
FpAUC value, by taking the 2.5% trimmed ranges of each 10, 000 estimations.

For the sake of brevity, Table 1 displays the results corresponding to AUC values
equal to 0.75, 0.85 and 0.95 and b values equal to 0.5, 1, and 2, which were obtained from
the simulation study for n = 100. The simulation results for n = 1000 can be found in
Appendix A Table A1. Full tables are available in the Supplementary Materials.

For both sample sizes, n = 100 and n = 1000, simulation results displayed in
Tables 1 and A1 agree with the ones depicted in Figure 3. For all the 10, 000 simulated
random samples in each setting, the FpAUC index was always applicable, including the
scenarios in which the fitted ROC curves had hooks and crossed the chance line. In general,
the stochastic behaviour of the FpAUC estimates over each high sensitivity range was
similar for both sample sizes. The biases of the FpAUC estimates remained relatively stable
and smaller than standard deviations. For the fitted ROC curves with high global accuracy
(AUC ≥ 0.85), standard deviations and widths of the 95% CIs tended to decrease as the
sensitivity threshold decreased; i.e., the precision of the FpAUC index increased as the
high sensitivity range increased. However, for fitted curves with poor global accuracy
(AUC ≤ 0.65), standard deviations and widths of the 95% CIs slightly increased as the
sensitivity range increased, although remaining relatively small; i.e., the precision of the
FpAUC index smoothly decreased as the sensitivity threshold decreased. In summary,
the simulation studies showed reliable behaviour from the FpAUC index, making it a
relatively accurate metric with which to evaluate diagnostic performance over a high
sensitivity interval.
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Table 1. Simulation results from 10, 000 random samples with size n = 100 for each binormal ROC model. The first two
columns correspond to the settings of each scenario, which were used to compute the FpAUC estimates for each TPR0, and
to summarise its mean, bias, standard deviation, and 95% CI.

b AUC TPR0
F pAUC 95% CI

Mean Bias SD Low Up

0.5

0.75

0.9 0.6718115 0.002067363 0.03374133 0.6109004 0.7431961
0.8 0.6973917 0.002155138 0.03558272 0.6320246 0.7713159
0.7 0.7228261 0.002184195 0.03660373 0.6538301 0.7981706
0.6 0.7488924 0.002003218 0.0369359 0.678575 0.8235492
0.5 0.7750897 0.001550933 0.03635573 0.7046808 0.8474584

0.85

0.9 0.7168091 −0.0001375311 0.03876775 0.64157 0.7885817
0.8 0.757652 −0.0009985873 0.03997576 0.6777845 0.8318443
0.7 0.7934277 −0.001905229 0.03933383 0.7136111 0.8671967
0.6 0.8244922 −0.002902352 0.03702263 0.7476242 0.8926417
0.5 0.8506002 −0.003705619 0.03402315 0.7800026 0.9118017

0.95

0.9 0.8047574 −0.02685653 0.0437217 0.7093416 0.8801134
0.8 0.860915 −0.02640532 0.03803334 0.774634 0.9257051
0.7 0.8952863 −0.02358188 0.03181761 0.8217905 0.9472467
0.6 0.9171706 −0.02071222 0.02667352 0.8543599 0.9597633
0.5 0.9319396 −0.01811886 0.02250016 0.8789607 0.9674647

1

0.75

0.9 0.6419233 0.02250682 0.05648455 0.547629 0.7509011
0.8 0.6561746 0.01883174 0.05412381 0.5630157 0.7638427
0.7 0.6681171 0.016265 0.05257736 0.5753191 0.7748332
0.6 0.6795033 0.01444329 0.05158024 0.5865734 0.7865055
0.5 0.6907137 0.01294236 0.051032 0.5972964 0.7980257

0.85

0.9 0.6990107 0.003745407 0.05494855 0.5908895 0.8023507
0.8 0.7254672 0.00285371 0.05170491 0.6216724 0.82305
0.7 0.7461418 0.002565651 0.04913346 0.6469846 0.8389251
0.6 0.7640257 0.00239235 0.04698019 0.6694555 0.8530543
0.5 0.7801295 0.002110163 0.04530041 0.6880103 0.8665002

0.95

0.9 0.8270716 −0.0007875378 0.04783165 0.7247062 0.9113977
0.8 0.8604097 −0.0005883846 0.04115932 0.7717688 0.9325321
0.7 0.8820235 −0.0006256009 0.03651525 0.8028981 0.945313
0.6 0.8980373 −0.0007762952 0.03285448 0.8263655 0.9547746
0.5 0.9106385 −0.0009819187 0.02980191 0.8449012 0.9616409

2

0.75

0.9 0.8284354 −0.001861235 0.03295873 0.7575531 0.885924
0.8 0.8265318 −0.001388059 0.0321334 0.7576136 0.8829055
0.7 0.8243309 −0.001014902 0.03170301 0.7564865 0.8805151
0.6 0.821783 −0.0006798947 0.03150106 0.754266 0.8783047
0.5 0.8187734 −0.0003587272 0.03149208 0.7520585 0.8759183

0.85

0.9 0.8720737 −0.001061615 0.02696685 0.8130079 0.9186131
0.8 0.8741264 −0.000593173 0.02599251 0.8179064 0.9201215
0.7 0.8750833 −0.0002584535 0.02553713 0.8201296 0.9207303
0.6 0.875456 0.00001478198 0.02536532 0.8213299 0.9211979
0.5 0.875372 0.0002512013 0.02541599 0.8213275 0.9216513

0.95

0.9 0.9346536 −0.0002348478 0.01772344 0.895961 0.9654708
0.8 0.9396177 −0.0000273009 0.01681173 0.9031781 0.9692494
0.7 0.9427292 0.00006276168 0.0163881 0.907249 0.9717697
0.6 0.9450175 0.00009651483 0.01618441 0.9102256 0.9738309
0.5 0.9468161 0.00009179076 0.01612146 0.9120827 0.9755344

4. Applications to Genomic Data

To further examine the performance of the proposed FpAUC index for highly sensitive
diagnostic tests, we analysed three experimental genomic datasets that are publicly available.

Before listing the results obtained, brief descriptions of the high-dimensional datasets
are given next.

4.1. Ovarian Cancer Data

This dataset is concerned with the search for biomarkers of ovarian cancer in popula-
tion screening [41], available at http://research.fhcrc.org/diagnostic-biomarkers-center,

http://research.fhcrc.org/diagnostic-biomarkers-center
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accesssed on 20 February 2021. Basically, it consists of mRNA expression, using glass array
spotted for 1536 gene clones on 53 ovarian tissue samples, 23 healthy controls, and 30 cases
with ovarian cancer.

In this whole dataset, 1330 (86.59%) out of the 1536 empirical ROC curves resulted
in being improper, and 136 (8.85%) had AUC ≥ 0.8. Moreover, 23 (16.91%) out of such
136 curves crossed the chance line. In addition, 21, 315 (2.72%) out of 784, 956 pairs of ROC
curves reported the same pAUC over the high sensitivity range (0.9, 1); one of them (g1243
and g1526) is considered here for illustrative purposes (Figure 4a).
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Figure 4. Plots of empirical ROC curves with the same pAUC value over the high sensitivity range (0.9, 1). (a) Genes g1243
and g1526 for ovarian cancer. (b) Genes U57721_at and X07743_at for leukaemia. (c) Genes Hsa.549 and Hsa.40063 for
colon cancer.

4.2. Acute Leukaemia Data

The leukaemia dataset was studied to suggest the gene expression monitored by
DNA microarrays for the diagnostic of two leukaemia types [42]: acute lymphoblastic
leukaemia (ALL) and acute myeloid leukaemia (AML). The dataset consists of 72 patients
(45 ALL, 27 AML) profiled on an early Affymetrix Hgu6800 chips in 7129 gene expressions
(Affymetrix probes). The dataset is available in the Bioconductor package “golubEsets” [43]
and the genes were labelled by using the Bioconductor annotation package “hu6800” [44].

After data pre-processing [45], the expression analysis of the remaining 3571 genes
reported that 3256 (91.18%) generated improper empirical ROC curves, 117 (3.28%) had
AUC ≥ 0.8, and 18 (15.38%) out of these 117 curves dipped below the chance line.

Furthermore, 70, 803 (1.24%) out of 5, 730, 981 pairs of ROC curves reported the same
pAUC over the high sensitivity range (0.9, 1). As examples of them, the genes U57721_at
and X07743_at were chosen to illustrate the usefulness of our proposed FpAUC index
(Figure 4b).

4.3. Colon Cancer Data

This colon cancer dataset consists of the expression levels of 2000 genes from 62 tissue
samples (40 colon cancer and 22 normal tissues) analysed with an Affymetrix oligonu-
cleotide Hum6000 array [46]. This dataset is publicly available in the R package “plsge-
nomics” [47].

Out of 2000 genes of this dataset, 1731 (86.55%) produced improper empirical ROC
curves, 14 (0.70%) had AUC ≥ 0.8, and 2 (14.29%) out of such 14 curves crossed the chance
line. Moreover, 38, 377 (2.03%) out of 1, 889, 194 pairs of ROC curves returned the same
pAUC over the high sensitivity range (0.9, 1), one of which (Hsa.549 and Hsa.40063) was
chosen here for illustrative purposes (Figure 4c).
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4.4. Experimental Results

Nonparametric bootstrap resampling method [48] was applied to estimate the bias
and standard deviation of the empirical FpAUC and its 95% bootstrap CI. These statistics
were computed using 10, 000 bootstrapped replicates for TPR0 = 0.5, 0.6, 0.7, 0.8, and 0.9.

For the two genes chosen from each dataset, Table 2 displays the FpAUC estimates
over the high specificity range (TPF0, 1), along with biases, standard deviations, and the
95% CIs generated by bootstrap resampling. The calculation was carried out by using the
R package “boot” [49].

Table 2. Biases, standard deviations, and 95% CIs for the FpAUC estimates in high sensitivity ranges by nonparametric
bootstrap resampling of genomic datasets.

Marker TPR0 F pAUC Bias SD
95% Bootstrap CI

Low Up

Ovarian cancer

g1243

0.9 0.8627451 0.0482113 0.06246113 0.7860963 1
0.8 0.8375 0.0374046 0.05896502 0.7538222 0.9818563
0.7 0.8544974 0.02087801 0.0578465 0.7512866 0.9744875
0.6 0.890873 −0.0079698 0.05438743 0.7632814 0.9750384
0.5 0.8787879 0.0111106 0.05103908 0.7763611 0.976186

g1526

0.9 0.8585323 0.0109394 0.1023277 0.6638648 1
0.8 0.8333333 0.04011936 0.06848633 0.7423637 1
0.7 0.8309179 0.0430868 0.0610351 0.7530864 0.9856322
0.6 0.8731884 0.01207383 0.05855543 0.7678636 0.9857143
0.5 0.8985507 0.003752928 0.05356238 0.7875817 0.9885714

Leukaemia

U57721_at

0.9 0.8857143 0.04271054 0.05377169 0.8194511 1
0.8 0.9135135 0.006080346 0.0497507 0.8119919 1
0.7 0.9423423 −0.03138371 0.04901928 0.8082011 0.993945
0.6 0.8916185 −0.00436239 0.04747476 0.7916667 0.9774994
0.5 0.8636364 0.009914865 0.04220116 0.7873286 0.9512185

X07743_at

0.9 0.7948718 0.103866 0.07220968 0.7705314 1
0.8 0.9061662 −0.01425758 0.06114721 0.7637401 1
0.7 0.8888889 0.01041244 0.05378362 0.7801422 0.9862259
0.6 0.8976744 0.007722124 0.04694858 0.7999037 0.9810579
0.5 0.8981818 0.005464995 0.04158357 0.8127354 0.9734204

Colon cancer

Hsa.549

0.9 0.7362385 0.0493322 0.09952669 0.6097561 1
0.8 0.7761824 0.002179588 0.06012761 0.6596599 0.8958269
0.7 0.8062633 −0.01918497 0.05480219 0.6785858 0.8927346
0.6 0.6964286 0.09476066 0.05359393 0.6794872 0.8913043
0.5 0.7295455 0.06467028 0.05616311 0.6798246 0.9

Hsa.40063

0.9 0.78125 0.0694629 0.08687015 0.6849913 1
0.8 0.8082386 0.006128594 0.0701849 0.6846847 0.962406
0.7 0.6923077 0.08619419 0.06225637 0.6626984 0.9116109
0.6 0.6916667 0.07265992 0.05940578 0.6583231 0.8904203
0.5 0.7533333 0.01605913 0.05948991 0.6607169 0.8864143

Notice that the empirical ROC curves were not smooth and presented hooks in the
middle (Figure 4), which might explain the slight jumps in the estimates due to the changes
in the NLR boundary with varying the horizontal band (TPR0, 1).

In general, biases of the FpAUC estimates remained relatively stables and small for
the chosen genes in the three datasets. For the ovarian cancer dataset, both standard
deviation and width of the 95% CI of the FpAUC decreased as the high sensitivity range
increased, i.e., the precision of the index increased as the threshold TPR0 decreased. The
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slight difference at TPR0 = 0.9 was provoked by the truncation of the CI at 1. For the
leukaemia dataset, standard deviation decreased as the TPR0 decreased for both genes,
the width of the 95% CI also tended to decrease as the high sensitivity range increased,
although showing a small drop for high TPR0 values in both cases. For the colon cancer
dataset, standard deviation also tended to decrease as the high sensitivity range increased,
but showed a slight rise, reaching TPR0 = 0.5. The width of the 95% CI for the gene
Hsa.40063 decreased while the TPR0 decreased, and it also presented a small increase at
TPR0 = 0.5 for the gene Hsa.549.

As aforementioned, each graphic displayed in Figure 4 corresponds to the empiri-
cal ROC curves of test scores of two genes with the same pAUC value in the horizontal
band (0.9, 1). These applications also enabled us to illustrate the practical usefulness of
the FpAUC index for solving such pAUC ties between competitive biomarkers in a high
sensitivity range. Concretely, test scores of the genes g1243 and g1526 for the detection
of ovarian cancer (Figure 4a) reported a pAUC value of A0.9 = 0.06376812 for the sensi-
tivity threshold TPR0 = 0.9. Thus, the NpAUC index provided the same value for both
ROC curves A′0.9 = 0.6376812, which did not allow us to discriminate between both genes.
However, the FpAUC index found different diagnostic performances, since the gene g1243
(A∗0.9 = 0.8627451) reached a slight better performance than the gene g1526 (A∗0.9 = 0.8585323)
in the high sensitivity range (0.9, 1). Regarding the identification of two leukaemia types,
Figure 4b depicts the ROC curves for the genes U57721_at and X07743_at, both of them
achieved a pAUC of 0.06395745, and so the NpAUC neither could differentiate their diag-
nostic accuracy in the high sensitivity range (0.9, 1). In contrast, the FpAUC values were
A∗TPR0

= 0.8857143 and 0.7948718, respectively, and consequently, U57721_at was better than
X07743_at for identifying between the two leukaemia types above the threshold TPR0 = 0.9.
Analogously, the empirical ROC curves represented in Figure 4c for the genes Hsa.3331 and
Hsa.40063 obtained the same pAUC value of A0.9 = 0.02840909, and the same NpAUC
value of A′0.9 = 0.2840909. However, their FpAUC values were different, A∗TPR0

= 0.7362385
and A∗TPR0

= 0.78125, respectively, and then the FpAUC index detected that Hsa.40063 was
a bit better marker of the colon cancer than Hsa.3331 when the high sensitivity range (0.9, 1)
is required.

5. Discussion and Conclusions

The development of the high-throughput technologies has allowed researchers and
practitioners to simultaneously input hundreds of markers in the identification stage of
those which are key for diagnosing. Addressed commonly through AUC-based analyses,
the costs associated with misdiagnosed samples have encouraged the evaluation of the
discriminatory power of the marker performance to be restricted to a clinically meaningful
range, by using refined metrics such as the scaled pAUC indexes. Enhancing the inter-
pretation of the outcomes for pAUC analysis, these performance measures are currently
gaining popularity in bioinformatics [29,50–53]. One of these meaningful approaches is the
NpAUC provided in [23] which is focused on highly sensitive diagnostic tests. Neverthe-
less, it presents some limitations. This performance metric might turn out to not be useful
for interpreting the pAUC, since the NpAUC value might be less than 0.5. Moreover, it
was found from empirical studies that it is unable to distinguish between two crossing
ROC curves with equal pAUC values in the high sensitivity range of interest (TPR0, 1),
resulting in unsolved ties until now.

The main contribution of this work is to provide a new scaled pAUC index, the fitted
pAUC index (FpAUC), to assess the diagnostic performance for highly sensitive markers,
addressing the issues associated with the NpAUC. The proposed metric is based on
deriving new bounds of pAUC fitter than those involved in the transformation of the pAUC
into the NpAUC, in order to efficiently handle situations in which the ROC curve lies below
the chance line and/or has hooks. Under different assumption sets which included all
the possible ROC curve shapes, such suitable bounds have been discussed in terms of the
partial boundary of the NLR in the range of interest (TPR0, 1). Further, we have provided



Mathematics 2021, 9, 2826 17 of 20

a comprehensive framework for the evaluation of the marker’s discriminatory power in
a high sensitivity interval (TPR0, 1), computing the FpAUC index through an algorithm
applicable for any ROC curve.

In contrast to the NpAUC, the proposed FpAUC index varies within the range of
0.5 and 1, restoring the property that a summary metric should have a suitable interpre-
tation. Furthermore, we have proven that the FpAUC is also capable of distinguishing
between two or more crossing ROC curves with the same pAUC values in the horizontal
band (TPR0, 1). Thus, the proposed FpAUC extends the NpAUC filling in an important
literature gap, which might well have driven to discard highly informative biomarkers
over a high sensitivity range.

The performance of the novel FpAUC index has been examined by simulation and
case studies using three real-world publicly datasets concerning the diagnosis of leukaemia,
and ovarian and colon cancers. Under the binormal ROC curve assumption, the variance
was calculated for analysing the behaviour of the FpAUC estimates. In addition, test
scores were generated guaranteeing the presence of all the possible shapes of the under-
lying binormal ROC curve, i.e., both concave ROC curves (b = 1) and improper ROC
curves (b 6= 1). The results reported that the performance of the FpAUC was consistent
across all the settings. A similar conclusion was deduced from experimental results. In
addition, the practical usefulness of the FpAUC was illustrated for solving ties between
the pAUC measurements of biomarkers in a high sensitivity range for each one of the
genomic datasets.

It is this ability for discriminating highly sensitive biomarkers which encourages us to
continue further studying inferential issues, and developing an R package to assist users in
the identification of key biomarkers for biomedical decision making.
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Abbreviations
The following abbreviations are used in this manuscript:

ROC Receiver Operating Characteristics
AUC Area under an ROC curve
pAUC Partial Area under an ROC curve
TPR (TNR) True Positive (Negative) ratio
FPR (FNR) False Positive (Negative) ratio
NLR (PLR) Negative (Positive) Likelihood ratio
NpAUC (SpAUC) Normalised (Standarised) pAUC
FpAUC (TpAUC) Fitted (Tighter) pAUC

Appendix A

Table A1. Simulation results from 10, 000 random samples with size n = 1000 for each binormal ROC model.

b AUC TPR0
F pAUC 95% CI

Mean Bias SD Low Up

0.5

0.75

0.9 0.669964 0.0002198603 0.0108208 0.64931 0.6914392
0.8 0.6954584 0.0002217709 0.01145733 0.6734022 0.7183308
0.7 0.7208582 0.0002162642 0.01182557 0.6981509 0.7442612
0.6 0.7470829 0.0001937058 0.01195146 0.7239764 0.7708441
0.5 0.7736821 0.0001433617 0.01178972 0.7508544 0.7972385

0.85

0.9 0.7172018 0.000255154 0.01312834 0.6920607 0.743343
0.8 0.7588624 0.0002117937 0.01361137 0.7323675 0.785571
0.7 0.7954699 0.0001369812 0.0133132 0.7694111 0.821656
0.6 0.8274379 0.00004334917 0.01244126 0.8028483 0.8519594
0.5 0.8542618 −0.0000439935 0.01121478 0.8320698 0.8760613

0.95

0.9 0.8262998 −0.005314134 0.01523457 0.7971094 0.8518365
0.8 0.8783896 −0.008930742 0.01638089 0.8212213 0.8990199
0.7 0.9072943 −0.01157388 0.01663234 0.8560455 0.9263972
0.6 0.9250275 −0.01285529 0.01586612 0.8823802 0.9437126
0.5 0.9367677 −0.01329082 0.01478211 0.901801 0.9548009

1

0.75

0.9 0.6192974 −0.0001190819 0.01974289 0.5798105 0.6567464
0.8 0.6372461 −0.00009677 0.01869301 0.5999832 0.6730179
0.7 0.6517819 −0.0000701156 0.01786319 0.6159922 0.6862381
0.6 0.6650315 −0.0000285186 0.01716452 0.6306253 0.6981055
0.5 0.6777806 0.000 0924348 0.01657033 0.644864 0.7097416

0.85

0.9 0.695105 −0.0001602661 0.01877502 0.6576742 0.730797
0.8 0.7225075 −0.0001059672 0.01737564 0.6875739 0.7555136
0.7 0.7435126 −0.0000635848 0.01633348 0.7103603 0.7747373
0.6 0.7615994 −0.000033939 0.01549253 0.7301897 0.7913494
0.5 0.7780006 −0.0000187107 0.01478812 0.7481515 0.8063218

0.95

0.9 0.8276785 −0.0001805795 0.01527662 0.7964039 0.8564896
0.8 0.8608451 −0.0001529308 0.01316279 0.8338855 0.8856906
0.7 0.8824989 −0.0001502163 0.01170487 0.8588247 0.9045469
0.6 0.8986535 −0.0001600285 0.01055402 0.8772063 0.918292
0.5 0.9114447 −0.0001757661 0.009580882 0.8920362 0.9290016

2

0.75

0.9 0.8300773 −0.0002192794 0.01031469 0.8090532 0.8494656
0.8 0.8277414 −0.0001785075 0.01008743 0.8071688 0.8468292
0.7 0.8251995 −0.0001463208 0.009972896 0.8048588 0.8440616
0.6 0.8223455 −0.0001174049 0.009923987 0.8022668 0.8412388
0.5 0.8190425 −0.0000896712 0.009931295 0.798934 0.8380641

0.85

0.9 0.8729891 −0.0001461737 0.008438532 0.8558683 0.8888247
0.8 0.8746149 −0.0001046822 0.008160062 0.8577607 0.8900416
0.7 0.8752668 −0.0000749573 0.008033339 0.8585469 0.8905781
0.6 0.8753906 −0.0000506706 0.007990856 0.8588198 0.8906265
0.5 0.8750911 −0.0000296841 0.00801607 0.8585946 0.8903774

0.95

0.9 0.9348269 −0.0000615823 0.005566497 0.9233001 0.945249
0.8 0.9396036 −0.0000413422 0.00530871 0.9287226 0.9495554
0.7 0.9426341 −0.0000323708 0.005195553 0.93215 0.9522928
0.6 0.944892 −0.0000289385 0.00514828 0.9344389 0.9544434
0.5 0.9466949 −0.0000294023 0.005143699 0.9361809 0.9562475
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