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Abstract: In the area of network analysis, centrality metrics play an important role in defining the
“most important” actors in a social network. However, nowadays, most types of networks are
dynamic, meaning their topology changes over time. The connection weights and the strengths
of social links between nodes are an important concept in a social network. The new centrality
measures are proposed for weighted networks, which relies on a time-ordered weighted graph model,
generalized temporal degree and closeness centrality. Furthermore, two measures—Temporal Degree-
Degree and Temporal Closeness-Closeness—are employed to better understand the significance of
nodes in weighted dynamic networks. Our study is caried out according to real dynamic weighted
networks dataset of a university-based karate club. Through extensive experiments and discussions
of the proposed metrics, our analysis proves that there is an effectiveness on the impact of each node
throughout social networks.

Keywords: social network analysis; time-ordered weighted graph; centrality measures; temporal de-
gree centrality; temporal closeness centrality; temporal degree-degree; temporal closeness-closeness

1. Introduction

The research of centrality metrics dates to the 1940s and has been carried out in a
variety of fields, including geography [1], psychology [2], and others. Social networks have
recently been gaining increasing interest from researchers. With the growth of the popular-
ity of complex social networks, many approaches have been developed to investigate and
analyze these networks [3,4]. Analysis of the Social Network (SNA) [3,5–9] is an important
method for the study of relationships between individuals. This includes research on social
systems, social roles, role analysis, and a variety of other topics. One of the most difficult
difficulties in the study of social networks is identifying the most important members of
the network. The metric of centrality is used to determine the importance of a node’s
placement in a network [10–13]. High centrality ratings define actors in networks with the
most structural meaning, and these individuals are expected to play a prominent part in
both simulated and real-world behaviors. Most models assume that networks are static,
and that they are represented as a graph of nodes connected by edges [14]. The size of
the gigantic component, which represents the size of the largest network component in a
particular network following attacks, is often used in network science investigations. As a
result, the size of the huge component as a measure of network resilience predicts the extent
of fault tolerance in a given network based on the number of topological connectivity [15].

In reality, however, several networks are dynamic. New nodes are added to the graph,
existing nodes are deleted, and edges appear and disappear. While various static centrality
metrics have been established and are widely utilized for SNA, dynamic measures are
a relatively new research area. Several extensions to the dynamic case of current static
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centrality metrics have been introduced in recent years. Many marketing apps tried to take
advantage of social networks or media by targeting populations with simple centrality
metrics like degrees, betweenness, or proximity [16]. Wan et al. introduce various existing
centrality metrics and discuss their applicability’s in various networks. In addition, a large-
scale simulation study is conducted to show and examine the network resilience of focused
attacks using the surveyed centrality metrics in four different network topologies [17].

Tabirca et al. [18] proposed an algorithm depended on an adapted computation to
dynamic shortest paths to calculate certain dynamic indices (dynamic graph, dynamic
closeness, dynamic betweenness and dynamic stress). By depicting the network as a time
series, D. Braha and Y. Bayram [19] show how degree centrality evolves. Lalou et al. [20]
discussed new research that has addressed the difficulty of finding essential nodes in a
network. The focus of this research was on theoretical complexity, exact solution algorithms
(rather than centrality measurements), approximation strategies, and heuristic approaches.
The authors demonstrated novel complexity results of algorithms that were enhanced
based on interactions between variations. Federico et al. [21] established a new centrality
metric termed change centrality, which evaluates how central a node is in terms of network
changes. Until recently, the models and analytical methods used to characterize dynamic
network behavior were constrained. It is simple and common to examine static network
snapshots independently and use the average attributes of all snapshots, for example, a
feasible technique to quantify the topological significance of a node over time is to use
the average value of all static snapshots on the node’s centrality. Such dynamic analysis
is limited, however, because temporal pathways that traverse many temporal snapshots
are omitted. Pathways between nodes can be created in dynamic graphs by sewing
partial paths between temporal snapshots. Tang et al. [22] proposed temporal centrality
measures based on temporal routes in order to effectively quantify the importance of a
node in a complex network. Furthermore, Kim and Anderson [23] enhanced the Tang idea
by introducing a new model termed a time-ordered graph that may convert a dynamic
network to a static network with directed flows. The temporal description for the centrality
metrics of degree, betweenness and closeness according to that model is also provided [23].
In several networks, the links are not just binary entities, whether present, yet have linked
weights that log their relative strengths to each other.

Weights are assigned to ties between nodes in weighted networks. Ties frequently
have an inherent strength associated with them that distinguishes them from one another.
Weights have been assigned to tie strength. For weighted networks, a few centrality
measures have been developed, such as those in [24–26]. While many social networks are
dynamic and weighted, this paper explains the meaning of temporal degree, temporal
closeness and temporal degree-degree centrality for such networks, there is a proposal
for a new centrality measure (temporary Closeness-closeness centrality) to have a better
approach understanding of the significance of nodes in weighted dynamic networks.

2. Related Work

The purpose of network centrality diagnostics is to determine the relevance of nodes.
The meaning of a node may have depending on the application. Different definitions
have been proposed, and as a result, several metrics of network centrality, such as degree,
closeness, and betweenness centrality [5], have been presented. The number of links
occurring upon a node is characterized as degree centrality, which focuses on the level
of communication activity (i.e., the number of ties that a node has). The degree can be
expressed in terms of a node’s immediate danger of catching something that is passing
over the network (like a virus, or information). The formal definition of a node’s degree
centrality v is

cv(v) =
deg(v)
N − 1

. (1)

where N is the total number of nodes in the network and deg(v) is the number of its
linkages. Closeness Centrality believes that nodes with a short distance to other nodes can
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spread information via the network very effectively. The centrality of a node’s proximity v
can be formalized as

cc(v) =
N − 1

∑i∗u d(u, v)
(2)

where d(u,v) refers to the shortest-path distance between actors v and u. Although the using
time-ordered weighted graph in this paper, we can often find no temporal path from v to u,
the distance between v and u is ∞. Therefore, the distances are inverse after summation,
according to Equation (2), and the summation of the infinite number is infinite. Opshal [27]
proposed the closeness centrality as the sum of inverse distances to all other nodes instead
of the inverse of the sum of distances to all other nodes because the limit of a number
divided by infinity equals zero:

cc(v) =
∑M

1
d(u,v)

N − 1
(3)

For u,v weighted networks, where edges are either present or missing and have no
weight attached, many centrality measures [10–12] have been implemented. Designing
centrality measures for weighted networks whose weights convey information has become
increasingly important. Barrat et al. [25] added degree centrality to weighted networks. The
weights related to the edges connected to a vertex are added together to form a total. Opsahl
et al. [28] have proposed a new generation of vertex centrality. Weighted network measures
take into account both edge weight and the number of vertex-associated edges. Further-
more, Abbasi and Hossain [29] presented new hybrid centrality measures (Degree-Degree,
Degree-Closeness, and Degree-Betweenness) that combine existing measures (Degree,
Closeness, and Betweenness). A generalized set of weighted network measurements has
also been proposed [29]. Tang et al. [22] proposed temporal centrality measures based on
temporal routes to efficiently assess the importance of a node in a dynamic network, as
many networks are dynamic in that their topology changes over time. In addition, Kim
and Anderson [23] expanded on Tang’s concept by introducing a new time-ordered graph
model. According to that paradigm, the temporal definitions for degree, betweenness,
and closeness centrality metrics are also provided [23]. A. Meligy et al. [30] refined Kim’s
model so that it could be applied to weighted networks properly; this model is known as
the time-ordered weighted graph. While many social networks are dynamic, this research
uses a time-ordered weighted graph model to suggest a generalized definition of tempo-
ral degree and temporal closeness for weighted networks. For dynamic networks, this
approach is used to improve the Degree-Degree measure [29] (Temporal Degree-Degree).
Finally, a new centrality measure (Temporal Closeness-Closeness) is developed to improve
the closeness centrality measure’s outcomes. The dynamic weighted network and the
time-ordered weighted graph are described in Sections 3 and 4. Then, in Section 5, we
present our proposed measures.

3. Dynamic Weighted Network

A dynamic network is one in which the topology changes over time as edges are
added or removed. Consider the time during a network is finite from tmin = 0 to tmax = T.
A dynamic weighted network GG

0, T = (V, E0,T , W) on a time interval [0, T] includes a
set of vertices V, a set of edge weights W, and a set of temporal edges E0,T . The temporal
edge (u,v) ∈ E0,T and its corresponding weight wuv exist between vertices u and v on [i,j]
such that i ≤ tmax, j ≥ tmin. A sequence of snapshot is used to represent dynamic networks,
where for each snapshot consider ∆t as time interval (size of snapshot). A dynamic network
can be represented as a series of graphs Gtmin , Gtmin+∆t . . . , Gtmax . Then, Gt represents the
aggregated graph with v, w, and Et where v is a set of vertices, w is a set of weights, and
Et is a set of edges, where an edge with its weight wuv exists in Gt only if a temporal edge
(u, v) ∈ E0,T exists between vertices u and v on a time interval [i,j]. Consider the following
example at tmin = 0, tmax=3 and ∆t = 1, Table 1 shows how a dynamic network with a set of
temporal edges and weights may be represented as an aggregated graph with all edges
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aggregated into a single graph, Gt as in Figure 1a, and the series of static networks, G1, G2,
and G3 as in Figure 1b.

Table 1. Example of dynamic weighted network edges.

Temporal Edge Time Interval Edge Weight

(B,D) [1,1] 1
(A,B), (C,D) [1,2] 3,1 respectively
(B,C), (D,E) [2,3] 5,3 respectively

(C,E) [3,3] 2
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Figure 1. Sequence of time windows with a single aggregated dynamic graph that clarifies the
interaction between nodes within three snapshots. (a) Aggregated graph; (b) Time varying graph.

Aggregate over all edges, as shown in Figure 1a, loses a lot of temporal information
that might assist describe the dynamic network structure, such the frequency of events
and the time gap between them. It is difficult to directly analyze the temporal aspects of
a dynamic network, as demonstrated in Figure 1b by a representation of the time series
derived from network snapshots. Therefore, we may assume that all temporal information
cannot be represented by time series representation.

4. Time-Ordered Weighted Graph

To get all network connection information, a time-ordered weighted graph is formed
as illustrated in Figure 2. There is more information on the events mentioned in Table 1 in
this graph. Let Time-ordered weighted graph G = (V,E,W) is a directed weighted graph
with a vertex vt for each v ∈ V and t ∈ {0, 1, . . . , n}; let edges from ut−1 to vt and from vv−1
to ut with the weights wut−1vt, wvt−1ut associated to those edges, respectively. It has edges
from vt−1 to vt for all v ∈ V and t ∈ {0, 1, . . . , n}. The weights in this paper are considered
as natural numbers. The definition for the proposed measures for a dynamic weighted
network is displayed based on G = (V, E, W).
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5. Proposed Centrality Measures

Let us consider a time-ordered weighted graph with varying time, as illustrated
in Figure 1b, the definitions of Temporal degree, Temporal closeness, Temporal Degree-
Degree, and Temporal Closeness- Closeness centrality are presented with the results of
these metrics on the illustrative example.

6. Temporal Degree Centrality

Barrat et al. [25] defined degree centrality for weighted static networks as the total of
the weights associated to the edges connected to a vertex, referred to as node strength. This
measure is expressed as follows:

Cw
D =

N

∑
u

wvu (4)

Node strength is a blunt metric, according to Opsahl et al. [28], as it only considers a
node’s overall degree of network participation, not the number of other nodes to which it is
connected. In order to describe the degree centrality as the product of the number of nodes
to which a node is attached, both the node degree and its strength were combined, and the
average weight of these nodes was adjusted by a tuning parameter, a, which expresses the
value of the number of ties in relation to the tie weights:

Cwa
D (v) = kv ×

(
sv

kv

)
= k1−a

v × sa
v (5)

where kv is the number of direct neighbors of v, sv is the node strength and a is a tuning
parameter with a positive value. The value of a can be illustrated as shown in Table 2.

Table 2. Different values of a is illustrated.

Value for a Measure Outcome

a = 0 equal to number of nodes in connection
a = 1 equal the node’s strength

0 < a < 1 a high degree is taken as favorable
1 < a a low degree is favorable
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a = 0.5 is chosen. In addition, Equation (5) is generalized for the directed networks
by Opshal et al. [28] such that the in-degree and out-degree centrality can be formalized,
respectively, as follows:

Cwa
D (v) = kin

v ×
(

sin
v

kin
v

)a

(6)

Cwa
D out(v) = kout

v ×
(

sout
v

kout
v

)a

(7)

The temporal degree TDwa (v) for a node v ∈ V in a weighted network on a [i,j] is the
summation of the node’s degree centrality at each time step, such that 0 ≤ i ≤ i ≤ n. The
node’s degree centrality at each time step is the total number of outbound edges from (or
inbound edges to) v; disregarding the self-edges from vt−1 to vt; multiplied by the weight
associated to the edges adjusted by α, for all t ∈ {i + 1, . . . j}. Then, the temporal degree
centrality of a node v on [i,j] can be formalized as follows:

TDwu(v) =
i

∑
i=1

(deg(vt)
(1−u) × wa) (8)

where deg (vt) is the number of out-links (or in-links) of v at each time step and w is the
total weight attached to the outgoing (or incoming) ties of v at each time step.

7. Temporal Closeness Centrality

The centrality of closeness assumes that nodes with a short distance to other nodes
can disperse knowledge across the network very productively. The closeness centrality
measure depends on the length of the shortest paths among nodes in the network. The
shortest path length in binary networks is the shortest number of connections between
two nodes, either directly or indirectly. Several attempts have been made to find the
shortest paths in weighted networks. Newman [26] and Brandes [31] proposed the distance
between two nodes as the minimum number of the sum of the inverted weights as follows:

dw(u, v) =
(

1
wvh

+ . . . +
1

wuh

)
(9)

where h are intermediary nodes on paths between node v and u. The authors have found
that the algorithms of Newman and Brand, when used to find the shortest distance between
two nodes, are not affected by the number of nodes on the shortest path between two
nodes. By considering the number of intermediate nodes, Opshal et al. [28] extended the
shortest path algorithms and specified the length of the shortest path between two nodes
as follows:

dwa(u, v) = (
1

(wvh)
a + . . . +

1
(wuh)

a ) (10)

Kim and Anderson [23] defined the temporal shortest path length, for binary dynamic
networks, according to the time-ordered graph, from node v to node u on [i, j] where
0 ≤ i ≤ j ≤ n as d(v,u) = min i < l ≤ δ (v,u), where d(v,u) is the shortest path distance from v
to u in a static graph. The definition of Opshal’s shortest distance is extended in this paper
to the time-ordered weighted graph to describe the temporal shortest path distance for
weighted networks between two nodes over a time on [i,j] as

dwa(u, v) =
(

1
(wvh)

a + . . . +
1

(wuh)
a

)
(11)

The proposed temporal distance (Equation (9)) is used to define the closeness centrality
of a node in dynamic weighted network. Temporal closeness centrality TCwa(v) of a node v
in a weighted network on [i,j] where 0 ≤ i ≤ j ≤ n is the sum of inversed temporal shortest
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path distances to all other nodes in v for each time interval in {[t,j]: i ≤ t < j}. Then, the
temporal closeness centrality of a node v on the interval [i,j] is defined as follows:

TCwa(v) = ∑i≤t≤j ∑
u∈V

1
dwa(v, u)

(12)

If there is no temporal path from v to u on [t,j], dwa(v,u) is defined as ∞. Also, we
assume that the weight of the self-edges is 1.

8. Temporal Degree-Degree

Abbasi and Hossain [29] have expanded the traditional measures of centrality and the
implementation of modern hybrid measures to represent the importance of a node through
the importance of its direct neighbors in binary and weighted networks. Degree-Degree
centrality is one of these hybrid steps, which demonstrates the actors who are related to
the actors who are better associated. Therefore, it reveals an actor’s success centered on
the popularity of his immediate neighbors. Degree-Degree is applied to be suitable for
dynamic networks in this paper and is called Temporal Degree-Degree. First, for each node,
the Temporal Degree TDwa is computed. Then, the hybrid centrality measure of a node
is determined by summing the degree multiplied by the weight of the edge between the
node of each direct neighbor that defines as follows:

TDDw(v) =
j

∑
t=1

∑
u∈V

(Cwa
D (ut)·w(vt=1, ut )) (13)

where u is direct neighbor of v and w (vt−1, ut) is the weight of the edge between vt−1
and ut.

9. Temporal Closeness-Closeness

Closeness centrality is defined as the efficiency of an actor in the spread of information
throughout the network. If an actor is directly linked to actors with high values of central-
ity closeness, then this actor will have more accessibility and effectiveness in spreading
information. Then, the main issue is how to determine the actor who is better close to all
other actors. A new hybrid centrality measure based on closeness centrality, Temporal
Closeness-Closeness centrality, is proposed in this paper. First, the temporal closeness cen-
trality for all direct neighbors is computed to calculate the Temporal Closeness-Closeness
measure. Temporal Closeness-Closeness (TCCw(v)) is defined as follows:

TCCw(v) = ∑
u∈V

∑
1≤t<j

1
dwa(v, u)

·TCwa(u) (14)

10. Results and Discussion

The significance of the proposed measures on real dynamic weighted networks is
presented in this section. A dataset [32]—a university-based karate club—is used to test the
proposed measure. Wayne Zachary gathered this database from members of a university
karate group. From 1970 to 1972, the karate club was monitored for three years. The
club had between 50 and 100 members during the observation period, and its activities
included social events (parties, dances, banquets, etc.) as well as regularly scheduled karate
instruction, as indicated in Figure 3.



Mathematics 2021, 9, 2850 8 of 14

Mathematics 2021, 9, x FOR PEER REVIEW 8 of 14 
 

 

included social events (parties, dances, banquets, etc.) as well as regularly scheduled ka-
rate instruction, as indicated in Figure 3. 

 
Figure 3. Social network of relationships in the karate club. 

In the graph, there are just 34 persons. The group had over 60 members at the time, 
and outside of meetings and classes, none of the 26 members who were not represented 
communicated with other club members. These people are not included because they 
would only be disconnected points in the graph. An edge appears in this graph if two 
entities were repeatedly seen interacting outs. However, the aim of this dissertation is to 
suggest centrality measures for weighted dynamic networks. It means we’ll have to 
change this dataset to meet our objectives. Therefore, using the SocNetV 1.8 program, we 
built a dynamic network out of this dataset by taking two more random snapshots as 
shown in Figure 4. The number on the edge shows the strength of the corresponding edge, 
namely the number of interactions between two actors. 

 
                      (a) 

Figure 3. Social network of relationships in the karate club.

In the graph, there are just 34 persons. The group had over 60 members at the time,
and outside of meetings and classes, none of the 26 members who were not represented
communicated with other club members. These people are not included because they
would only be disconnected points in the graph. An edge appears in this graph if two
entities were repeatedly seen interacting outs. However, the aim of this dissertation is to
suggest centrality measures for weighted dynamic networks. It means we’ll have to change
this dataset to meet our objectives. Therefore, using the SocNetV 1.8 program, we built a
dynamic network out of this dataset by taking two more random snapshots as shown in
Figure 4. The number on the edge shows the strength of the corresponding edge, namely
the number of interactions between two actors.

On this dataset, the Temporal Degree (TD) centrality metric is used to investigate
the actor with the most friends and the highest number of situations between him and
his friends. As we have mentioned in the methodology about the parameter α, if this
value is between 0 and 1, a high degree (i.e., a large number of linkages) is considered
advantageous. A low degree (i.e., a small number of connections) is preferable if it is
set above 1. In this work, we will concentrate on the nodes which have high number
of ties. Thus, we have computed the TD using α = 0.5. Table 3 ranks the 34 members
according to the temporal degree and temporal degree-degree centrality values. Looking
at the most central individuals in column 2 of Table 3, we can see that individual 34 is
the most central member as he is connected to the most people (17 members at the first
snapshot and 16 members at the second\third snapshots) and has the highest number
of situations between his friends (48 situations at the first snapshot and 47 situations at
the second\third snapshots). Furthermore, Individual 1 comes in second place as he has
16 friends with 42 situations at first snapshot, 16 friends with 43 situations at second
snapshot, and 13 friends with 37 situations. To give more clarification about the Temporal
Degree results, Figure 4 shows the node strength and the degree of the top five individuals
at each time step. As shown in Table 3, the rank of individual 3 changes considerably when
measuring TD and TDD. He ranks fourth when measuring TD as he has less friends, and
the number of situations he shared with others is relatively low as compared to individuals
34, 1, and 33. On the other hand, he becomes the most central one when measuring TDD as
he connects with many individuals who have high degree over time. In addition, some
individuals (like individuals 2, 14, 24, 32, 30, and 27) maintain a relatively stable ranking.
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To obtain the actor who has a short distance to other actors in the network, temporal
closeness centrality is applied. More specifically, we want to find the actor who has the
minimum number of intermediary individuals between him/her and other actors. To
achieve this goal, we have measured TCCL with α = 0.5. The ranking estimated closeness
centrality scores of all social network members are shown in Table 4 and Figure 5.
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Table 3. Temporal Degree centrality and Temporal Degree-Degree centrality of all members.

Rank Individual Number TD Individual Number TDD

1 34 83.411 3 921.0236
2 1 74.0844 34 896.116
3 33 64.0574 1 865.5355
4 3 53.943 33 861.3614
5 2 53.6788 2 788.0057
6 14 45.5513 14 781.2183
7 24 44.1881 24 697.923
8 4 35.7695 9 668.5796
9 32 33.6749 32 628.159
10 6 27.6823 4 612.6358
11 9 26.1851 31 506.3155
12 7 25.6502 28 469.126
13 30 24.5316 30 453.9031
14 31 21.9268 8 394.1019
15 28 21.6333 7 375.6863
16 26 19.4422 6 367.7755
17 25 18.7247 26 355.1395
18 8 16.1489 16 347.4907
19 17 16.1132 15 288.7119
20 29 15.5563 20 269.0651
21 20 15.1867 29 263.6679
22 5 14.6969 23 249.9422
23 11 14.6969 13 215.1224
24 13 12.0246 5 210.7565
25 16 11.225 10 199.9653
26 15 11.2235 17 186.5505
27 10 10.9348 11 186.3138
28 27 10.3923 27 178.9725
29 18 9.5206 25 172.6506
30 23 9.4868 22 171.3696
31 22 7.0711 19 152.3937
32 19 6.3132 18 149.6821
33 12 3.4641 21 95.8331
34 21 2.8284 12 78.6893
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Individual 34 has direct connection to many other actors over time. Therefore, most of
his path lengths are all very short, namely, he has the minimum number of intermediary
nodes between him and the other nodes. Thus, actor 34 has high temporal closeness
centrality. Furthermore, individual 21 has not any path between him and other individuals
at second and third snapshots. Therefore, he is the farthest one (as in second column in
Table 4 and Figure 6) because he is isolated in these snapshots. To find the actor who
has short paths to actors who have high closeness centrality, we calculated the temporal
closeness-closeness for all individual as in the fourth column of Table. Unfortunately, the
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results of TCCL does not differ significantly from the results of TCC. That is because the
topology of this network has little changed over time. Thus, the distances between actors
changed at few positions in the network.

Table 4. TCL and TCCL centrality values of all individuals.

Rank Individual Number TC Individual Number TCC

1 34 106.1934 34 65.4851
2 1 95.4326 1 59.0754
3 33 91.1215 33 58.3442
4 3 87.3446 3 57.9846
5 14 86.2297 14 56.0769
6 2 86.054 2 55.5116
7 24 81.4526 24 53.0075
8 4 73.7464 4 48.9706
9 32 73.5296 32 48.0931
10 9 69.2996 9 47.4077
11 31 64.4295 31 43.527
12 30 64.3846 30 42.6416
13 28 62.5983 28 42.397
14 6 62.4724 6 39.3179
15 7 56.0802 29 36.4985
16 29 53.8387 7 16
17 20 52.8529 20 35.4313
18 26 51.06 26 34.4055
19 8 50.4763 8 33.6287
20 10 47.5403 10 32.6459
21 25 47.1532 16 32.6001
22 16 46.5431 25 31.6699
23 15 46.0769 15 31.4502
24 17 43.9576 23 29.501
25 25 42.4557 17 29.4142
26 11 42.4119 13 28.5572
27 5 41.4289 18 28.361
28 13 41.4183 27 28.0837
29 27 41.409 11 26.9834
30 18 40.3926 5 26.7691
31 22 36.5563 19 24.4175
32 19 35.8629 22 24.1237
33 12 23.382 12 16.0608
34 21 21.321 21 13.8925
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Figure 6. Node strength and node degree of the top 5 members.

To illustrate the results of TCCL measure, we have changed the topology of this
network by creating other snapshots which have many changes. Then, we computed this
measure using these new snapshots. Table 5 shows the TCL and TCCL values for all actors
in the modified network.
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Table 5. TCL and TCCL centrality values of all individuals in the modified network.

Rank Individual Number TC Individual Number TCC

1 33 0.9107 34 0.7349
2 3 0.905 1 0.6462
3 1 0.885 33 0.6424
4 34 0.8755 3 0.6081
5 24 0.8754 14 0.5963
6 32 0.796 2 0.595
7 2 0.7735 24 0.5705
8 9 0.7662 32 0.5246
9 14 0.7329 4 0.5219
10 26 0.7188 9 0.5005
11 4 0.7085 30 0.4634
12 31 0.7002 31 0.4618
13 28 0.6932 28 0.4518
14 30 0.6900 6 0.4246
15 7 0.6654 29 0.3871
16 6 0.6387 7 0.3771
17 8 0.6331 20 0.3748
18 11 0.3696 26 0.3696
19 16 0.6193 8 0.3541
20 27 0.6192 25 0.3437
21 23 0.6184 10 0.3405
22 29 0.6168 16 0.3405
23 21 0.6115 15 0.3344
24 25 0.6000 17 0.3151
25 5 0.5919 23 0.3086
26 15 0.5614 18 0.2977
27 20 0.5415 27 0.2957
28 13 0.5234 13 0.2931
29 10 0.5178 11 0.2892
30 18 0.5170 5 0.2888
31 22 0.5145 19 0.2579
32 19 0.5133 22 0.2554
33 17 0.4465 12 0.1689
34 12 0.3971 21 0.1507

From the fourth column in Table 5, we have found that individual 34 and 1 are the top
two individuals. That is because they have shortest paths to many individuals of high TCL
values, i.e., individual 34 and 1 are the closest members to the members of high TCL values.
In order to show that individual 34 and 1 are close to more actors of high TCL, Figure 7
shows how close each of individual 34 and individual 1 to some actors (like: 33, 3, 24, 32, 2,
and 9) whose have high TCL values.
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It is obvious from Figure 7 that individual 34 is closer to actors 33, 24, 32, and 9
than individual 1, i.e., individual 34 is close to more actors whose have high TCL than
individual 3. That is because the distance between actor 34 and many actors of high TCL is
short. Therefore, individual 34 can be considered as an actor who can help in spreading
information in the network.

11. Conclusions

In this paper, a new hybrid centrality measure based on closeness centrality—Temporal
Closeness-Closeness centrality—was proposed. The temporal closeness centrality for all
direct neighbors was computed to calculate the Temporal Closeness-Closeness measure.
The measure was based on time-ordered weighted graph model with Opshal’s algorithms
for calculating degree centrality and the shortest distance in weighted networks. In a
dynamic weighted network, a metrics was used to represent a node’s popularity and
accessibility with respect to Temporal Degree, Temporal Closeness, Temporal Degree-
Degree, and Temporal Closeness-Closeness. The temporary degree-degree described the
nodes that were better connected to more nodes. Temporal closeness-closeness suggested
a node’s accessibility dependent on its direct neighbors’ accessibility. As a future work
direction, we need to develop metrics that based on closeness and degree to find new
measure such as Closeness-Degree and Degree-Closeness. More comprehensive, diverse,
larger, and real network topologies can be considered to obtain more meaningful findings to
provide generalizable guidelines for selecting useful centrality metrics in each application.
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