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Abstract: A universal solution to an applied problem related to the study of deviations occurring
in the joints of manipulation robots, for example, due to elastic deformations or gaps in them, is
proposed. A mathematical (dynamic) model obtained by the Lagrange–Euler method is presented,
making it possible to investigate such deviations. Six generalized coordinates, three linear and three
angulars, were used to describe the variations of each joint in the dynamic model. This made it
possible to introduce into consideration joints with six degrees of freedom (6-DOF joints). In addition,
mathematical models for external forces acting on the links of manipulation robots are presented.
When composing matrices of coefficients of equations of motion, elements identically equal to
zero were excluded, which significantly increased the computational efficiency of these equations.
The dynamic model based on the obtained equations can be used in the computer simulation of
manipulation robots.

Keywords: mathematics model; dynamic model; manipulation robots; 6-DOF joints

1. Introduction

The mechanisms of manipulation robots are multi-link spatial kinematic structures.
Such kinematic systems contain links that are sequentially connected by joints with one
degree of freedom, forming open kinematic chains. As a rule, the rigid body model is used
for the links [1].

Many works have been devoted to the equations of motion for manipulation robots,
modeled by both rigid and elastic links [1–25]. However, the use of these equations to
substantiate the action of real manipulation robots, as a rule, is complicated because of
the arising deviations from the given programmed action (Figure 1). Describing such
variations is complicated due to the total influence of deviations in each joint. Sometimes,
the mobility of the joints is increased artificially by introducing fictitious links with zero
mass. That can allow taking such variations into account.

There could be various reasons for the deviations in joints’ design. For example,
deviations arising from inaccuracies in the parts’ manufacturing and their subsequent
fitting are the primary geometric deviations. Primary geometric deviations increase due to
wear and damage to parts of mechanisms during their operation. The ambient temperature
can also have an impact. Such deviations do not change as the robots move. There are
unique methods for their correction [18,19].
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Figure 1. Deviations of movement from the set program. (Si, i = 1–6—geometric deviations in the 
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varying geometric deviations. Such deviations can be both angular and linear. 

Positioning deviations are considered separately. These deviations reflect the 
variations of the principal coordinates that provide the functionality of the joints. 
Positioning deviations occur due to small elastic deformations in the transmission 
mechanisms and the drive. Determination of such variations was considered in [4–7], 
where different methods allowed distinguishing slowly varying (quasi-static) elastic 
deviations and rapidly changing deviations associated with emerging elastic vibrations. 

Modern simulations are a powerful tool in various scientific fields, including 
robotics, agriculture, education (EdTech), FinTech, and material science [26–38]. To 
develop computer simulation approaches, the theoretical basics for them need to be 
developed and improved. The purpose of the research reflected in this article is to create 
a comprehensive approach to account for the influence of geometric deviations in 
robotics and develop a mathematical apparatus for composing equations of motion of 
manipulation robots reflecting such variations. 

In this paper, an attempt is made to create a universal dynamic model that allows 
taking into account all possible geometric deviations in the joints of manipulation robots 
that occur during their movement. Furthermore, based on the experimentally obtained 
data on the nature of variations in the robot’s joints, it allows determining the forces and 
moments corresponding to these deviations. Such a dynamic model will differ from the 
previously proposed mathematical models by a greater breadth of coverage of various 
variations and can be used in computer simulation systems of manipulation robots. 

2. Problem Statement 
In this paper, we have proposed using joints with six degrees of freedom (6-DOF) 

[25] to determine the changing geometric deviations that arise when manipulating the 
way robots move. The degree of freedom (rotational or translational) that ensures the 
programmed motion of the robot and is realized by the design of the joint will be called 
the principal one, and the deviations arising in the joint (linear and angular) are 
additional degrees of freedom. 

We connect rectangular coordinate systems with each link of the manipulation robot 
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Cartesian coordinates from the Ok system associated with the k-th link to the fixed 
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Figure 1. Deviations of movement from the set program. (Si, i = 1–6—geometric deviations in
the joints).

Changing geometric deviations in the joints of manipulation robots are, as a rule, small
elastic deformations, leading to a displacement of the joints relative to their undeformed
positions. The presence of gaps in the hinges also leads to the appearance of varying
geometric deviations. Such deviations can be both angular and linear.

Positioning deviations are considered separately. These deviations reflect the varia-
tions of the principal coordinates that provide the functionality of the joints. Positioning
deviations occur due to small elastic deformations in the transmission mechanisms and
the drive. Determination of such variations was considered in [4–7], where different meth-
ods allowed distinguishing slowly varying (quasi-static) elastic deviations and rapidly
changing deviations associated with emerging elastic vibrations.

Modern simulations are a powerful tool in various scientific fields, including robotics,
agriculture, education (EdTech), FinTech, and material science [26–38]. To develop com-
puter simulation approaches, the theoretical basics for them need to be developed and
improved. The purpose of the research reflected in this article is to create a comprehensive
approach to account for the influence of geometric deviations in robotics and develop
a mathematical apparatus for composing equations of motion of manipulation robots
reflecting such variations.

In this paper, an attempt is made to create a universal dynamic model that allows
taking into account all possible geometric deviations in the joints of manipulation robots
that occur during their movement. Furthermore, based on the experimentally obtained
data on the nature of variations in the robot’s joints, it allows determining the forces and
moments corresponding to these deviations. Such a dynamic model will differ from the
previously proposed mathematical models by a greater breadth of coverage of various
variations and can be used in computer simulation systems of manipulation robots.

2. Problem Statement

In this paper, we have proposed using joints with six degrees of freedom (6-DOF) [25]
to determine the changing geometric deviations that arise when manipulating the way
robots move. The degree of freedom (rotational or translational) that ensures the pro-
grammed motion of the robot and is realized by the design of the joint will be called the
principal one, and the deviations arising in the joint (linear and angular) are additional
degrees of freedom.

We connect rectangular coordinate systems with each link of the manipulation robot
and a fixed base. The matrix of transformation of extended (x, y, z, 1)–homogeneous
Cartesian coordinates from the Ok system associated with the k-th link to the fixed (absolute)
O0 system can be defined as a sequence of products:

A0k = A01A12 . . . A(i−1)iAi(i+1) . . . A(k−1)k =
k

∏
i=1

A(i−1)i (1)
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where A(i–1)i—transformation matrix of homogeneous coordinates from the system Oi to
the system O(i–1), having dimensions of 4 × 4 [18,19]. The matrix A0k underexpression (1)
will have the form:

4×4
A0k =

[
3×3
R0k

3×1
X0k

000 1

]
(2)

where R0k is the orthogonal matrix (3 × 3) of the relative rotation of the coordinate systems
Ok and O0. X0k is the vector (3 × 1) of the coordinates of the origin of the coordinate system
Ok in the coordinate system O0.

We introduce a system of generalized coordinates Si = [sij] = [Xi, Ωi] (i = 1, . . . , n; j = 1,
. . . , 6), where Xi = [xi yi zi]—linear coordinates and Ωi = [αi βi γi]—angular coordinates
in the i joint; n—links number. In this case, the number of degrees of freedom of the
manipulation system will equal 6n.

If i joint is intended to implement translational displacement, then the zi coordinate is
considered as the principal one in this joint. If i joint is intended to implement rotational
displacement, then the γi coordinate is considered as the principal one in this joint.

Coordinate transformations inside the i joint can be described with a corresponding
matrix as a function of the generalized coordinates Si

A(i−1)i(Si) = A(i−1)α(xi, yi, zi)Aαβ(αi)Aβγ(βi)Aγi(γi) (3)

where A(i-1)α—parallel translation matrix corresponding to generalized coordinates Si
reflecting linear deviations in the joint; Aαβ, Aβγ, and Aγi—rotation matrices by (αi, βi, γi)
angles around the i link coordinate system axes. These rotation matrices reflect the angular
deviations in the joint (Figure 2).
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Figure 2. Sequence of coordinate transformations inside the i joint.

Equation (2) and Figure 2 show that the generalized angular coordinates should be
considered as Euler angles. Since rotations by these angles are not commutative, the
sequence of angular coordinates transformations must be specified.

3. Dynamic Model Development

Let us model manipulation systems with joints. We take the changing deviations into
account. We can solve the equations of motion by numerical integration. The equations
of action can be obtained by one of the theoretical mechanics’ methods, for example, the
Lagrange–Euler method. The expression for the kinetic energy of the manipulation system
as a rigid-body system is [5,6]:

E =
1
2

n

∑
k=1

tr
(

.
A0kHk

.
A

T
0k

)
(4)
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where Hk—inertia matrix (4 × 4) for the k link considered as a rigid body.
Lagrange equation of the second kind combined with Expression (4), after transform-

ing, gives the following equation:

d
dt

(
∂E
∂sij

)
− ∂E

∂sij
=

n

∑
k=1

tr

(
∂A0k
∂sij

Hk
..
A

T
0k

)
(5)

where tr(M)—M matrix diagonal elements’ sum.
The second derivative of the A0k matrix gives the sum:

..
A0k =

n
∑

i=1

(
∂A0k
∂xi

..
xi +

∂A0k
∂yi

..
yi +

∂A0k
∂zi

..
zi +

∂A0k
∂αi

..
αi +

∂A0k
∂βi

..
βi +

∂A0k
∂γi

..
γi

)
+

+
n
∑

i=1

n
∑

j=1



∂2A0k
∂αi∂αj

.
αi

.
αj +

∂2A0k
∂αi∂β j

.
αi

.
βj +

∂2A0k
∂αi∂γj

.
αi

.
γj+

+
∂2A0k
∂βi∂αj

.
βi

.
αj +

∂2A0k
∂βi∂β j

.
βi

.
βj +

∂2A0k
∂βi∂γj

.
βi

.
γj+

+
∂2A0k
∂γi∂αj

.
γi

.
αj +

∂2A0k
∂γi∂β j

.
γi

.
βj +

∂2A0k
∂γi∂γj

.
γi

.
γj


+

+
n
∑

i=1

n
∑

j=1



∂2A0k
∂αi∂xj

.
αi

.
xj +

∂2A0k
∂αi∂yj

.
αi

.
yj +

∂2A0k
∂αi∂zj

.
αi

.
zj+

+
∂2A0k
∂βi∂xj

.
βi

.
xj +

∂2A0k
∂βi∂yj

.
βi

.
yj +

∂2A0k
∂βi∂zj

.
βi

.
zj+

+
∂2A0k
∂γi∂xj

.
γi

.
xj +

∂2A0k
∂γi∂yj

.
γi

.
yj +

∂2A0k
∂γi∂zj

.
γi

.
zj


+

+
n
∑

i=1

n
∑

j=1


+

∂2A0k
∂xi∂xj

.
xi

.
xj +

∂2A0k
∂xi∂yj

.
xi

.
yj +

∂2A0k
∂xi∂zj

.
xi

.
zj+

+
∂2A0k
∂yi∂xj

.
yi

.
xj +

∂2A0k
∂yi∂yj

.
yi

.
yj +

∂2A0k
∂yi∂zj

.
yi

.
zj+

+
∂2A0k
∂zi∂xj

.
zi

.
xj +

∂2A0k
∂zi∂yj

.
zi

.
yj +

∂2A0k
∂zi∂zj

.
zi

.
zj



(6)

In Equation (6), the last block of terms is identically zero due to the property:

∂2A0k
∂Xi ∂Xj

= 0(i, j = 1, . . . , n) (7)

where Xi = (xi, yi, zi), Xj = (xj, yj, zj). Let us prove it as a lemma.

Proof. The structure of the transformation matrix of homogeneous coordinates A0k has the
form (2). Since the relative rotation matrices R0k are functions of only generalized angular
coordinates Ωi = [αi βi γi] (I = 1, . . . , n), and the expression can represent the vector X0k

X0k =
k

∑
i=1

R(i−1)iXi (8)

then this vector is a function of both linear and angular coordinates X0k = X0k(Xi, Ωi). Then,
differentiating the matrix A0k will give the matrix

∂A0k
∂Xi

=

[
3×3
0

3×3
R(i−1)i

3×1
{1}

000 0

]
(9)

where {1} = [1 1 1]T is a vector (3 × 1).
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Re-differentiating the matrix A0k will give a null matrix. Thus, the lemma correspond-
ing to property (7) is proved.

Property (7) reflects the absence of Coriolis and centrifugal accelerations when consid-
ering the relative motion of translationally moving coordinate systems.

Expression (6), taking into account property (7), is substituted into Equation (5).
Having grouped the terms and separated the vectors of velocities and accelerations of

the generalized coordinates, we represent the equations of motion in matrix form for each
generalized force corresponding to one of the generalized coordinates.

Msx
i

..
x + Msy

i
..
y + Msz

i
..
z+

Msα
i

..
α+ Msβ

i

..
β+ Msγ

i
..
γ+

+
.
α

TCsαα
i

.
α+

.
β

T
Csββ

i

.
β+

.
γ

TCsγγ
i

.
γ+

+2
(

.
α

TCsαβ
i

.
β+

.
α

TCsαγ
i

.
γ+

.
β

T
Csβγ

i
.
γ

)
+

+2
( .

xTCsxα
i

.
α+

.
xTCsxβ

i

.
β+

.
xTCsxγ

i
.
γ
)
+

+2
( .

yTCsyα
i

.
α+

.
yTCsyβ

i

.
β+

.
yTCsyγ

i
.
γ
)
+

+2
( .

zTCszα
i

.
α+

.
zTCszβ

i

.
β+

.
zTCszγ

i
.
γ
)
= Qs

i

(10)

where M and C—matrices (1 × n) и(n × n), respectively;
.
x,

..
x,

.
y,

..
y,

.
z,

..
z,

.
α,

..
α,

.
β,

..
β,

.
γ,

..
γ—vectors (n × 1) of velocities and accelerations of the corresponding generalized

coordinates;Qs
i – generalized force (scalar) corresponding to one of the generalized coordi-

nates Si = [sij], (I = 1, . . . , n; j = 1, . . . , 6).

4. Dynamic Model Analysis

The matrix coefficients of the obtained equations can be presented in expanded form.
Symbols s, v, and w were used to symbolize the indices corresponding to the generalized
coordinates Si = [sij] = [Xi, Ωi]:

Msv
i =

n

∑
k=1

[
tr

(
∂A0k
∂sij

Hk
∂AT

k
∂v1

)
tr

(
∂A0k
∂sij

Hk
∂AT

0k
∂v2

)
. . . tr

(
∂A0k
∂sij

Hk
∂AT

0k
∂vn

) ]
(11)

Csvw
i =

n

∑
k=1



tr

(
∂A0k
∂sij

Hk
∂2AT

0k
∂v1∂w1

)
tr

(
∂A0k
∂sij

Hk
∂2AT

0k
∂v1∂w2

)
. . . tr

(
∂A0k
∂sij

Hk
∂2AT

0k
∂v1∂wn

)

tr

(
∂A0k
∂sij

Hk
∂2AT

0k
∂v2∂w1

)
tr

(
∂A0k
∂sij

Hk
∂2AT

0k
∂v2∂w2

)
. . . tr

(
∂A0k
∂sij

Hk
∂2AT

0k
∂v2∂wn

)
. . . . . . . . . . . .

tr

(
∂A0k
∂sij

Hk
∂2AT

0k
∂vn∂w1

)
tr

(
∂A0k
∂sij

Hk
∂2AT

0k
∂vn∂w2

)
. . . tr

(
∂A0k
∂sij

Hk
∂2AT

0k
∂vn∂wn

)


(12)

So, for example, for the equation corresponding to the generalized coordinate s11
(equals x1 in Msv

i notation) for the first matrix in Equation (10), i = 1, and both s and v
match x. The sixth matrix, s, also matches x, and v matches γ. In Csvw

i notation, for a given
generalized coordinate, the symbol s corresponds to x, and the symbols v and w correspond
to the indices that determine the position of this matrix in Equation (10).

Row matrices Msv
i have the dimension 1 × n. These matrices elements defined by the

expressions tr

(
∂A0k
∂sij

Hk
∂AT

0k
∂vl

)
(i, l, k = 1, . . . , n; j = 1, . . . , 6) turn to zero in case i > k or

l > k. However, the analyzed row matrices represent the sums Msv
i =

n
∑

k=1
Msv

ki . So, as a

result, their elements will be nonzero.
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Analysis of Csvw
i matrices of n× n dimension also shows that, in the general case, their

elements are not equal to zero. The elements of these matrices defined by the expressions

tr

(
∂A0k
∂sij

Hk
∂2AT

0k
∂vl∂w f

)
(i, l, f, k = 1, ..., n; j = 1, ..., 6) turn to zero if i > k, or l > k, or f > k. In

addition, these elements also turn to zero for some kinematic schemes due to the absence
of centrifugal and/or Coriolis forces.

Thus, the obtained Equation (10) is the desired equation of motion. Moreover, the
equation makes it possible to consider the deviations rising in the joints of manipulation
robots, considered as generalized coordinates Si = [sij].

Thus, the obtained Equation (10) is the desired equation of motion. Moreover, it
makes it possible to consider the deviations arising in the joints of manipulation robots,
considered as generalized coordinates Si = [sij].

5. Generalized Forces

The right sides of the obtained equations represent the generalized forces in the i joint
along the corresponding generalized coordinate. The potential energy was not reflected
on the left side of the Lagrange equation of the second kind (4). Thus, its influence should
be taken into account on the right side of the equation of motion. If the generalized
coordinate corresponds to elastic deformations, then the generalized force can be given by
the expression:

Qs
Pi = −as

i sij − bs
i

.
sij (13)

where as
i and bs

i —the stiffness and viscosity coefficients of the i joint along the sij generalized
coordinate direction.

The expression for generalized forces corresponding to the external forces represented
by the principal vector and the principal moment applied to the centers of gravity of the
links has the form [5]:

Qs
Fi =

n

∑
k=i

(
FT

0k
∂A0k
∂sij

r(k)C + RT
0kA0iΘi

)
(14)

where F0k =
[

Fkx Fky Fkz 0
]T—principal vector, and R0k =

[
Rkx Rky Rkz 0

]T—
principal moment of external forces acting on the k link given in a fixed-coordinate system
O0; r(k)C —center of the gravity radius vector of the k link, selected for the reference point of

external forces; Θi =
[

0 0 θi 0
]T—auxiliary vector; θi = 1, if I hinge is a rotational

one, and θi = 0, if i hinge is a translational one.
Equation (14) can also take into account the influence of gravity forces on the links, as

these forces can be considered similarly to the principal vector of external forces.
Consider the most common case of representing the right side of the equations of

motion for manipulation robots. This takes into account the generalized forces from the
external forces’ action corresponding to the principal vector and the principal moment at
the center of gravity of the links, the gravity forces of the links and the manipulation object,
the forces developed by the drives, and the elastic forces and resistance forces arising in
the joints.

Qs
i = Qs

Pi + Qs
Fi + Qs

Gi + Qs
Di (15)

where Qs
Pi—elastic forces and resistance forces arising in the joints—see Equation (13);

Qs
Fi—generalized forces from external forces—see Equation (14); Qs

Gi—generalized forces
from gravity—see Equation (14); Qs

Di—generalized forces from the forces developed by
the drives.
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Generalized forces Qs
Di corresponding to forces (moments of forces) by the drives Dij,

(i = 1, . . . , n; j = 1, . . . , 6) are equal to these forces. Since the elementary work of the drives
on possible displacements is the following sum:

∂WD =
n

∑
i=1

6

∑
j=1

Dijδsij (16)

therefore, in accordance with the definition of generalized forces, Qs
Di = Dij.

6. Verification

Let us consider the application of the obtained equations of motion using the example
of a manipulation robot with one link connected to a fixed base by a rotary joint (Figure 3).
The investigated manipulation system has two degrees of freedom; one is the main ro-
tational one—γ1—corresponding to the constructive mobility of the joint; the second is
translational one—x1—due to the malleability of the joint along the X0 axis. The link is a
rod of length l1 and mass m1. Active forces acting on the link are the torque D1 developed
by the drive, the link gravity G1 = m1g (g = 9.81 m/c2) and elastic force P1 = −a1x1 arising
in the joint during its deformation along X0 axis, and joint stiffness in that direction.

Mxx
1

..
x1 + Mxγ

1
..
γ1 + Cxγγ

1
.
γ

2
1 + 2

.
x1Cxxγ

1
.
γ1 = Qx

1 (17)

Mγγ
1

..
γ1 + Mγx

1
..
x1 + Cγγγ

1
.
γ

2
1 + 2

.
x1Cγxγ

1
.
γ1 = Qγ

1 (18)
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The matrix coefficients in Equations (17) and (18), obtained with (11) and (12), can be
reduced to scalar form:

Mxx
1 = tr

(
∂A01

∂x1
H1

∂AT
01

∂x1

)
, Mxγ

1 = tr

(
∂A01

∂x1
H1

∂AT
01

∂γ1

)
,

Mγγ
1 = tr

(
∂A01

∂γ1
H1

∂AT
01

∂γ1

)
, Mγx

1 = tr

(
∂A01

∂γ1
H1

∂AT
01

∂x1

)
,

Cxγγ
1 = tr

(
∂A01

∂x1
H1

∂2AT
01

∂γ2
1

)
, Cxxγ

1 = tr

(
∂A01

∂x1
H1

∂2AT
01

∂x1∂γ1

)
,

Cγxγ
1 = tr

(
∂A01

∂γ1
H1

∂2AT
01

∂x1∂γ1

)
.

Conversion matrices of homogeneous coordinates and their partial derivatives for the
studied manipulation system have the form:
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A01 =


cos γ1 − sin γ1 0 x1
sin γ1 cos γ1 0 0

0 0 1 0
0 0 0 1

,
∂A01

∂x1
=


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

,

∂A01

∂γ1
=


− sin γ1 − cos γ1 0 0
cos γ1 − sin γ1 0 0

0 0 0 0
0 0 0 0

,

∂2A01

∂γ2
1

=


− cos γ1 sin γ1 0 0
− sin γ1 − cos γ1 0 0

0 0 0 0
0 0 0 0

,
∂2A01

∂γ1∂x1
= 0.

The inertia matrix of the link relative to the coordinate system S1 (X1, Y1, Z1), in
accordance with the transformation rule for inertia matrices [6], has the following form:

H1 =


1 0 0

l1
2

0 1 0 0
0 0 1 0
0 0 0 1




m1l2
1

12
0 0 0

0 0 0 0
0 0 0 0
0 0 0 m1




1 0 0 0
0 1 0 0
0 0 1 0
l1
2

0 0 1

 =


m1l2

1
3

0 0
m1l1

2
0 0 0 0
0 0 0 0

m1l1
2

0 0 m1


Using the obtained matrices in expressions for the corresponding matrix coefficients,

we obtain the expressions:

Mxx
1 = m1, Mxγ

1 = −m1l1
2

sin γ1, Mγγ
1 =

m1l2
1

3
, Mγx

1 = −m1l1
2

sin γ1,

Cxγγ
1 = −m1l1

2
cos γ1, Cxxγ

1 = 0, Cγγγ
1 = 0, Cγxγ

1 = 0.

Substituting the obtained expressions for the matrix coefficients, and the generalized
forces obtained in accordance with (13)–(16), into Equations (17) and (18), we compose a
system of differential equations.

m1
..
x1 −

m1l1 sin γ1

2
..
γ1 −

m1l1 cos γ1

2
.
γ

2
1 = −a1x1

m1l2
1

3
..
γ1 −

m1l1 sin γ1

2
..
x1 = D1 −

1
2

l1m1g sin γ1

(19)

The system of Equation (19) compiled based on (10) correctly describes the movement
of the investigated manipulation robot, considered as a rigid body, performing both trans-
lational and rotational actions (Figure 3). Other known methods of theoretical mechanics
can also obtain these equations.

7. Discussion

The presented mathematical model (dynamic model) (10)–(15) is obtained on the
basis of strict transformations of the equations of motion compiled on the basis of the
Lagrange–Euler method, well known in theoretical mechanics. In the initial equations,
elements identically equal to zero were excluded. This became possible on the basis of the
proved lemma (6); the proof is not given in this article. Operations with zero elements of
matrices (4 × 4) transformations of homogeneous coordinates were also excluded.

The exclusion of elements identically equal to zero from the equations significantly
increased the computational efficiency of the mathematical model. As is known, the
computational complexity of the equations of motion obtained based on the Lagrange-
Euler method is proportional to the square of the number of generalized coordinates (n2).
In contrast, the Newton–Euler method gives a linear dependence. Therefore, until now,
when modeling the movement of manipulative robots in real-time, the Newton–Euler
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method is mainly used. The developed algorithm makes it possible to bring both methods
closer in terms of their computational efficiency.

The correctness of the obtained equations was confirmed analytically using the ex-
ample of a 2-DOF robot. For systems with a large number of degrees of freedom, it is
necessary to use computer calculations. Such comparative analyses were carried out during
verification of the developed method, but not for the effectiveness of algorithms but the
accuracy of estimates. The trajectories of the characteristic point (TCP—tool center point) of
the 6-DOF robot, constructed in one of the well-known CAD systems and obtained based
on the developed method, were compared. The result of the experiment was a complete
coincidence of the calculated trajectories.

The developed method can be used to model mechanical systems with many degrees
of freedom—for example, anthropomorphic robots. There are no fundamental restrictions
for this. The algorithm implementing calculations by this method allocates the required
amount of memory dynamically and allows modeling open kinematic structures with
unlimited degrees of freedom. Any closed kinematic systems can be brought to an empty
form by conditionally cutting the joints. At the same time, additional equations of connec-
tions and external forces corresponding to reactions in “cut” joints will need to be added to
the mathematical model. Furthermore, the algorithm allows joints with different mobilities
(1–6)-DOF.

The main advantage of the method presented in the article is that, in addition to
the exact calculation of program trajectories, it allows calculating all possible deviations
from a given motion. The reason for such variations may be elastic flexibility in the joints;
therefore, 6-DOF joints are used in our model. Unfortunately, this leads to the fact that
in order to simulate a 6-DOF robot with 6-DOF joints, you need to compose not six but
thirty-six equations of motion. Therefore, when we conducted a test for the accuracy of
constructing the trajectory of a 6-DOF robot, the capabilities of our algorithm were only
used by 1/6.

In contrast to the Lagrange–Euler method, an additional advantage of the developed
method is the possibility inherent in it to determine the reactions in the joints of the robot
necessary to perform the specified movements. The method makes it possible to calculate
projections of forces and moments of support reactions in three-dimensional space with
a decrease in joint mobility. This makes it possible to search for the optimal kinematic
structure of the robot for solving special tasks.

8. Conclusions

A dynamic model based on matrix differential equations describing the movements of
manipulative robots is obtained. The kinematic structure of the simulated robots described
by these equations allows joints to have six degrees of freedom (6-DOF Joints).

We considered the links of the manipulation system as solid bodies. Therefore, when
composing the coefficient matrices of these equations, we excluded elements that are also
equal to zero. This significantly reduced the number of calculations. The excluded elements
reflect the mutual influence of the degrees of mobility responsible for linear orthogonal
displacements in the joints.

This dynamic model makes it possible to analyze the movements of manipulative
robots, taking into account the deviations that occur in their joints—for example, due
to elastic deformations or ruptures. Using computer modeling allows for a comprehen-
sive analysis of the dynamics of simulation robots with an unlimited number of degrees
of freedom.

Additionally, this dynamic model can be used to analyze deviations in the tasks
of stabilizing the position of manipulation systems installed on non-rigidly stabilized
platforms, for example, quadrocopters [22–24]. At the same time, parametric perturbations
of the platform should be considered as deviations in the 6-DOF joint connecting the
manipulating robot to the platform.
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The harvesting robot developed at the Financial University (Moscow) for apple crops
will be equipped with a multi-link manipulation system [38]. The results presented in the
article will help improve this manipulative robot’s work and demonstrate the importance
of the developed mathematical models for real practical applications.
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