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Abstract: The average kappa coefficient of a binary diagnostic test is a parameter that measures
the average beyond-chance agreement between the diagnostic test and the gold standard. This
parameter depends on the accuracy of the diagnostic test and also on the disease prevalence. This
article studies the comparison of the average kappa coefficients of two binary diagnostic tests when
the gold standard is not applied to all individuals in a random sample. In this situation, known
as partial disease verification, the disease status of some individuals is a missing piece of data.
Assuming that the missing data mechanism is missing at random, the comparison of the average
kappa coefficients is solved by applying two computational methods: the EM algorithm and the SEM
algorithm. With the EM algorithm the parameters are estimated and with the SEM algorithm their
variances-covariances are estimated. Simulation experiments have been carried out to study the sizes
and powers of the hypothesis tests studied, obtaining that the proposed method has good asymptotic
behavior. A function has been written in R to solve the proposed problem, and the results obtained
have been applied to the diagnosis of Alzheimer's disease.

Keywords: EM algorithm; partial verification; SEM algorithm

1. Introduction

Diagnostic tests are fundamental in the current practice of medicine. A diagnostic
test is a medical test that is applied to an individual to determine the presence or absence
of a disease [1]. Diagnostic tests can be binary, ordinal or continuous. Binary tests give
two possible results: positive or negative. An antigen test for the diagnosis of COVID-
19 is an example of a binary diagnostic test. Ordinal tests classify the presence of the
disease in different ordinal categories. For example, in the diagnosis of breast cancer,
malignant lesions can be classified as “malignant, suspicious, probably benign, benign or
normal”. With respect to continuous tests, these give rise to continuous values, for example
procalcitonin for the diagnosis of infective endocarditis. The efficacy of a diagnostic test is
evaluated against a gold standard. A gold standard (GS) is a medical test that objectively
determines whether or not an individual has the disease. For example, a biopsy for the
diagnosis of cancer. This article focuses on binary diagnostic tests.

The fundamental measures to evaluate the effectiveness of a binary diagnostic test
(BDT) are sensitivity and specificity. Sensitivity is the probability that the test result is
positive when the individual has the disease, and specificity is the probability that the
test result is negative when the individual does not have the disease. The sensitivity and
specificity of a BDT depend on the physical, chemical or biological bases with which the
test has been developed. When evaluating the effectiveness of a BDT considering the
losses associated with misclassification with the BDT, the parameter used is the weighted
kappa coefficient [1,2]. The weighted kappa coefficient is a parameter that measures the
beyond chance agreement between BDT and GS [1,2], and depends on the sensitivity and
specificity of BDT, on the disease prevalence and on the weighting index. The weighting
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index is a measure of the relative importance between false positives and false negatives.
In practice, the weighting index c is set by the clinician depending on the clinical use of the
BDT (for example, confirmatory test or screening test) and the clinician’s knowledge of the
importance of a false positive and a false negative. If the BDT is to be used as a confirmatory
test, then the weighting index takes a value between 0 and 0.5. If the BDT is to be used as a
screening test, then the weighting index takes a value between 0.5 and 1. The problem with
the weighted kappa coefficient is the assignment of values to the weighting index c, since
the clinician does not always have a knowledge that allows him to decide how important a
false positive is compared to a false negative. Even in the same problem, two clinicians can
assign different values to the weighting index. Roldán-Nofuentes and Olvera-Porcel [3]
have defined and studied a new measure to evaluate the effectiveness of a BDT: the average
kappa coefficient. The average kappa coefficient depends only on the intrinsic accuracy
(sensitivity and specificity) of the BDT and on the disease prevalence, and is a parameter
that does not depend on the weighting index. Therefore, the average kappa coefficient is
a parameter that solves the problem of assigning values to the weighting index. Average
kappa coefficient is a measure of the average beyond-chance agreement between the BDT
and the GS [3].

Comparison of the effectiveness of two BDTs is a topic of special interest in the study
of statistical methods for the diagnosis of diseases. The most frequent type of sampling
to compare two BDTs is the paired design, which consists of applying the two BDTs to all
individuals in a random sample whose disease status is known by applying a GS. Bloch [4]
has studied the comparison of the weighted kappa coefficients of two BDTs under a paired
design, and Roldán-Nofuentes and Luna [5] have extended the study of Bloch to the sit-
uation in which the weighted kappa coefficients of more than two BDTs are compared.
Roldán-Nofuentes and Olvera-Porcel [6] has studied the comparison of the average kappa
coefficients of two BDTs under a paired design. However, in clinical practice the GS is
not always applied to all individuals in the sample. Consequently, the disease state is
unknown for a subset of individuals in the sample. This problem is known as partial verifi-
cation of disease [7,8]. Zhou [9] has studied a hypothesis test to compare the sensitivities
(specificities) of two BDTs in the presence of partial verification, applying the maximum
likelihood method. If in this situation the two sensitivities (specificities) are compared,
eliminating the individuals whose disease status is unknown, the estimates obtained are
biased (the estimators are affected by the so-called verification bias [7]) and the results may
be incorrect [9]. Harel and Zhou [10] have compared the sensitivities (specificities) of two
BDTs using confidence intervals applying multiple imputation, and Roldán-Nofuentes and
Luna [11] have compared the sensitivities (specificities) by applying the EM and the SEM
algorithms. Roldán-Nofuentes and Luna [12] have studied a hypothesis test to compare
the weighted kappa coefficients of two BDTs in the presence of partial verification of the
disease, applying the maximum likelihood method. Regarding the average kappa coef-
ficient, Roldán-Nofuentes and Regad [13] have studied the estimation of this parameter
when only a single BDT is evaluated in the presence of partial verification, applying the
maximum likelihood method and multiple imputation. The comparison of the average
kappa coefficients of two BDTs has never been studied in the presence of partial verifica-
tion. In this situation, if the weighted kappa coefficients are compared, eliminating the
unverified individuals with the GS, then the estimators of the weighted kappa coefficients
are biased [12], and therefore the estimators of the average kappa coefficients, and the
conclusions can also be incorrect. Consequently, the method of Roldán-Nofuentes and
Olvera-Porcel [6] cannot be applied in the presence of partial verification.

In this article, the comparison of the average kappa coefficients of two BDTs in the
presence of partial verification of the disease is studied. Therefore, the objective of our
manuscript is to study a hypothesis test to compare the average kappa coefficients of two
BDTs in the presence of partial verification, a topic that has never been studied. This
article is an extension of the article by Roldán-Nofuentes and Olvera-Porcel [6] to the
situation in which the GS does not apply to all the individuals in the sample, and is also
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an extension of the article by Roldán-Nofuentes and Regad [13] to the situation where
two BDTs are compared in the presence of partial verification. The article is structured
as follows. In Section 2 the average kappa coefficient and its properties are presented. In
Section 3 we study the comparison of the weighted kappa coefficients of two BDTs in the
presence of partial verification of the disease, applying two computational methods: the
EM algorithm and the SEM algorithm. In Section 4, a function written in R is presented to
solve the problem and simulation experiments are carried out to study the size and power
of the method to solve the hypothesis test for the comparison of the two average kappa
coefficients. In Section 5 the results are applied to the diagnosis of Alzheimer disease, and
in Section 6 the results obtained are discussed.

2. Average Kappa Coefficient

Let us consider two BDTs, Test 1 and Test 2, whose performances are compared with
respect to the same GS. Let L (L′) be the loss that occurs when a BDT gives a negative
(positive) result for a diseased (non-diseased) patient. Loss L is associated with a false
negative and loss L′ is associated with a false positive [1,2]. Losses are assumed to be
zero when a BDT correctly classifies a diseased patient or a non-diseased patient [1,2].
For example, let us consider the diagnosis of renal cell carcinoma using the MOC 31. If
the MOC 31 is positive for an individual without the renal carcinoma (false positive), the
individual will undergo a renal biopsy which will be negative. Loss L′ is determined by
the economic costs of the diagnosis and also by the risk, stress, etc, caused to the individual.
If the MOC 31 is negative for an individual with renal carcinoma (false negative), the
individual will be diagnosed later, but the cancer will progress and get worse, decreasing
the chance that treatment will be successful. Loss L is determined from this situation.
Therefore, losses L and L′ are measured in terms of economic costs and in terms of risks,
stress, etc [1,2], so in clinical practice it is not possible to know L and L′. Let T be the
binary random variable that models the result of the BDT, in such a way that T = 1 when
the result is positive and T = 0 when the result is negative. Let D be the binary random
variable that models the result of the GS, in such a way that D = 1 when the individual
has the disease and D = 0 when the individual does not have the disease. In Table 1, we
show the losses and probabilities associated with the assessment of a BDT in relation to a
GS, where Se is the sensitivity, Sp the specificity and p the disease prevalence.

Table 1. Losses and observed frequencies associated with the assessment of a BDT in relation to a GS.

Losses

T = 1 T = 0 Total

D = 1 0 L L
D = 0 L′ 0 L′

Total L′ L L + L′

Probabilities

T = 1 T = 0 Total

D = 1 pSe p(1− Se) p
D = 0 (1− p)(1− Sp) (1− p)Sp 1− p

Total Q = pSe + (1− p)(1− Sp) 1−Q = p(1− Se) + (1− p)Sp 1

In terms of the losses and probabilities in Table 1, the expected loss [4] is p(1− Se)L +
q(1− Sp)L′ and the random loss [4] is p{p(1− Se) + qSp}L + q{pSe + q(1− Sp)}L′, with
q = 1− p. The expected loss is the loss that occurs when erroneously classifying a diseased
or non-diseased individual with the BDT. The expected loss varies between zero and infinity.
The random loss is the loss that occurs when the BDT and the GS are independent, i.e.,
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when P(T = i|D = j ) = P(T = i). In terms of these losses, the weighted kappa coefficient
is defined as [1,2,4]

κ =
Random loss− Expected loss

Random loss−min(Expected loss)
=

Random loss− Expected loss
Random loss

,

since min(Expected loss) = 0. Performing algebraic operations, the weighted kappa
coefficient is written as [1,2,4]

κh(c) =
pqYh

pc(1−Qh) + q(1− c)Qh
, 0 ≤ c ≤ 1, h = 1, 2,

where Yh = Seh + Sph − 1 is the Youden index [14] of the hth Test, Qh = pSeh + q(1− Sph)
is the probability that the hth Test is positive and c = L/(L′ + L) is the weighting index.
The weighted kappa coefficient of the hth Test can also be written as

κh(c) =
κh(0)κh(1)

cκh(0) + (1− c)κh(1)
, 0 ≤ c ≤ 1, (1)

where

κh(0) =
Sph − (1−Qh)

Qh
and κh(1) =

Seh −Qh
1−Qh

.

As L and L′ are unknown, the clinician sets the value of the weighting index based on
the relative importance between false positives and false negatives [1,2]. If the clinician
considers that false positives are more important than false negatives, as is the situation in
which the BDT is used as a confirmatory test prior to the application of a risk treatment (for
example a surgical operation), then L′ > L and 0 ≤ c < 0.5. For example, if a false positive
is four times more important than a false negative then L′ = 4L and c = 1/(1 + 4) = 1/5.
If the clinician considers that false negatives are more important than false positives, as is
the situation in which the BDT is used as a screening test, then L > L′ and 0.5 < c ≤ 1. For
example, if a false negative is three times more important than a false positive then L = 3L′

and c = 3/(3 + 1) = 3/4. Value c = 0.5 is used when false positives and false negatives
have the same importance, being κ(0.5) the Cohen kappa coefficient. The weighted kappa
coefficient has the following properties [1,2,4]:

1. If Seh = Sph = 1 then κ(c) = 1, and the agreement between Test and GS is perfect.
2. If Seh = 1− Sph then κh(c) = 0, and the Test and the GS are independent.
3. Weighted kappa coefficient is a function of the index c, which is increasing if Q > p,

decreasing if Q < p, or equal to the Youden index if Q = p.

The weighted kappa coefficient can be classified in the following scale of values [15]:
0–0.20, slight; 0.21–0.40, fair; 0.41–0.60, moderate; 0.61–0.80, substantial; and 0.81–1, almost
perfect. Another scale based on levels of clinical significance is [16]: <0.40, poor; 0.40–0.59,
fair; 0.60–0.74, good; and 0.75–1, excellent.

Roldán-Nofuentes and Olvera-Porcel [3] have proposed a new measure to evaluate
and to compare BDTs: the average kappa coefficient. If L′ > L, and therefore 0 ≤ c < 0.5,
the average kappa coefficient of the hth Test is [3]

κh1 =
1

0.5

∫ 0.5

0
κh(c)dc =

{ 2κh(0)κh(1)
κh(0)−κh(1)

ln
{

κh(0)+κh(1)
2κh(1)

}
, p 6= Qh

Yh, p = Qh,
(2)

i.e., the average kappa coefficient is the average value of κh(c) when 0 ≤ c < 0.5. If L > L′

and therefore 0.5 < c ≤ 1, the average kappa coefficient of the hth Test is [3]

κh2 =
1

0.5

∫ 1

0.5
κh(c)dc =

{ 2κh(0)κh(1)
κh(0)−κh(1)

ln
{

2κh(0)
κh(0)+κh(1)

}
, p 6= Qh

Yh, p = Qh,
(3)
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i.e., the average kappa coefficient is the average value of κh(c) when 0.5 < c ≤ 1. As
the weighted kappa coefficient is a measure of the beyond-chance agreement between a
BDT and the GS, the average kappa coefficient is a measure of the average beyond-chance
agreement between a BDT and a GS [3], and does not depend on the weighting index
c. As κh(0) and κh(1) depend on Seh, Sph and p, then κh1 and κh2 also depend on these
same parameters. The values of the average kappa coefficient can be classified on the
same scales [15,16] as the values of the weighted kappa coefficient [3]. The average kappa
coefficients κh1 and κh2 have the following properties [3]:

1. If Seh = Sph = 1 then κh1 = κh2 = 1, and if Seh = 1− Sph then κh1 = κh2 = 0.
Therefore 0 ≤ κhi ≤ 1, i = 1, 2.

2. κh1 > κh2 if p > Qh and κh1 < κh2 if Qh > p.

3. κh1 minimizes 2
∫ 0.5

0 {κh(c)− x}2dc and κh2 minimizes 2
∫ 1

0.5 {κh(c)− x}2dc. Therefore,
when x = κh1 (x = κh2) the first (second) expression is the variance of κh(c) around
κh1 (κh2).

4. For fixed values of κh(0) and κh(1), the weighted kappa coefficient κh(c) is a function
of c which is continuous in the interval [0, 1]. Therefore, the average kappa coefficient
κhi is equal to a value of κh(c) in the interval [0, 1]. This value of κh(c) has a value of
weighting index c. So, as κhi = κh(c) for some value of c, from Equation (1) and for a
specific sample it is possible to calculate the value of c associated to the estimated of
κhi. Therefore, the estimation of κhi allows estimating how much greater (or less) the
loss L is than the loss L′.

Next, the comparison of the average kappa coefficients of two BDTs in the presence of
partial verification of the disease is studied.

3. Comparison of Average Kappa Coefficients

The objective of this manuscript is to study the hypothesis tests

H0 : κ11 = κ21 vs H1 : κ11 6= κ21 (4)

and
H0 : κ12 = κ22 vs H1 : κ12 6= κ22 (5)

when not all patients in a random sample are verified with the GS. The first hypothesis test
is used when the clinician considers that L′ > L (0 ≤ c < 0.5) and the second hypothesis
test is used when the clinician considers that L > L′ (0.5 < c ≤ 1). Both hypothesis tests
will be solved by applying two computational methods: the EM algorithm and the SEM
algorithm. The EM algorithm [17] is a classic method to estimate parameters with missing
data, and the SEM (Supplemented EM) algorithm [18] is a method that allows estimating
the variances-covariances of a vector of parameters from the results obtained by applying
the EM algorithm.

In the problem posed here, the sample design is as follows: two BDTs are applied to
all individuals of a random sample sized n and the GS is applied only to a subset of the n
individuals. This situation gives rise to Table 2, where Th is the binary random variable
that models the result of the hth Test (Th = 1 when the Test is positive and Th = 0 when it
is negative), V is the binary random variable that models the verification process (V = 1
when the disease status of an individual is verified with the GS and V = 0 when the disease
status of an individual is not verified with the GS), and D is the binary random variable
that models the GS ( when the individual verified with the GS has the disease and D = 1
when the individual verified with the GS does not have the disease and D = 0 when the
individual verified with the GS does not have the disease). In this table, each frequency
sij (rij) is the number of diseased (non-diseased) individuals in which T1 = i and T2 = j
(i, j = 0, 1), each frequency uij is the number of individuals not verified with the GS in
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which and T1 = i and T2 = j, s =
1
∑

i,j=0
sij, r =

1
∑

i,j=0
rij, u =

1
∑

i,j=0
uij, nij = sij + rij + uij and

n = s + r + u =
1
∑

i,j=0
nij.

Table 2. Observed frequencies in the presence of partial verification.

Observed Frequencies

T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0 Total

V = 1
D = 1 s11 s10 s01 s00 s
D = 0 r11 r10 r01 r00 r
V = 0 u11 u10 u01 u00 u

Total n11 n10 n01 n00 n

Let Seh = P(Th = 1|D = 1 ) and Sph = P(Th = 0|D = 0 ) be the sensitivity and the
specificity of the hth Test, let p = P(D = 1) be the disease prevalence, and let
λijk = P(V = 1|T1 = i, T2 = j, D = k ) be the probability of verifying with the GS an indi-
vidual with results T1 = i, T2 = j and D = k, with h = 1, 2 and i, j, k = 0, 1. Assuming
that the verification process is missing at random (MAR) [19], i.e., that the probability of
verifying with the GS the disease status of an individual only conditionally depends on the
results of both BDTs, then λijk = λij = P(V = 1|T1 = i, T2 = j ). If the disease status of an
individual is not verified with the GS, this individual can be considered as a missing value
of the disease status, and then missing data analysis methods can be used to compare two
BDTs in the presence of partial verification of the disease. The MAR assumption has been
widely used in this context to compare parameters of two BDTs [9–12]. Assuming the MAR
assumption, the frequencies in Table 1 are the product of a multinomial distribution sized
n, whose probabilities are:

ξij = P(V = 1, D = 1, T1 = i, T2 = j) =
pλij

[
Sei

1(1− Se1)
1−iSej

2(1− Se2)
1−j + δijSe1Se2(α1 − 1)

]
,

ψij = P(V = 1, D = 0, T1 = i, T2 = j) =
qλij

[
Sp1−i

1 (1− Sp1)
iSp1−j

2 (1− Sp2)
j + δij(1− Sp1)(1− Sp2)(α0 − 1)

]
,

ζij = P(V = 0, T1 = i, T2 = j) =
1−λij

λij

(
ξijm + ψijm

)
,

(6)

where q = 1− p, δij = 1 if i = j and δij = −1 if i 6= j, α1 (α0) is the covariance [20] between
the two BDTs when D = 1 (D = 0), verifying that

1 ≤ α1 ≤
1

max{Se1, Se2}
and 1 ≤ α0 ≤

1
max{1− Sp1, 1− Sp2}

, (7)

and
1
∑

i,j=0
ξij +

1
∑

i,j=0
ψij +

1
∑

i,j=0
ζij = 1. If α1 = α0 = 1 then the two BDTs are conditionally

independent on the disease, a situation which is not realistic in practice so that α1 > 1
and/or α0 > 1. Solving the system of equations κh(0) = {Sph − (1−Qh)}/Qh and
κh(1) = (Seh −Qh)/(1−Qh), with h = 1, 2, it is obtained that

Seh =
pκh(1) + qκh(0)κh(1)

qκh(0) + pκh(1)
and Sph =

qκh(0) + pκh(0)κh(1)
qκh(0) + pκh(1)

, (8)
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and substituting these expressions in Equation (6), the probabilities of the multinomial
distribution are obtained in terms of the weighted kappa coefficients. Next we apply the
EM algorithm to obtain the estimates of the parameters.

The maximum likelihood (ML) estimates of the parameters are obtained by applying
the EM algorithm [17]. The EM algorithm is a computational method that allows estimating
parameters in the presence of missing data, and it is a method widely used in statistics
to solve estimation problems in different areas, for example in industrial engineering [21]
and in epidemiology [22]. Next, we carry out a reparametrization of the EM algorithm
that allows us to estimate the weighted kappa coefficients of the two BDTs (and therefore
the average kappa coefficients), the covariances and the disease prevalence. In Table 2 the
missing data is the true disease status of the individuals who are not verified with the GS;
this information is reconstructed in the E step of the EM algorithm. In the M step the ML
estimates are imputed. Let us assume that that among the uij individuals not verified with
the GS, yij have the disease and uij − yij do not have the disease. Then the data can be
expressed in the form of a 2× 4 table with frequencies sij + yij for D = 1 and rij + uij − yij,
with i, j = 0, 1. Let θ = (κ1(0), κ1(1), κ2(0), κ2(1), p, α1, α0)

T be the vector of parameters.
From the complete data, the log-likelihood function based on n individuals is

l(θ) =
1

∑
i,j=0

(
sij + yij

)
ln
(
φij
)
+

1

∑
i,j=0

(
rij + uij − yij

)
ln
(

ϕij
)
, (9)

where

φij = P(T1 = i, T2 = i, D = 1) =

p
[
Sei

1(1− Se1)
1−iSej

2(1− Se2)
1−j + δijSe1Se2(α1 − 1)

]
,

ϕij = P(T1 = i, T2 = i, D = 0) =

q
[
Sp1−i

1 (1− Sp1)
iSp1−j

2 (1− Sp2)
j + δij(1− Sp1)(1− Sp2)(α0 − 1)

]
.

In these probabilities, covariances α1 and α0 verify Equation (7), Seh and Sph are given

by Equation (8), and it is verified that
1
∑

i,j=0
φij +

1
∑

i,j=0
ϕij = 1. The vector θ is estimated

by applying the EM algorithm. Let y(m)
ij be the value of yij in the mth iteration of the EM

algorithm and y(m) =
1
∑

i,j=0
y(m)

ij . ML estimate of θ in the mth iteration, θ̂(m), is:

κ̂
(m)
1 (0) =

1
∑

j=0

(
s1j+y(m)

1j

)
×

1
∑

j=0

(
r0j+u0j−y(m)

0j

)
−

1
∑

j=0

(
s0j+y(m)

0j

)
×

1
∑

j=0

(
r1j+u1j−y(m)

1j

)
(r+u−y(m))(n10+n11)

,

κ̂
(m)
1 (1) =

1
∑

j=0

(
s1j+y(m)

1j

)
×

1
∑

j=0

(
r0j+u0j−y(m)

0j

)
−

1
∑

j=0

(
s0j+y(m)

0j

)
×

1
∑

j=0

(
r1j+u1j−y(m)

1j

)
(s+y(m))(n00+n01)

,

κ̂
(m)
2 (0) =

1
∑

i=0

(
si1+y(m)

i1

)
×

1
∑

i=0

(
ri0+ui0−y(m)

i0

)
−

1
∑

i=0

(
si0+y(m)

i0

)
×

1
∑

i=0

(
ri1+ui1−y(m)

i1

)
(s+r−y(m))(n01+n11)

,

κ̂
(m)
2 (1) =

1
∑

i=0

(
si1+y(m)

i1

)
×

1
∑

i=0

(
ri0+ui0−y(m)

i0

)
−

1
∑

i=0

(
si0+y(m)

i0

)
×

1
∑

i=0

(
ri1+ui1−y(m)

i1

)
(s+x(m))(n00+n10)

,

p̂(m) = s+y(m)

n ,

α̂
(m)
1 =

(s+y(m))
(

s11+y(m)
11

)
[

1
∑

i=0

(
si1+y(m)

i1

)][ 1
∑

j=0

(
s1j+y(m)

1j

)] ,

α̂
(m)
0 =

(r+u−y(m))
(

r11+u11−y(m)
11

)
[

1
∑

i=0

(
ri1+ui1−y(m)

i1

)][{ 1
∑

j=0

(
r1j+u1j−y(m)

1j

)}] .
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The ML estimate of θ in the (m + 1)th iteration, θ̂(m+1), is calculated applying the
previous equations substituting m with m + 1, where

y(m+1)
ij = uij

φ̂
(k)
ij

φ̂
(k)
ij + ϕ̂

(k)
ij

, i, j = 0, 1,

and where φ̂
(m)
ij (ϕ̂

(m)
ij ) is the estimate of φij (ϕij) in the mth iteration and it is obtained substi-

tuting in φij (ϕij) the parameters with their respective estimates obtained in the mth iteration

of the algorithm. As initial value y(0)ij one can take any value 0 ≤ y(0)ij ≤ uij, i, j = 0, 1. The
EM algorithm stops when the difference between the values of the log-likelihood functions
of two consecutive iterations is equal to or less than a value δ, for example δ = 10−12. If the
EM algorithm converges in M iterations, θ̂ = (κ̂1(0), κ̂1(1), κ̂2(0), κ̂2(1), p̂, α̂1, α̂0)

T is the
final estimate obtained. The estimates of the weighted kappa coefficients obtained by ap-
plying the EM algorithm converge to the ML estimates (proof can be seen in Appendix A).
Figure 1 shows the flowchart of the EM algorithm to estimate θ.

Figure 1. Flowchart of the EM algorithm.

Once the value of κ̂h(1) and κ̂h(0) have been imputed, the estimates of average kappa
coefficients are easily calculated by applying Equations (2) and (3), i.e.,

κ̂h1 =

{ 2κ̂h(0)κ̂h(1)
κ̂h(0)−κ̂h(1)

ln
{

κ̂h(0)+κ̂h(1)
2κ̂h(1)

}
, p̂ 6= Q̂h

Ŷh, p̂ = Q̂h,
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and

κ̂h2 =

{ 2κ̂h(0)κ̂h(1)
κ̂h(0)−κ̂h(1)

ln
{

2κ̂h(0)
κ̂h(0)+κ̂h(1)

}
, p̂ 6= Q̂h

Ŷh, p̂ = Q̂h.

The estimates of Seh and Sph are calculated as:

Ŝeh =
p̂κ̂h(1) + q̂κ̂h(0)κ̂h(1)

q̂κ̂h(0) + p̂κ̂h(1)
and Ŝph =

q̂κ̂h(0) + p̂κ̂h(0)κ̂h(1)
q̂κ̂h(0) + p̂κ̂h(1)

, h = 1, 2,

where q̂ = 1− p̂. Once the ML estimates have been obtained, it is necessary to estimate
their variances-covariances. For this we apply the Supplemented EM algorithm.

The variance-covariance matrix of θ̂ is estimated by applying the supplemented EM
(SEM) algorithm [18]. The SEM algorithm is a computational method which estimates the
variances-covariances matrix from the calculations obtained by applying the EM algorithm.
Dempster et al. [17] have shown that the matrix of variance-covariance of θ̂ is expressed as

ˆ∑θ̂
= I−1

oc (I − DM)−1 (10)

where I is the identity matrix, DM = Imis I−1
oc , Ioc is the Fisher information matrix of

complete data and Imis is the Fisher information matrix of missing data. The application of
the SEM algorithm consists of three steps [18]: (1) calculate the matrix I−1

oc , (2) calculate the
DM matrix, and (3) calculate ∑̂θ̂. The main step is to calculate the DM matrix.

The first step consists of calculating I−1
oc . This matrix is the inverse of the Fisher

information matrix of the complete data, i.e., Ioc = −∂2l(θ)/∂θi∂θj, where l(θ) is the
function 9 and each θi is one of the parameters of θ. This matrix is calculated from the last
2× 4 table obtained by applying the EM algorithm. Therefore, if the EM algorithm has
converged in M iterations, then the frequencies of this table are sij + x(M)

ij for the diseased

individuals and rij + uij − x(M)
ij for the non-diseased individuals.

The second step of the SEM algorithm consists of calculating the DM matrix. The ele-
ments (βij, i, j = 1, . . . , 7) of this matrix are calculated by applying the following algorithm:

Input: θ̂ and θ(t) =
(

κ
(t)
1 (0), κ

(t)
1 (1), κ

(t)
2 (0), κ

(t)
2 (1), p(t), α

(t)
1 , α

(t)
0

)T
.

1. Calculate θ(t+1) =
(

κ
(t+1)
1 (0), κ

(t+1)
1 (1), κ

(t+1)
2 (0), κ

(t+1)
2 (1), p(t+1), α

(t+1)
1 , α

(t+1)
0

)T
ap-

plying the EM algorithm.
2. Obtain the vectors

θ
(t)
1 =

(
κ
(t)
1 (0), κ̂1(1), κ̂2(0), κ̂2(1), p̂, α̂1, α̂0

)T

θ
(t)
2 =

(
κ̂1(0), κ

(t)
2 (1), κ̂2(0), κ̂2(1), p̂, α̂1, α̂0

)T

θ
(t)
3 =

(
κ̂1(0), κ̂1(1), κ

(t)
2 (0), κ̂2(1), p̂, α̂1, α̂0

)T

θ
(t)
4 =

(
κ̂1(0), κ̂1(1), κ̂2(0), κ

(t)
2 (1), p̂, α̂1, α̂0

)T

θ
(t)
5 =

(
κ̂1(0), κ̂1(1), κ̂2(0), κ̂2(0), p̂(t), α̂1, α̂0

)T

θ
(t)
6 =

(
κ̂1(0), κ̂1(1), κ̂2(0), κ̂2(0), p̂, α̂

(t)
1 , α̂0

)T

θ
(t)
7 =

(
κ̂1(0), κ̂1(1), κ̂2(0), κ̂2(0), p̂, α̂1, α̂

(t)
0

)T

and for each one of these vectors run the first iteration of the EM algorithm taking

θ̂
(t)
i as the initial value of θ and obtain the vectors ˆ̃

θ
(t+1)
1 , . . . , ˆ̃

θ
(t+1)
7 .
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3. Calculate

β
(t)
ij =

ˆ̃θ
(t+1)
ij − θ̂j

θ
(t)
i − θ̂i

, i, j = 1, . . . , 7,

where ˆ̃θ
(t+1)
ij is the jth component of ˆ̃

θ
(t+1)
i , θ

(t)
i is the ith component of θ(t) and θ̂i is

the ith component of θ̂.

Output: θ̂(t+1) and β
(t)
ij , i, j = 1, . . . , 7.

This algorithm is repeated until
∣∣∣β(t+1)

ij − β
(t)
ij

∣∣∣ ≤ √δ [18], where δ is the stop criterion
of the EM algorithm. Figure 2 shows the flowchart of the SEM algorithm to calculate the
DM matrix.

Figure 2. Flowchart of the second step of the SEM algorithm.

The smaller δ is, the smaller are the errors that are made when calculating the DM
matrix, and then smaller are the errors that are committed when calculating the variance-
covariance matrix ∑θ̂.

The third and final step of the SEM algorithm consists of estimating the variance-
covariance matrix ∑θ̂ applying equation 10. This matrix is not normally symmetrical due
to the numerical errors made in the calculation of the DM matrix [18]. The assessment
of ∑̂θ̂ is performed calculating the matrix ∆∑̂θ̂ = I−1

oc DM(I − DM)−1 [18], a matrix
which represents the increase in the variances-covariances estimated owing to the missing
information. The matrix ∆∑̂θ̂ is the more symmetric the smaller the value of δ, therefore
the asymmetry of ∑̂θ̂ is solved taking a value a very small value of δ [18].

Once the matrix ∑̂θ̂ has been calculated, the asymptotic variance-covariance ma-
trix of the average kappa coefficients is obtained by applying the delta method. Let
κ1 = (κ11, κ21)

T and κ2 = (κ12, κ22)
T be the vectors whose components are the average

kappa coefficients. Let κ = (κ1(0), κ1(1), κ2(0), κ2(1), p)T be the vectors whose compo-
nents are the weighted kappa coefficients and the prevalence, and let ∑̂κ̂ be the estimated
asymptotic variance-covariance of κ̂ (obtained by eliminating the variances and covariances
corresponding to α̂1 and α̂0 from the matrix ∑̂θ̂), since the average kappa coefficients do
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not depend on the covariances α1 and α0. Then, applying the delta method, the asymptotic
variance-covariance matrices are

ˆ∑κ̂i
=

(
∂κi
∂κ

)
κ=κ̂

ˆ∑κ̂

(
∂κi1
∂κ

)T

κ=κ̂

, i = 1, 2. (11)

Once the estimates of the average kappa coefficients and their variances-covariances
have been calculated, the test statistics for the hypothesis tests

H0 : κ1i = κ2i vs H1 : κ1i 6= κ2i, i = 1, 2,

are
zi =

κ̂1i − κ̂2i√
V̂ar(κ̂1i) + V̂ar(κ̂2i)− 2Ĉov(κ̂1i, κ̂2i)

, i = 1, 2,

whose distribution is a normal standard distribution when the sample size n is large.
Inverting each test statistic, the 100 × (1− α)% Wald-type confidence interval for the
difference of the two average kappa coefficients is

κ1i − κ2i ∈ κ̂1i − κ̂2i ± z1−α/2

√
V̂ar(κ̂1i) + V̂ar(κ̂2i)− 2Ĉov(κ̂1i, κ̂2i), i = 1, 2,

where z1−α/2 is the 100× (1− α/2)th percentile of the normal standard distribution.

4. Simulation Study

Monte Carlo simulation experiments have been carried out to study the sizes and
the powers of the hypothesis tests 4 and 5 solved with the EM-SEM algorithms. These
experiments have consisted of generating N = 10, 000 random samples of multinomial
distributions. As sample size we have considered n = {50, 100, 200, 500, 1000, 2000}. Proba-
bilities of multinomial distributions have been calculated from equations 6 written in terms
of the weighted kappa coefficients. These simulation experiments have been designed from
the equations of the average kappa coefficients (Equations (2) and (3)). For the prevalence,
the values 5%, 10%, 30% and 50% have been considered, and that it is a sufficient range of
values to study the effect of prevalence on the behaviour of the hypothesis tests. Regarding
the average kappa coefficients, the values 0.2, 0.4, 0.6 and 0.8 have been considered, values
that correspond to different levels of clinical significance [16]. Once the values for the
disease prevalence and the average kappa coefficient have been set, the values of κh(0) and
κh(1) are calculated by solving (using the Newton-Raphson method) the system formed
by Equations (2) and (3), considering only the solutions that are between 0 and 1. Next,
the values of Seh and Sph are calculated by applying equation (8). Once the values for
Seh and Sph have been calculated, the maximum values of the covariances α1 and α0 have
been calculated by applying Equation (7), considering intermediate values (50% of the
maximum value) and high values (90% of the maximum value), i.e.,:

α1 =
f

max{Se1, Se2}
+ 1− f and α0 =

f
max{(1− Sp1), (1− Sp2)}

+ 1− f ,

with f = {0.50, 0.90}. As verification probabilities, three scenarios have been considered:
λ11 = 0.50, λ10 = λ01 = 0.30, λ00 = 0.05, λ11 = 0.95, λ10 = λ01 = 0.60, λ00 = 0.25 and
λ11 = λ10 = λ01 = λ00 = 1. The first scenario corresponds to a situation in which the
verification is low, the second corresponds to a situation in which the verification is high
and the third scenario corresponds to the situation in which all individuals are verified
with the GS (a situation that can be called complete verification). In the last scenario,
there is no verification bias and the sample design corresponds to a paired design, and
the average kappa coefficients are compared using the method of Roldán-Nofuentes and
Olvera-Porcel [6]. Finally, the probabilities of the multinomial distributions have been
calculated by applying Equation (6) (in terms of the weighted kappa coefficients). Therefore,
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the probabilities of the multinomial distributions have been calculated from the values
of the average kappa coefficients and not by fixing the sensitivities and specificities of
the BDTs.

The Monte Carlo simulation experiments have been designed in such a way that in all
of the random samples it is possible to apply the EM-SEM algorithms. For the application
of the EM-SEM algorithms, the values δ = 10−12 and

√
δ = 10−6 have been considered as

stop criterion, and y(0)ij = uij/2 as initial values of the EM algorithm. As nominal error,
α = 5% has been considered.

The simulation experiments have been carried out with R [23], and have been made
with computers i7-3770 CPU 3.4 GHz. For this, a function, called “cakcmd” (Comparison
of Average Kappa Coefficients with Missing Data), has been programmed to solve the
hypothesis tests 1 and 2 applying the EM and SEM algorithms. The function runs with
the command

cakcmd(s11, s10, s01, s00, r11, r10, r01, r00, u11, u10, u01, u00).

By default the stop criterion of the EM algorithm is 10−12, the confidence level for
the CIs is 95% and y(0)ij = uij/2. The function does not use any R library and the EM and
SEM algorithms have been specifically programmed. The function always checks that
the problem can be solved by applying the methods described, for example that there
are no negative frequencies, that u > 0, etc. The function provides all the estimates and
their standard errors, all the matrices described in Section 3, the test statistics, the p-values
and the CIs for the difference between the two average kappa coefficients. The “cakcmd”
function is available as Supplemental Material to this manuscript.

Table 3 shows the type I error (in %) of the hypothesis test to compare the two average
kappa coefficients when L′ > L (0 ≤ c < 0.5) for different scenarios. The verification
probabilities and the covariances α1 and α0 have an important effect on the type I error
of the hypothesis test. For fixed values of the covariances, the increase in the verification
probabilities produces an increase in the type I error. For fixed values of the verification
probabilities, the increase in the covariances produces a decrease in the type I error. In
general terms and depending on the verification probabilities and on the covariances, the
type I error is very small (much lower than the nominal error) when the sample size is
not very large (n ≤ 500), and fluctuates around the error nominal (without exceeding it
excessively) when the sample size is very large (n ≥ 1000). Therefore, this hypothesis test
is a conservative test (which is preferable to a liberal test) when the sample size is not very
large and it has the behaviour of an asymptotic test when the sample size is very large. The
hypothesis test does not give too many false significances even when the sample size is
very large.

In the complete verification situation (λij = 1), the type I error behaves in a very similar
way to the type I error obtained in partial verification. Comparing the partial verification
scenarios with the complete verification scenario, the partial verification implies a decrease
in type I error. Consequently, the presence of missing data implies that the type I error
decreases with respect to the situation in which all individuals are verified with the GS.

Table 4 shows the type I error (in %) of the hypothesis test to compare the two average
kappa coefficients when L > L′ (0.5 < c ≤ 1) for different scenarios. The verification
probabilities and the covariances also have an important effect on the type I error of this
hypothesis test, its effects being the same as in the previous case. The type I error of this
test has the same behaviour as that of the previous hypothesis test, and is therefore a
conservative test when the sample size is not very large and fluctuates around the nominal
error when the sample size is very large. Comparing the partial verification scenarios with
the full verification scenario, the same conclusions as those previous are obtained.

Table 5 shows the power (in %) of the hypothesis test when L′ > L (0 ≤ c < 0.5) for
different values of the average kappa coefficients.
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Table 3. Type I error (in %) of the hypothesis test when L′ > L (0 ≤ c < 0.5).

κ11 = κ21 = 0.2
κ1(0) = 0.16 κ1(1) = 0.67 κ2(0) = 0.16 κ2(1) = 0.67 p = 10%

λ11 = 0.50, λ10 = 0.30,
λ01 = 0.30, λ00 = 0.05

λ11 = 0.95, λ10 = 0.60,
λ01 = 0.60, λ00 = 0.25 λ11 = λ10 = λ01 = λ00 = 1

n α1 = 1.14
α0 = 2.37

α1 = 1.24
α0 = 3.47

α1 = 1.14
α0 = 2.37

α1 = 1.24
α0 = 3.47

α1 = 1.14
α0 = 2.37

α1 = 1.24
α0 = 3.47

50 0 0 0.05 0 0.50 0
100 0.05 0 0.50 0 1.20 0
200 0.15 0 0.85 0 3.10 0.10
500 1.10 0.10 2.90 0.10 4.40 1.05
1000 1.70 0.20 3.40 0.95 4.75 2.05
2000 3.25 0.55 4.55 2.25 5.50 4.35

κ11 = κ21 = 0.4
κ1(0) = 0.34 κ1(1) = 0.78 κ2(0) = 0.34 κ2(1) = 0.78 p = 30%

λ11 = 0.50, λ10 = 0.30,
λ01 = 0.30, λ00 = 0.05

λ11 = 0.95, λ10 = 0.60,
λ01 = 0.60, λ00 = 0.25 λ11 = λ10 = λ01 = λ00 = 1

n α1 = 1.06
α0 = 2.03

α1 = 1.11
α0 = 2.85

α1 = 1.06
α0 = 2.03

α1 = 1.11
α0 = 2.85

α1 = 1.06
α0 = 2.03

α1 = 1.11
α0 = 2.85

50 0 0 0.45 0 2.05 1.10
100 0.30 0 1.50 0 4.50 3.90
200 1.40 0 2.30 0.25 4.90 4.35
500 2.90 0.45 4.15 1.25 4.25 3.55
1000 3.85 1.90 5.15 2.35 5.25 4.70
2000 4.55 2.65 4.75 4.15 4.80 4.40

κ11 = κ21 = 0.6
κ1(0) = 0.77 κ1(1) = 0.34 κ2(0) = 0.77 κ2(1) = 0.34 p = 5%

λ11 = 0.50, λ10 = 0.30,
λ01 = 0.30, λ00 = 0.05

λ11 = 0.95, λ10 = 0.60,
λ01 = 0.60, λ00 = 0.25 λ11 = λ10 = λ01 = λ00 = 1

n α1 = 1.91
α0 = 96.02

α1 = 2.64
α0 = 172.39

α1 = 1.91
α0 = 96.02

α1 = 2.64
α0 = 172.39

α1 = 1.91
α0 = 96.02

α1 = 2.64
α0 = 172.39

50 0 0 0 0 0.60 0.10
100 0.05 0 0.05 0 1.25 0.15
200 0.45 0 0.35 0 3.30 1.05
500 0.60 0.05 2.05 0.15 5.35 3.75
1000 1.60 0.25 4.15 0.45 4.95 4.90
2000 3.45 0.65 4.50 1.50 4.55 4.40

κ11 = κ21 = 0.8
κ1(0) = 0.86 κ1(1) = 0.66 κ2(0) = 0.86 κ2(1) = 0.66 p = 50%

λ11 = 0.50, λ10 = 0.30,
λ01 = 0.30, λ00 = 0.05

λ11 = 0.95, λ10 = 0.60,
λ01 = 0.60, λ00 = 0.25 λ11 = λ10 = λ01 = λ00 = 1

n α1 = 1.12
α0 = 8.73

α1 = 1.21
α0 = 14.91

α1 = 1.12
α0 = 8.73

α1 = 1.21
α0 = 14.91

α1 = 1.12
α0 = 8.73

α1 = 1.21
α0 = 14.91

50 0 0 0 0 0.30 0.10
100 0.05 0 0.40 0 2.25 0.25
200 0.45 0 1.65 0 4.25 1.05
500 2.40 0.05 2.90 0.55 5.55 3.40
1000 3.65 0.90 4.65 1.15 5.35 4.10
2000 3.75 2.40 5.35 3.35 5.60 5.10
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Table 4. Type I error (in %) of the hypothesis test when L > L′ (0.5 < c ≤ 1).

κ12 = κ22 = 0.2
κ1(0) = 0.93 κ1(1) = 0.16 κ2(0) = 0.93 κ2(1) = 0.16 p = 50%

λ11 = 0.50, λ10 = 0.30,
λ01 = 0.30, λ00 = 0.05

λ11 = 0.95, λ10 = 0.60,
λ01 = 0.60, λ00 = 0.25 λ11 = λ10 = λ01 = λ00 = 1

n α1 = 2.26
α0 = 49.16

α1 = 3.28
α0 = 87.69

α1 = 2.26
α0 = 49.16

α1 = 3.28
α0 = 87.69

α1 = 2.26
α0 = 49.16

α1 = 3.28
α0 = 87.69

50 0 0 0.40 0 2.55 1.05
100 0.50 0 1.70 0 4.45 2.15
200 1.70 0 2.80 0 4.90 3.30
500 4.30 0.60 3.70 2.20 4.20 4.40
1000 4.10 2.90 4.50 4.35 5.45 4.05
2000 4.30 3.60 5.20 5.05 5.75 5.35

κ12 = κ22 = 0.4
κ1(0) = 0.16 κ1(1) = 0.67 κ2(0) = 0.16 κ2(1) = 0.67 p = 10%

λ11 = 0.50, λ10 = 0.30,
λ01 = 0.30, λ00 = 0.05

λ11 = 0.95, λ10 = 0.60,
λ01 = 0.60, λ00 = 0.25 λ11 = λ10 = λ01 = λ00 = 1

n α1 = 1.14
α0 = 2.37

α1 = 1.26
α0 = 3.47

α1 = 1.14
α0 = 2.37

α1 = 1.26
α0 = 3.47

α1 = 1.14
α0 = 2.37

α1 = 1.26
α0 = 3.47

50 0 0 0 0 0.05 0
100 0 0 0.20 0.05 0.60 0.15
200 0.20 0.10 0.90 0.55 2.25 0.95
500 0.80 0.45 3.00 2.15 4.55 3.35
1000 1.80 1.30 3.60 2.25 5.25 3.55
2000 3.75 2.80 4.25 3.35 5.10 3.80

κ12 = κ22 = 0.6
κ1(0) = 0.34 κ1(1) = 0.78 κ2(0) = 0.34 κ2(1) = 0.78 p = 30%

λ11 = 0.50, λ10 = 0.30,
λ01 = 0.30, λ00 = 0.05

λ11 = 0.95, λ10 = 0.60,
λ01 = 0.60, λ00 = 0.25 λ11 = λ10 = λ01 = λ00 = 1

n α1 = 1.06
α0 = 2.03

α1 = 1.11
α0 = 2.85

α1 = 1.06
α0 = 2.03

α1 = 1.11
α0 = 2.85

α1 = 1.06
α0 = 2.03

α1 = 1.11
α0 = 2.85

50 0 0 0.10 0 0.20 0.05
100 0.30 0.05 0.70 0.10 2.35 0.15
200 1.05 0.10 1.50 0.65 4.35 0.80
500 2.50 0.70 4.50 1.40 5.35 3.15
1000 4.10 1.40 5.10 1.80 4.95 4.80
2000 4.80 2.60 5.15 3.15 5.95 5.50

κ12 = κ22 = 0.8
κ1(0) = 0.88 κ1(1) = 0.78 κ2(0) = 0.88 κ2(1) = 0.78 p = 5%

λ11 = 0.50, λ10 = 0.30,
λ01 = 0.30, λ00 = 0.05

λ11 = 0.95, λ10 = 0.60,
λ01 = 0.60, λ00 = 0.25 λ11 = λ10 = λ01 = λ00 = 1

n α1 = 1.13
α0 = 93.98

α1 = 1.24
α0 = 168.37

α1 = 1.13
α0 = 93.98

α1 = 1.24
α0 = 168.37

α1 = 1.13
α0 = 93.98

α1 = 1.24
α0 = 168.37

50 0 0 0 0 0.05 0.10
100 0.05 0 0.20 0.10 0.45 0.25
200 0.10 0 0.45 0.15 0.40 0.55
500 0.55 0.30 0.90 0.50 2.05 1.45
1000 1.25 0.95 3.05 1.95 3.55 3.25
2000 2.10 1.30 3.85 2.65 4.25 3.05
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Table 5. Power (in %) of the hypothesis test when L′ > L (0 ≤ c < 0.5).

κ11 = 0.4 κ21 = 0.2
κ1(0) = 0.34 κ1(1) = 0.78 κ2(0) = 0.16 κ2(1) = 0.67 p = 10%

λ11 = 0.50, λ10 = 0.30,
λ01 = 0.30, λ00 = 0.05

λ11 = 0.95, λ10 = 0.60,
λ01 = 0.60, λ00 = 0.25 λ11 = λ10 = λ01 = λ00 = 1

n α1 = 1.11
α0 = 2.37

α1 = 1.19
α0 = 3.47

α1 = 1.11
α0 = 2.37

α1 = 1.19
α0 = 3.47

α1 = 1.11
α0 = 2.37

α1 = 1.19
α0 = 3.47

50 0.15 0.05 1.30 0.85 7.85 22.35
100 3.80 3.00 17.95 21.05 61.15 77.15
200 26.45 36.00 64.15 86.45 93.10 99.65
500 81.90 97.95 99.05 100 100 100
1000 99.15 100 100 100 100 100
2000 100 100 100 100 100 100

κ11 = 0.6 κ21 = 0.4
κ1(0) = 0.56 κ1(1) = 0.76 κ2(0) = 0.34 κ2(1) = 0.78 p = 30%

λ11 = 0.50, λ10 = 0.30,
λ01 = 0.30, λ00 = 0.05

λ11 = 0.95, λ10 = 0.60,
λ01 = 0.60, λ00 = 0.25 λ11 = λ10 = λ01 = λ00 = 1

n α1 = 1.06
α0 = 2.03

α1 = 1.11
α0 = 2.85

α1 = 1.06
α0 = 2.03

α1 = 1.11
α0 = 2.85

α1 = 1.06
α0 = 2.03

α1 = 1.11
α0 = 2.85

50 3.35 3.40 24.45 31.75 29.05 38.55
100 37.80 54.60 83.15 94.30 85.10 82.05
200 87.90 98.10 99.75 100 100 100
500 99.95 100 100 100 100 100
1000 100 100 100 100 100 100
2000 100 100 100 100 100 100

κ11 = 0.6 κ21 = 0.2
κ1(0) = 0.56 κ1(1) = 0.76 κ2(0) = 0.17 κ2(1) = 0.39 p = 5%

λ11 = 0.50, λ10 = 0.30,
λ01 = 0.30, λ00 = 0.05

λ11 = 0.95, λ10 = 0.60,
λ01 = 0.60, λ00 = 0.25 λ11 = λ10 = λ01 = λ00 = 1

n α1 = 1.14
α0 = 6.09

α1 = 1.26
α0 = 10.16

α1 = 1.14
α0 = 6.09

α1 = 1.26
α0 = 10.16

α1 = 1.14
α0 = 6.09

α1 = 1.26
α0 = 10.16

50 0.60 0.25 6.05 3.20 18.75 31.05
100 11.75 13.20 29.50 44.10 97.45 99.05
200 43.40 63.05 69.60 90.60 100 100
500 87.30 98.25 98.60 99.95 100 100
1000 99.55 99.95 100 100 100 100
2000 100 100 100 100 100 100

κ11 = 0.8 κ21 = 0.6
κ1(0) = 0.90 κ1(1) = 0.60 κ2(0) = 0.80 κ2(1) = 0.33 p = 50%

λ11 = 0.50, λ10 = 0.30,
λ01 = 0.30, λ00 = 0.05

λ11 = 0.95, λ10 = 0.60,
λ01 = 0.60, λ00 = 0.25 λ11 = λ10 = λ01 = λ00 = 1

n α1 = 1.16
α0 = 9.06

α1 = 1.28
α0 = 15.51

α1 = 1.16
α0 = 9.06

α1 = 1.28
α0 = 15.51

α1 = 1.16
α0 = 9.06

α1 = 1.28
α0 = 15.51

50 0.10 0.05 0.15 0.10 9.95 23.05
100 0.15 0.10 0.20 0.15 70.05 77.95
200 0.30 0.15 2.75 1.95 96.10 100
500 7.65 5.65 30.10 39.30 100 100
1000 34.45 41.15 69.05 89.15 100 100
2000 70.35 89.55 95.10 99.85 100 100

Verification probabilities and covariances also have an important effect on the power
of the hypothesis test. For fixed values of the covariances, increasing the verification
probabilities produces an increase in power. With respect to the covariances, for fixed
values of verification probabilities, in general terms their increase produces an increase
in power (although when the sample is small or moderate, the power may decrease
slightly, depending on the difference between the values of the average kappa coefficients).
Comparing the partial verification scenarios with the complete verification scenario, the
partial verification implies a lower power. A decrease in the verification probabilities
implies a decrease in power, with respect to the complete verification situation. In very
general terms, the following conclusions are obtained:
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When the difference between the two average kappa coefficients is small (0.2), a large
(n = 500) or very large (n ≥ 1000) sample is needed, for the power is greater than 80–90%,
depending on the verification probabilities and on the covariances.

When the difference between the two average kappa coefficients is moderate or large
(≥0.4), a sample of moderate size (n = 100− 200) is needed for the power to be greater
than 80–90%, depending on the verification probabilities and on the covariances.

Table 6 shows the power (in %) of the hypothesis test when L > L′ (0.5 < c ≤ 1) for
different values of the average kappa coefficients. In general terms, the conclusions are the
same as those obtained for the previous hypothesis test.

Table 6. Power (in %) of the hypothesis test when L > L′ (0.5 < c ≤ 1).

κ12 = 0.4 κ22 = 0.2
κ1(0) = 0.27 κ1(1) = 0.47 κ2(0) = 0.39 κ2(1) = 0.17 p = 30%

λ11 = 0.50, λ10 = 0.30,
λ01 = 0.30, λ00 = 0.05

λ11 = 0.95, λ10 = 0.60,
λ01 = 0.60, λ00 = 0.25 λ11 = λ10 = λ01 = λ00 = 1

n α1 = 1.22
α0 = 2.10

α1 = 1.39
α0 = 2.99

α1 = 1.22
α0 = 2.10

α1 = 1.39
α0 = 2.99

α1 = 1.22
α0 = 2.10

α1 = 1.39
α0 = 2.99

50 0.10 0.05 0.05 1.10 9.85 12.40
100 0.90 0.15 9.00 8.20 42.05 45.15
200 4.90 5.60 24.70 28.30 73.80 78.35
500 22.7 26.80 70.60 76.90 97.15 99.40
1000 54.05 59.20 94.10 98.40 100 100
2000 88.30 91.05 100 100 100 100

κ12 = 0.6 κ22 = 0.4
κ1(0) = 0.46 κ1(1) = 0.66 κ2(0) = 0.27 κ2(1) = 0.47 p = 50%

λ11 = 0.50, λ10 = 0.30,
λ01 = 0.30, λ00 = 0.05

λ11 = 0.95, λ10 = 0.60,
λ01 = 0.60, λ00 = 0.25 λ11 = λ10 = λ01 = λ00 = 1

n α1 = 1.22
α0 = 2.10

α1 = 1.39
α0 = 2.99

α1 = 1.22
α0 = 2.10

α1 = 1.39
α0 = 2.99

α1 = 1.22
α0 = 2.10

α1 = 1.39
α0 = 2.99

50 0.05 0.01 3.30 1.60 13.25 16.75
100 5.60 4.10 19.05 29.90 56.85 74.05
200 25.50 29.20 49.30 78.90 84.15 99.10
500 65.50 90.30 89.40 99.90 100 100
1000 89.55 99.60 99.30 100 100 100
2000 99.80 100 100 100 100 100

κ12 = 0.6 κ22 = 0.2
κ1(0) = 0.34 κ1(1) = 0.78 κ2(0) = 0.39 κ2(1) = 0.17 p = 10%

λ11 = 0.50, λ10 = 0.30,
λ01 = 0.30, λ00 = 0.05

λ11 = 0.95, λ10 = 0.60,
λ01 = 0.60, λ00 = 0.25 λ11 = λ10 = λ01 = λ00 = 1

n α1 = 1.11
α0 = 4.23

α1 = 1.19
α0 = 6.81

α1 = 1.11
α0 = 4.23

α1 = 1.19
α0 = 6.81

α1 = 1.11
α0 = 4.23

α1 = 1.19
α0 = 6.81

50 0.10 0.05 0.30 1.10 17.10 22.65
100 0.50 0.06 7.10 9.10 35.95 42.15
200 5.30 5.20 39.90 44.10 82.05 84.05
500 44.20 56.20 93.10 94.40 100 100
1000 91.70 94.30 99.80 100 100 100
2000 99.80 100 100 100 100 100

κ12 = 0.8 κ22 = 0.6
κ1(0) = 0.88 κ1(1) = 0.78 κ2(0) = 0.95 κ2(1) = 0.53 p = 5%

λ11 = 0.50, λ10 = 0.30,
λ01 = 0.30, λ00 = 0.05

λ11 = 0.95, λ10 = 0.60,
λ01 = 0.60, λ00 = 0.25 λ11 = λ10 = λ01 = λ00 = 1

n α1 = 1.13
α0 = 93.98

α1 = 1.24
α0 = 168.37

α1 = 1.13
α0 = 93.98

α1 = 1.24
α0 = 168.37

α1 = 1.13
α0 = 93.98

α1 = 1.24
α0 = 168.37

50 0.05 0.01 0.10 0.05 14.20 17.85
100 0.08 0.03 0.08 0.02 44.85 52.10
200 0.10 0.08 2.60 2.70 89.05 96.95
500 5.30 7.05 20.30 23.10 100 100
1000 21.80 30.01 48.50 53.80 100 100
2000 49.70 63.70 84.05 86.80 100 100
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5. Example

The model has been applied to the study by Hall et al. [24] on the diagnosis of
Alzheimer’s disease. Hall et al. have used two BDTs for the diagnosis of Alzheimer's
disease: a new BDT based on a cognitive test applied to the patient (NBDT), and another
BDT related to another person who knows the patient and a standard diagnostic test
based on a cognitive test (CT). As a GS, a clinical assessment (a neurological exploration,
computerized tomography, neuro-psychological and laboratory tests, etc.) has been used.
This study corresponds to a two-phase study: in the first phase, two BDTs have been
applied to all of the patients, and in the second phase only a subset of patients are verified
with the GS, depending on the results of both BDTs [9]. Therefore, it is assumed that the
verification process is MAR. Table 7 shows the data obtained by Hall et al. when applying
medical tests to a sample of 588 patients, where T1 models the result of the NBDT, T2
models the result of the CT, and D models the result of the clinical assessment.

Table 7. Diagnosis of coronary stenosis.

Observed Frequencies

T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0

V = 1
D = 1 31 5 3 1
D = 0 25 10 19 55
V = 0 22 6 65 346

Executing the “cakcmd” function with the command

cakcmd(31, 5, 3, 1, 25, 10, 19, 55, 22, 6, 65, 346),

the results given in Table 8 are obtained.
The EM algorithm has converged in 217 iterations using δ = 10−12 as the stopping

criterion. The execution time of the function has been 0.2 s with a computer i7-3770 CPU
3.4 GHz. The estimates of the weighted kappa coefficients, prevalence and covariances are

θ̂ = (κ̂1(0), κ̂1(1), κ̂2(0), κ̂2(1), p̂, α̂1, α̂0)
T ≈ (0.44, 0.67, 0.24, 0.72, 0.12, 1.08, 3.37).

Applying the SEM algorithm, the variance-covariance matrix of θ̂ = (κ̂1(0), κ̂1(1),
κ̂2(0), κ̂2(1), p̂, α̂1, α̂0)

T is obtained (see Table 8). The variance-covariance matrices of the
estimates of average kappa coefficients are obtained from the previous matrix by applying
the delta method (Equation (11)). All these matrices are not symmetric due to the numerical
errors made in the application of the SEM algorithm.

If the clinician considers that false positives are more important than false nega-
tives (L′ > L and 0 ≤ c < 0.5), then the estimates of the average kappa coefficients
are κ̂11 ≈ 0.48 and κ̂12 ≈ 0.30, and the estimates of the variances and covariance are
V̂ar(κ̂11) ≈ 0.0040, V̂ar(κ̂21) ≈ 0.0030 and Ĉov(κ̂11, κ̂21) ≈ 0.0012. The value of the test
statistic for H0:κ11 = κ21 is z1 ≈ 2.75 (two sided p-value ≈ 0.0060). Therefore, with α = 5%,
the equality of both average kappa coefficients is rejected. The average kappa coefficient of
the NBDT is significantly higher than the average kappa coefficient of the CT (95% CI for
the difference: 0.0535 to 0.3202). If the clinician considers that false positives are more im-
portant than false negatives, the average kappa coefficient of the NBDT is greater than the
average kappa coefficient of the CT. Therefore, the average beyond-chance agreement be-
tween the new BDT and the clinical assessment is greater than the average beyond-chance
agreement between the cognitive test and clinical assessment.
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Table 8. Results for the example of the diagnosis of Alzheimer’s disease.

COMPARISON OF AVERAGE KAPPA COEFFICIENTS OF TWO BDTS WITH MISSING DATA:
Iterations of the EM algorithm: 217
Inverse matrix of the Fisher information matrix for complete data:

Kappa10 Kappa11 Kappa20 Kappa21 p a1 a0

Kappa10 2.70× 10−3 1.38× 10−3 9.91× 10−4 3.69× 10−4 3.70× 10−4 −3.64× 10−4 4.35× 10−3

Kappa11 1.38× 10−3 3.88× 10−3 2.19× 10−4 1.08× 10−3 −4.43× 10−5 1.08× 10−3 5.07× 10−4

Kappa20 9.91× 10−4 2.19× 10−4 1.13× 10−3 1.07× 10−3 2.77× 10−4 −3.24× 10−4 3.87× 10−3

Kappa21 3.69× 10−4 1.08× 10−3 1.07× 10−3 4.30× 10−3 −4.08× 10−5 −1.37× 10−3 1.14× 10−3

p 3.70× 10−4 −4.43× 10−5 2.77× 10−4 −4.08× 10−5 1.77× 10−4 −2.17× 10−19 −6.58× 10−19

a1 −3.64× 10−4 −1.08× 10−3 −3.24× 10−4 −1.37× 10−3 1.84× 10−19 2.21× 10−3 2.74× 10−18

a0 4.35× 10−3 5.07× 10−4 3.87× 10−3 1.14× 10−3 8.00× 10−19 −6.87× 10−20 1.15× 10−1

DM matrix:

Kappa10 Kappa11 Kappa20 Kappa21 p a1 a0

Kappa10 0.25747856 0.22670197 0.04820999 −0.03430295 0.02544226 −0.00081874 0.00737780
Kappa11 0.04018192 0.46969774 −0.15323480 −0.01112308 −0.06342952 0.01088978 −0.68269317
Kappa20 0.07169712 −0.31072616 0.30117681 0.43206262 0.06510425 −0.09497630 −0.06344007
Kappa21 −0.04157550 0.08880363 0.02017579 0.22133723 −0.01974722 −0.11024679 −0.25032953

p −0.11756844 −1.20091231 −0.02896885 −1.17760749 0.15870433 0.64074585 1.86688820
a1 −0.03532342 −0.11283512 −0.15022054 −0.50246330 0.00919001 0.67340594 −1.33229242
a0 −0.00750592 −0.01428990 −0.00424797 −0.01550081 0.00044486 −0.01171524 0.09379489

Variance-covariance matrix of weighted kappa coefficients, prevalence and covariances:

Kappa10 Kappa11 Kappa20 Kappa21 p a1 a0

Kappa10 0.00380263 0.00282528 0.00127952 0.00097428 0.00040832 −0.00110158 0.00480053
Kappa11 0.00283219 0.01558280 −0.00086300 0.00807824 −0.00148826 −0.00801231 −0.00461472
Kappa20 0.00127269 −0.00094112 0.00233169 0.00289762 0.00053473 −0.00191751 0.00794194
Kappa21 0.00096024 0.00784534 0.00296983 0.01611484 −0.00088940 −0.01223615 0.00684820

p 0.00040347 −0.00152204 0.00051321 −0.00098494 0.00041010 0.00090368 0.00090234
a1 −0.00109354 −0.00785617 −0.00198050 −0.01227948 0.00083346 0.01314268 −0.00816490
a0 0.00477417 −0.00487427 0.00791000 0.00651661 0.00096002 −0.00789270 0.14222082

Estimated weighted kappa coefficient K(0) of Test 1 is 0.4410538 and its standard error is 0.06166551
Estimated weighted kappa coefficient K(1) of Test 1 is 0.6692124 and its standard error is 0.1248311
Estimated weighted kappa coefficient K(0) of Test 2 is 0.2446698 and its standard error is 0.04828762
Estimated weighted kappa coefficient K(1) of Test 2 is 0.7152702 and its standard error is 0.1269442
Estimated disease prevalence is 0.1177224 and its standard error is 0.0202509
Estimated covariance a1 is 1.082158
Estimated covariance a0 is 3.365059
COMPARISON OF AVERAGE KAPPA COEFFICIENTS FOR L′ > L (0 < c < 0.5)
Variance-covariance matrix:

Average kappa11 Average kappa21

Average kappa11 0.003978628 0.001180153
Average kappa21 0.001159865 0.003010255

Estimated average kappa coefficient of Test 1 is 0.4835519 and its standard error is 0.06307636
Estimated average kappa coefficient of Test 2 is 0.2967101 and its standard error is 0.05486579
Test Statistic for the hypothesis test is 2.746314 and the p-value is 0.006026899
95% confidence interval for the difference between the two average kappa coefficients is: 0.05349828; 0.3201853

COMPARISON OF AVERAGE KAPPA COEFFICIENTS FOR L > L′ (0.5 < c < 1)
Variance-covariance matrix:

Average kappa12 Average kappa22

Average kappa12 0.007956845 0.002206378
Average kappa22 0.002102579 0.006436081

Estimated average kappa coefficient of Test 1 is 0.5951878 and its standard error is 0.08920115
Estimated average kappa coefficient of Test 2 is 0.5011507 and its standard error is 0.08022519
Test Statistic for the hypothesis test is 0.9413048 and the p-value is 0.3465487
95% confidence interval for the difference between the two average kappa coefficients is: −0.1017649; 0.2898391

If the clinician considers that false negatives are more important than false posi-
tives (L > L′ and 0.5 < c ≤ 1), then the estimates of the average kappa coefficients
are κ̂12 ≈ 0.60 and κ̂22 ≈ 0.50, and the estimates of the variances and covariance are
V̂ar(κ̂12) ≈ 0.0080, V̂ar(κ̂22) ≈ 0.0064 and Ĉov(κ̂12, κ̂22) ≈ 0.0022. The value of the test
statistic for H0:κ12 = κ22 is z2 = 0.9413 (two sided p-value ≈ 0.3465). Therefore, with
α = 5% the equality of both average kappa coefficients is not rejected. With α = 5%,
we cannot reject that the average kappa coefficient of the NBDT and CT are equal, and
therefore we cannot reject that the average beyond-chance agreement between the NBDT
and the clinical assessment is equal to the average beyond-chance agreement between the
CT and clinical assessment (95% CI for the difference: −0.1018 to 0.2898).



Mathematics 2021, 9, 2834 19 of 24

6. Discussion and Conclusions

The average kappa coefficient of a BDT is a measure of average beyond-chance
agreement between the BDT and the GS, and solves the problem of assigning values to the
weighting index of the weighted kappa coefficient. The average kappa coefficient depends
solely on the sensitivity and specificity of BDT and the prevalence of the disease, and is
therefore a parameter that can be used to evaluate the efficacy of a BDT and to compare the
efficacy of two (or more) BDTs. In this manuscript, the comparison of the average kappa
coefficients of two BDTs is studied when the GS is not applied to all individuals in a sample.
In this situation, the disease state is unknown for a subset of individuals and therefore the
missing information is the true disease status for these individuals. The applied methods
require the assumption that the missing data is MAR. This assumption is widely used
in these types of studies, and establishes that the probability of verifying an individual
with GS depends solely on the results of the two BDTs. This situation also corresponds to
two-phase studies: in the first phase the two BDTs are applied to all individuals and in the
second phase the GS is applied only to a subset of them depending on the results of the
two BDTs in the previous phase.

Two hypothesis tests have been studied to compare the two average kappa coefficients:
a first hypothesis test when false positives are more important than false negatives and
another when false negatives are more important than false positives. For example, the
first hypothesis test is applied when the two BDTs are used as confirmatory tests before a
risk treatment, and the second hypothesis test is applied when the two BDTs are used as
screening tests. Both hypothesis tests have been solved by applying computational methods
for the estimation of parameters with missing data: the EM algorithm and the SEM. The
EM algorithm allows us to estimate the parameters. The SEM algorithm, which is based on
the calculations of the EM algorithm, allows us to estimate the variance-covariance matrix
of the parameter vector. The EM algorithm requires assuming the MAR assumption. If
the MAR assumption cannot be assumed, then the method proposed in this manuscript
cannot be applied. For example, if the probability of verifying with the GS also depends on
the disease status, then the MAR assumption is not verified. Future research will focus on
studying, through a sensitivity analysis, the behavior of the hypothesis tests applying the
EM-SEM algorithms when the MAR assumption is not verified.

Simulation experiments have been carried out to study the size and power of each
hypothesis test. The results have shown that both hypothesis tests are conservative when
the sample size is small or moderate, and that the type I error fluctuates around the nominal
error when the sample size is large or very large. Regarding the power of each hypothesis
test, in general terms, a moderate or large sample is necessary (depending on the verification
probabilities, covariances, and difference between the values of the two average kappa
coefficients) for the power of each hypothesis test to be large. Consequently, the two
hypothesis tests have an asymptotic behavior that allows them to be applied in practice.

A function has been written in R to solve the hypothesis tests of comparison of the two
average kappa coefficients applying the EM and SEM algorithms. This function allows the
researcher to solve the problem in a simple and fast way, providing all the necessary results
to carry out a study. This function is available as Supplemental Material to this manuscript.

Hypothesis tests can also be solved by applying the maximum likelihood method to
obtain the estimates of the average kappa coefficients and the delta method to estimate
the variances-covariances. For this, the methodology applied in the manuscript of Roldán-
Nofuentes and Luna [12] is used. However, the maximum likelihood method cannot be
applied when some frequency sij (or rij) is equal to zero (since the variances-covariances
cannot be estimated). In this situation, the EM and SEM algorithms can be applied. There-
fore, this is the advantage of EM-SEM algorithms over the maximum likelihood method.

Another alternative computational method to EM-SEM algorithms is multiple impu-
tation [25–27]. Multiple imputation is a computational method used to solve problems
with missing data. Appendix B describes in detail the multiple imputation by chained
equations [28] used to solve the hypothesis test for the comparison of the two average
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kappa coefficients. We have carried out simulation experiments to study the asymptotic be-
haviour of the hypothesis tests 4 and 5 by applying multiple imputation. The experiments
have been designed similarly to those performed in Section 4. The experiments have also
been carried out with R and the “mice” library [29] has been used. For multiple imputation,
10 complete data sets have been generated and 100 cycles have been performed. Table 9
shows the results obtained for some of the scenarios given in Tables 3–6. The type I error
of the hypothesis test solved by applying multiple imputation is slightly less than that of
the hypothesis test solved by applying the EM-SEM algorithms, both having very similar
asymptotic behavior. Regarding the power of the test, this is also a little lower than the
power of the test solved by applying the EM-SEM algorithms, also having a very similar
asymptotic behavior. In very general terms, although the differences between multiple
imputation and EM-SEM algorithms are not very important, the hypothesis tests solved
with multiple imputation are slightly more conservative (and also slightly less powerful)
than the hypothesis tests solved with EM-SEM algorithms. Multiple imputation has the
disadvantage that it cannot be applied when some frequency sij (or rij) is equal to zero,
since logistic regression models cannot be applied to impute missing data.

Table 9. Type I errors (in%) and powers (in%) applying multiple imputation.

Type I error when L′ > L (0 ≤ c < 0.5)

κ11 = κ21 = 0.2
κ1(0) = 0.16 κ1(1) = 0.67 κ2(0) = 0.16 κ2(1) = 0.67 p = 10%

λ11 = 0.50, λ10 = λ01 = 0.30, λ00 = 0.05 λ11 = 0.95, λ10 = λ01 = 0.60, λ00 = 0.25

n α1 = 1.14 α0 = 2.37 α1 = 1.24 α0 = 3.47 α1 = 1.14 α0 = 2.37 α1 = 1.24 α0 = 3.47

50 0 0 0 0
100 0 0 0.10 0
200 0.05 0 0.55 0
500 0.95 0.05 2.15 0.05
1000 1.20 0.15 3.05 0.90
2000 2.95 0.40 3.80 1.85

Power when L′ > L (0 ≤ c < 0.5)

κ11 = 0.4 κ21 = 0.2
κ1(0) = 0.34 κ1(1) = 0.78 κ2(0) = 0.16 κ2(1) = 0.67 p = 10%

λ11 = 0.50, λ10 = λ01 = 0.30, λ00 = 0.05 λ11 = 0.95, λ10 = λ01 = 0.60, λ00 = 0.25

n α1 = 1.11 α0 = 2.37 α1 = 1.19 α0 = 3.47 α1 = 1.11 α0 = 2.37 α1 = 1.19 α0 = 3.47

50 0.10 0.01 0.55 0.85
100 2.70 3.05 14.90 17.35
200 24.85 34.25 61.80 84.05
500 80.05 95.95 97.75 100
1000 98.20 99.15 100 100
2000 100 100 100 100

Type I error when L > L′ (0.5 < c ≤ 1)

κ12 = κ22 = 0.4
κ1(0) = 0.16 κ1(1) = 0.67 κ2(0) = 0.16 κ2(1) = 0.67 p = 10%

λ11 = 0.50, λ10 = λ01 = 0.30, λ00 = 0.05 λ11 = 0.95, λ10 = λ01 = 0.60, λ00 = 0.25

n α1 = 1.14 α0 = 2.37 α1 = 1.26 α0 = 3.47 α1 = 1.14 α0 = 2.37 α1 = 1.26 α0 = 3.47

50 0 0 0 0
100 0 0 0.10 0
200 0.15 0.05 0.55 0.25
500 0.65 0.45 2.85 1.95
1000 1.45 1.05 3.25 2.05
2000 3.45 2.40 3.90 3.10

Type I error when L > L′ (0.5 < c ≤ 1)

κ12 = 0.6 κ22 = 0.4
κ1(0) = 0.46 κ1(1) = 0.66 κ2(0) = 0.27 κ2(1) = 0.47 p = 50%

λ11 = 0.50, λ10 = λ01 = 0.30, λ00 = 0.05 λ11 = 0.95, λ10 = λ01 = 0.60, λ00 = 0.25

n α1 = 1.22 α0 = 2.10 α1 = 1.39 α0 = 2.99 α1 = 1.22 α0 = 2.10 α1 = 1.39 α0 = 2.99

50 0.05 0.01 1.25 2.05
100 4.40 3.35 14.35 26.85
200 23.80 26.80 47.25 75.80
500 62.75 84.95 88.15 99.10
1000 86.85 94.45 98.35 100
2000 99.70 100 100 100
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Future research should also focus on comparing the two average kappa coefficients
through confidence intervals and on extending the hypothesis tests to the situation in
which the average kappa coefficients of more than two BDTs are compared. In the first case,
multiple imputation can be applied together with confidence intervals for the difference
or ratio of two average kappa coefficients, adapting the intervals studied by Roldán-
Nofuentes and Regad [30,31]. For the second case, an adaptation of the method used by
Regad and Roldán-Nofuentes [32] and Roldán-Nofuentes and Regad [33] can be a solution
to the problem.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/math9212834/s1. The “cakcmd” function is a function written in R to compare the average
kappa coefficients of two binary diagnostic tests in the presence of missing data.
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Appendix A

For simplicity, only κ1(0) is considered. The ML estimator of κ1(0) in the presence of
missing data is [12]

κ̂1(0) =

1
∑

j=0

n1js1j
s1j+r1j

− n10+n11
n

1
∑

i,j=0

nijsij
sij+rij

1
∑

i,j=0

nijrij
sij+rij

,

From Equation (9) it is obtained that

φ̂ij =
sij + yij

n
and ϕ̂ij =

rij + uij − yij

n
,

In order to demonstrate that the EM algorithm converges to the ML estimates, we
are going to follow the same steps as Little and Rubin [27]. With the EM algorithm, the
estimator of κ1(0) is

κ̂
(m+1)
1 (0) =

1
∑

j=0

(
s1j + y(m+1)

1j

)
×

1
∑

j=0

(
r0j + u0j − y(m+1)

0j

)
−

1
∑

j=0

(
s0j + y(m+1)

0j

)
×

1
∑

j=0

(
r1j + u1j − y(m+1)

1j

)
(
r + u− y(m+1)

)
(n10 + n11)

.

Then, taking φ̂
(m)
ij = φ̂

(m+1)
ij = φ̂ij =

s1j+y1j
n , ϕ̂

(m)
ij = ϕ̂

(m+1)
ij = ϕ̂ij =

rij+cij−yij
n and

y(m)
ij = y(m+1)

ij = yij = uij
φ̂ij

φ̂ij+ϕ̂ij
, it is obtained that y(m)

ij = y(m+1)
ij = yij =

sijuij
sij+rij

, with

i, j = 0, 1. Substituting in the expression for κ̂
(m+1)
1 (0) and performing algebraic operations,

it is obtained that

κ̂
(m+1)
1 (0) =

1
∑

j=0

n1js1j
s1j+r1j

− n10+n11
n

1
∑

i,j=0

nijsij
sij+rij

1
∑

i,j=0

nijrij
sij+rij

= κ̂1(0)
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Therefore, κ̂
(m+1)
1 (0) converges to κ̂1(0). The convergence of the other estimates

obtained by applying the EM algorithm is demonstrated in a similar way.

Appendix B

Multiple imputation [25–27] is another computational method used to solve problems
with missing data. Multiple imputation consists of constructing K ≥ 2 sets of complete data
obtained replacing the missing data with the sets imputed independently. Parameters are
estimated from each of the K complete datasets, obtaining K estimates of each parameter,
and then the K estimates of each parameter are combined in an appropriate way, obtaining
a global estimate of each parameter and its variance. From these global estimates it is
possible to obtain confidence intervals for each parameter and also to solve hypothesis tests.

In this manuscript, the multiple imputation by chained equations has been used for
the imputation of the missing data. Multiple imputation by chained equations (MICE), also
known as fully conditional specification or sequential regression multivariate imputation,
requires us to assume that the missing data are MAR. The MICE method is described in
detail in the work by White et al. [28]. In the problem studied here there are three random
binary variables: T1, T2 and D. Variables T1 and T2 have no missing data, because the two
BDTs have been applied to all the individuals in the sample. Nevertheless, variable D is
missing for a subset of individuals, since the GS has not been applied to all the individuals
in the sample. First, all missing values are filled in at random and then variable D is
regressed on the variables T1 and T2 through a logistic regression [28]. Next, the missing
values in variable D (disease status for individuals non-verified with the GS) are replaced
by simulated draws from the posterior predictive distribution of variable D [28]. This
process, called a cycle, is repeated a determined number of times to stabilize the results [28].
Finally a set of imputed data is obtained. Therefore, from the 3× 4 table (Table 2) K ≥ 2
2× 4 tables are imputed, and from each one of these 2× 4 tables the estimates of the
average kappa coefficients and their variances-covariances are obtained. Frequencies of the
kth 2× 4 table are a(k)ij for individuals with the disease and b(k)ij for individuals without the
disease, with i, j = 0, 1 and k = 1, . . . , K. Therefore, in each imputed 2× 4 table, the average
kappa coefficients are estimated by applying the equations deduced by Roldán-Nofuentes
and Olvera-Porcel [6], i.e.,:

κ̂
(k)
11 =

2
{(

a(k)10 +a(k)11

)(
b(k)00 +b(k)01

)
−
(
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)}
n
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∑
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) × ln

 1
2
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∑
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+ 1
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if L′ < L (0.5 < c ≤ 1), and where

a(k) =
1
∑

i,j=0
a(k)ij , b(k) =

1
∑

i,j=0
b(k)ij , n(k)

ij = a(k)ij + b(k)ij , p̂(k) = a(k)
n ,

Ŝe(k)1 =
a(k)10 +a(k)11

a(k)
, Ŝp(k)1 =

b(k)01 +b(k)00
b(k)

, Ŝe(k)2 =
a(k)01 +a(k)11

a(k)
, Ŝp(k)2 =

b(k)10 +b(k)00
b(k)

and
Q̂(k)

h = Ŝe(k)h + Ŝp(k)h − 1.

The overall estimates of the average kappa coefficients and their variances-covariances
are then calculated using Rubin’s rules [25]. Overall estimates of the average kappa
coefficients are

κ11 =
1
K

K

∑
k=1

κ̂
(k)
11 and κ21 =

1
K

K

∑
k=1

κ̂
(k)
21

and the overall estimates of the difference is

κ1 = κ11 − κ21 =
1
K

K

∑
k=1

κ̂
(k)
1 and κ2 = κ12 − κ22 =

1
K

K

∑
k=1

κ̂
(k)
2

where κ̂
(k)
1 = κ̂

(k)
11 − κ̂

(k)
21 and κ̂

(k)
2 = κ̂

(k)
12 − κ̂

(k)
22 . The variance of κ1 is V̂ar(κ1) = Var(κ̂1) +

1
K+1 B1, where V̂ar(κ̂1) = 1

K

K
∑

k=1
Var

(
κ̂
(k)
11 − κ̂

(k)
21

)
is the within imputation variance (com-

plete equation of this variance can be seen in the article by Roldán-Nofuentes and Olvera-

Porcel [6]) and B1 = 1
K−1

K
∑

k=1

(
κ̂
(k)
1 − κ1

)2
is the between imputation variance (the variance

of the complete data point estimates) [25]. Similarly, V̂ar(κ2) = Var(κ̂2) +
1

K+1 B2, where

V̂ar(κ̂2) = 1
K

K
∑

k=1
Var

(
κ̂
(k)
12 − κ̂

(k)
22

)
and B2 = 1

K−1

K
∑

k=1

(
κ̂
(k)
2 − κ2

)2
. Finally, the test statistic

for the hypothesis test

H0 : κ1i = κ2i vs H1 : κ1i 6= κ2i, i = 1, 2,

is
ti =

κi√
V̂ar(κi)

whose distribution is [25] a Student t-distribution with vi = (K− 1)
(

1 + K
K+1

V̂ar(κi)
Bi

)
degrees of freedom. With respect to the confidence intervals for the difference of the two
average kappa coefficients, their expressions are

κ1i − κ2i ∈ κi ± tvi ,1−α/2

√
V̂ar(κi)

where tvi ,1−α/2 is the 100× (1− α/2)th percentile of the Student t-distribution with vi
degrees of freedom.
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