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Abstract: In some diseases, due to the restrictive availability of vaccines on the market (e.g., during
the early emergence of a new disease that may cause a pandemic such as COVID-19), the use of
plasma transfusion is among the available options for handling such a disease. In this study, we
developed an SEIR mathematical model of disease transmission dynamics, considering the use of
convalescent plasma transfusion (CPT). In this model, we assumed that the effect of CPT increases
patient survival or, equivalently, leads to a reduction in the length of stay during an infectious
period. We attempted to answer the question of what the effects are of different rates of CPT
applications in decreasing the number of infectives at the population level. Herein, we analyzed
the model using standard procedures in mathematical epidemiology, i.e., finding the trivial and
non-trivial equilibrium points of the system including their stability and their relation to basic and
effective reproduction numbers. We showed that, in general, the effects of the application of CPT
resulted in a lower peak of infection cases and other epidemiological measures. As a consequence,
in the presence of CPT, lowering the height of an infective peak can be regarded as an increase in
the number of remaining healthy individuals; thus, the use of CPT may decrease the burden of
COVID-19 transmission.

Keywords: SEIR ODE model; COVID-19 transmission; convalescent plasma transfusion (CPT)

1. Introduction

The WHO officially declared the COVID-19 pandemic more than a year ago, i.e., on
11 March 2020 [1]. COVID-19 is caused by the SARS-CoV-2 virus, which is thought to have
originated in Wuhan, China. At the time of writing this paper, over 247,434,286 cases have
been reported across 223 countries with a total of 5,014,576 people having died [2]. Since
the announcement of the pandemic, almost every country has made a concerted effort to
control the virus, but the number of COVID-19 infections is still climbing in many parts of
the world. Although more than a year has passed, there remain some unwanted effects of
the pandemic impacting almost every facet of human life. In terms of health, economy, and
other human aspects, COVID-19 is still considered a very dangerous new disease. After
more than a year since its first appearance, COVID-19 is still reoccurring in many parts of
the world for multiple reasons including mutation of the virus into different variants. This
is one of the reasons why most infected countries are failing in battling the disease.

Some works in the literature have shown that convalescent plasma transfusion (CPT)
is currently being used as an alternative medical treatment method for COVID-19 patients.
This treatment has been successfully implemented and has resulted, in particular, in
increasing the number of survivors from the disease and reducing the number of deaths
in moderate and severe cases. Convalescent plasma transfusion involves the use of blood
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plasma to assist COVID-19 patients with the process of recovery. Blood plasma is taken from
people who have recovered from COVID-19 and who have antibodies against COVID-19
in their blood. Since there is currently no approved treatment for COVID-19, the US
Food and Drug Administration has approved convalescent plasma therapy for people
with COVID-19 [3]. Before blood can be transfused to a patient, it must be processed to
produce plasma and antibodies through the removal of blood cells. Upon transfusion, this
plasma has the ability to boost the attack rate of the body of its recipient against the virus.
This treatment is commonly referred to as CPT [4,5]. It has been documented that many
governments have already advocated for the use of this method to combat COVID-19.
Among the governments that have implemented CPT in their countries are Indonesia, the
United States, the United Kingdom, Australia, and India [6–8].

CPT is not a new concept. For more than a century, CPT has been used as a passive
immunization strategy in the prevention and treatment of epidemic infections [9]. The first
documented use of CPT dates back to at least 1918–1920, when it was used to treat Spanish
influenza A (H1N1) pneumonia, but it could be even older [10]. This method is being used
as a potential therapy for patients infected with COVID-19 [11]. Several studies have also
shown that convalescent plasma can reduce the risk of mortality in a patient receiving
CPT treatment [12,13]. Many works have shown that the result is a reduction in a patient’s
mortality risk as well as an increase in viral clearance [14].

Despite its increasing popularity as an alternative clinical treatment for COVID-19
patients, a recent finding [14] pointed out that “most clinical studies, in particular case
reports and case series, were of poor quality. Only 1 RCT [randomized controlled trials]
was of high quality”. Hence, the authors argued that “future research is necessary to fill
the knowledge gap regarding prevention and treatment for patients with COVID-19 with
CP while other therapeutics are being developed”. Currently, medical and epidemiological
studies use not only clinical methods but include other forms or approaches such as
mathematical modeling. The other shortcomings of studies on CPT are that, to date,
the impacts of CPT applications on the population have remained unclear. The present
study had the objective of filling in this gap via a mathematical approach in the hope that
new insight could be gained regarding the effect of CPT applications, especially at the
population level.

Only a few mathematical modeling papers (e.g., [15,16]) have addressed this issue
mathematically. The authors of [16] performed preliminary work on this issue and pre-
sented mathematical models not specific to COVID-19 but that take the form of general
discrete time SIR and SEIR models [16]. In the present paper, a mathematical modeling
approach was used to answer an important question on the effect of convalescent plasma
transfusion on the reduction of COVID-19 transmission at the population level. The as-
sumptions used in the development of the model were taken from the literature, showing
that the majority of patients who received CPT recovered and had lower mortality rates
than patients who were not treated using CPT transfusion. In the developed model, we
assumed that the effect of CPT would be to increase the rate of recovery. A continuous
SEIR epidemic model was used to describe the transmission of COVID-19. The SEIR model
can appear in the form of discrete models [17,18], but we used the continuous form here,
since this is the most often used version in the literature.

2. Materials and Methods

The tool used to conduct the research was a mathematical model, i.e., a system of
differential equations representing the transmission dynamics of COVID-19. The mathe-
matical model was obtained through the process of mathematical modeling to convert the
transmission mechanisms and problems therein into mathematical concepts and mathe-
matical problems. In this case, the main concepts were a system of differential equations
and related problems on how to determine and understand solutions to the problems at
hand (the detailed method can be found in [19–21]). The following section presents the
mathematical modeling process used for the remaining discussion.
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Mathematical Model

Let us consider a human population, which, due to the circulation of COVID-19, is
divided into four sub-classes/sub-populations, namely, the susceptible (S), the exposed (E),
the infective (I), and the recovered, who are assumed to be immune (R). For all variables in
the model (i.e., X = S, E, I, R, N), the notation X(t) means the number of individuals in X
class at time t.

Suppose that the health authority responsible for the population administers a CPT
intervention to cure infected people. We may raise the question of, in this case, how and to
what extent does the presence of CPT affect the dynamics of the system. What is the main
contribution of CPT at the population level? There are several scenarios regarding how CPT
is administered depending on the real situation such as a constant versus proportional rate
of CPT administration. Herein, we analyzed the continuous SEIR model in the presence of
CPT using a standard procedure in mathematical epidemiology, i.e., finding the trivial and
non-trivial equilibrium points of the system including their stability. A schematic diagram
of disease transmission is shown in Figure 1a. The detailed route from compartment I
to compartment R is as shown in Figure 1b with various possible numerical responses
f (I(t),R(t)) as outlined in Table 1.
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Figure 1. Progression diagram of SEIR transmission with CPT effect f (I(t),R(t)) (a) and four possible
severity levels of COVID-19 infected patients (b).

The notations used in the schematic diagram above are:

β Transmission rate;
δ Transition rate from exposed class to infective class;
α Recovery rate;
µ Demographic rate (birth and death);
f (I,R) Functional form, which together with ε, acts as the CPT intervention rate.
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Table 1. Different possible scenarios of CPT implementation.

Number CPT Scenario Numerical Response f(I(t),R(t))

1 Proportional rate to infectives εI(t)
2 Proportional rate to recovered εR(t)

3 Mass action rate
(Lotka–Volterra) εI(t)R(t)

4 Constant rate ε

5 Saturating rate
(Michaelis–Menten)

εR(t)
r+R(t)

6 Maximum service limitation min(εI(t), Maxserv)
7 Maximum service limitation min(εR(t), Maxserv)
8 Maximum service limitation min(εI(t)R(t), Maxserv)
9 Maximum service limitation min( εR(t)

r+R(t) , Maxserv)

Maxserv is the maximum rate of CPT intervention that a health authority could afford.

To introduce CPT into the SEIR system, we assumed that the CPT rate was a function
of both the infective and recovered, most likely proportional to them, say with functional
form f (I(t),R(t)). We called this function a numerical response. The exact form of the
numerical response may vary depending on the assumption being used. For example,
it may only depend on I(t) when the disease has already developed and many infected
peoples have already recovered, being the source of the convalescent plasma (CP). We may
assume that the blood source of the CP is abundant. Other examples are presented in Table
1. By assuming a normalized population with N(t) = S(t) + E(t) + I(t) + R(t), the general
mathematical model of CPT in SEIR transmission is given by Equations (1)–(4):

dS
dt

= µ− βS(t)I(t)− µS(t) (1)

dE
dt

= βS(t)I(t)− δE(t)− µE(t) (2)

dI
dt

= δE(t)− αI(t)− µI(t)− f (I(t), R(t)) (3)

dR
dt

= αI(t)− µR(t) + f (I(t), R(t)) (4)

In the subsequent section, we analyze the model by showing its steady-state solutions,
their stability, and their relation to the basic reproduction number, which is central in
mathematical epidemiology studies. Furthermore, we show that the use of CPT may
decrease the burden of COVID-19 transmission such as resulting in a lower peak of infection
cases and a higher number of persons who remain susceptible. In this paper, a detailed
analysis was conducted for one of the numerical responses, i.e., the CPT rate proportional
to the number of infectives, reflecting an abundance of sources for the CP. The equilibrium
solution of the model was investigated analytically, while the transient solution was
explored numerically.

3. Results and Discussions

As mentioned earlier, herein, we considered the simplest case in which we assumed
that the availability of the CP was abundant. This might not be realistic but was used as
the first attempt to answer the abovementioned question. Once we obtained the answer,
we explored it in more realistic cases. Since we assumed that the CP was widely available,
a health authority may apply a CPT rate proportional to the number of infected people. We
did not differentiate between mild, severe, and critical patients. Thus, in the presence of
CPT, the rate of recovery due to the fact of this intervention also increased proportionally
to the number of those infected given CPT. The following section discusses the SEIR model
by considering the simplest numerical response, and other forms of numerical response
are explored in the numerical examples section.
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3.1. The SEIR Continuous Model with CPT Proportional to Infective Class

The modification of Equations (1)–(4), by considering the introduction of CPT propor-
tional to the infective class, yields the following equations:

dS
dt

= µ− βS(t)I(t)− µS(t) (5)

dE
dt

= βS(t)I(t)− δE(t)− µE(t) (6)

dI
dt

= δE(t)− αI(t)− µI(t)− εI(t) (7)

dR
dt

= αI(t)− µR(t) + εI(t) (8)

An endemic-free or non-endemic equilibrium always exists for any parameters of the
model. However, we show that there is a threshold that determines the existence of an
endemic equilibrium, say T ε, so that the endemic equilibrium exists only if T ε is above a
certain value; otherwise, an endemic equilibrium does not exist. We sum up this property
in the following theorem.

Theorem 1. In the SEIR model (Equations (5)–(8)), the following properties hold:

(a) A non-endemic equilibrium always exists, given by (S0
∗, E0

∗, I0
∗, R0

∗) = (1, 0, 0, 0);
(b) The endemic equilibrium is given by (Se

∗, Ee
∗, Ie

∗, Re
∗) with:

Se
∗ = δα+δε+δµ+µα+µε+µ2

βδ ,

Ee
∗ =

(µδ+µα+δα+δε+µε+µ2−βδ)µ

(δ+µ)βδ
,

Ie
∗ = − (µδ+µα+δα+δε+µε+µ2−βδ)µ

(δα+δε+δµ+µα+µε+µ2)β
,

Re
∗ = − (µδ+µα+δα+δε+µε+µ2−βδ)(α+ε)

(δα+δε+δµ+µα+µε+µ2)β
.

(c) There is a threshold, T ε, such that an endemic equilibrium exists only if T ε > 1; otherwise,
an endemic equilibrium does not exist.

Proof of Theorem 1. By solving Equations (5)–(8) simultaneously under steady-state condi-
tions (i.e., when all LHSs of the equations are equal to zero), the system has two equilibria,
i.e., (S0

∗, E0
∗, I0

∗, R0
∗) and (Se

∗, Ee
∗, Ie

∗, Re
∗), with (S0

∗, E0
∗, I0

∗, R0
∗) = (1, 0, 0, 0) and:

Se
∗ = δα+δε+δµ+µα+µε+µ2

βδ ,

Ee
∗ =

(µδ+µα+δα+δε+µε+µ2−βδ)µ

(δ+µ)βδ
,

Ie
∗ = − (µδ+µα+δα+δε+µε+µ2−βδ)µ

(δα+δε+δµ+µα+µε+µ2)β
,

Re
∗ = − (µδ+µα+δα+δε+µε+µ2−βδ)(α+ε)

(δα+δε+δµ+µα+µε+µ2)β
.

(a) (S0
∗, E0

∗, I0
∗, R0

∗) = (1, 0, 0, 0) is a non-endemic equilibrium, since all of the infected
classes (E and I) are zero;

(b) (Se
∗, Ee

∗, Ie
∗, Re

∗) could be an endemic equilibrium, since all of the infected classes (E
and I) could be positive for some parameter choices;

(c) To prove this part of the theorem, we looked for a threshold number, so that Se
∗ ≥ 0,

Ie
∗ > 0, Ee

∗ > 0, and Re
∗ ≥ 0. Note that by using some algebraic manipulation,

it is easy to show that the components of the equilibrium can be re-written in the
following forms: Se

∗ = 1
T ε , Ie

∗ = (T ε − 1) µ
β , Ee

∗ = (T ε − 1) µ
β + (α+µ+ε)

δ , and Re
∗ =
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1− Se
∗ − Ee

∗ − Ie
∗ = (T ε − 1) α+ε

β , with T ε = βδ
(α+µ+ε)(δ+µ)

. Hence, it is clear that if

T ε = βδ
(α+µ+ε)(δ+µ)

> 0, then Ie
∗ > 0 and Ee

∗ > 0. �

Note that when ε = 0 (i.e., when there is no CPT intervention), then T 0 = βδ
(α+µ)(δ+µ)

.
Thus, the condition that should be satisfied in order for an endemic equilibrium to exist
is T 0 = βδ

(α+µ)(δ+µ)
> 1. This can be written as T 0 = β 1

(α+µ)
δ 1
(δ+µ)

> 1 and can be
read verbally as the multiplication of four epidemiological factors, namely, (the rate of
infection)·(the length of stay within the infectious period)·(the rate of transition from
exposed class to infectious class)·(the length of stay within the incubation period). We
called T 0 the basic threshold number and T ε the effective threshold number. Thus, it is
clear that T 0 > T ε.

To provide a deeper interpretation of this threshold, let us consider a clinical inter-
vention. In the health context, any intentional action designed to obtain an outcome is
called a clinical intervention. If, in the absence of clinical intervention, we have T 0 > 1
(hence, an endemic equilibrium exists), then we could apply a clinical intervention (such
as CPT), so that it is possible to reduce the threshold to be less than 1 by changing T 0 to
T ε for a certain choice of ε > 0, resulting in T ε < 1 (removing the endemic equilibrium
from the system). This is the basic idea behind controlling/eliminating contagious diseases
from a mathematical point of view. Finding this kind of threshold is vital in the study of
mathematical epidemiology. In the modern literature, this threshold is usually called the
basic reproduction number (sometimes the basic reproduction/reproductive ratio). It is
not easy to find this number for more complex transmissions of a disease. There are some
good and rigorous literature studies regarding this concept, such as [19,22–24] and [25]
(pp. 285–319), that provide a more systematic way of constructing the basic reproduction
number. We prove, by standard theory, that the T 0 and T ε mentioned above are indeed
the basic reproduction number and the effective reproduction number, respectively. We
begin by defining the basic reproduction number.

The basic reproduction number of an infection is the expected number of cases pro-
duced by one case in a population where all the individuals are susceptible to infection.
The authors of [19] (p. 4) defined the basic reproduction number, with the symbol R0,
as the expected number of secondary cases per primary case in a “virgin” population.
In the same book, they showed that R0:= lim

n→∞
‖Kn‖1/n [19] (p. 75), where K is the next-

generation matrix defined therein. According to the authors, this is a natural definition of
the basic reproduction number from which its value can be computed. However, there is
another way to compute the basic reproduction number other than from this definition.
In fact, there are some methods that are easier to use to obtain the basic reproduction
number. As an example, the following method is suggested in [24]. The authors looked
at an epidemic multi-compartment model dxi

dt = fi(x) = Fi(x)− Vi(x), i = 1, . . . , n (as in
Equations (5)–(8) above). They showed that the function fi(x) can be decomposed into the
rate of appearance of new infections in the ith compartment, Fi(x), and the rate of transfer
of individuals from/into the ith compartment, Vi(x). Furthermore, they defined F and V to
be the Jacobian matrix evaluated at the non-endemic equilibrium and showed that the basic
reproduction number can be calculated as the spectral radiusR0 = ρ(FV−1). The following
theorem provides the reproduction numbers of the SEIR model (Equations (5)–(8)).

Theorem 2. The SEIR model (Equations (5)–(8)) has the following reproduction numbers:

(a) The effective reproduction numberRε
0 = βδ

(α+µ+ε)(δ+µ)
;

(b) The basic reproduction numberR0 = βδ
(α+µ)(δ+µ)

.

In addition, the following hold:
Rε

0 = T ε andR0 = T o.
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Proof of Theorem 2.

(a) Following the method in [24], with reference to Equations (5)–(8), we have the rate
of appearance of new infections vector F (x) and the rate of transfer of individuals
vector V(x):

F =


0

βSI
0
0

 and V =


βSI + µS− µ

δE + µE
−δE + αI + µI + εI
−αI + µR− εI

.

Note that there are only two sub-classes that involve infected persons (i.e., E and
I), meaning we have F and V as 2 × 2 matrices. Here, we count a new infection as
only occurring in E with the rate βSI and do not count the rate δE in I as a new infec-
tion, since it is only the transition from E to I. Next, from the two vectors, we obtain

two matrices: F =

(
0 β
0 0

)
and V =

(
δ + µ 0
−δ α + µ + ε

)
. Consequently, V−1 =(

1
δ+µ 0

δ
(δ+µ)(α+µ+ε)

1
α+µ+ε

)
and FV−1 =

(
βδ

(δ+µ)(α+µ+ε)
β

α+µ+ε

0 0

)
, which gives rise to

the effective reproduction numberRε
0 = ρ(FV−1) = βδ

(α+µ+ε)(δ+µ)
.

(b) It is clear from (a) that when ε = 0, thenRε=0
0 = ρ(FV−1) = βδ

(α+µ)(δ+µ)
, which is the

basic reproduction number of the model in Equations (5)–(8).
(c) In addition, comparing the results to Theorem 1, obviously, we haveRε

0 = T ε, and
consequentlyR0 = T 0, which completes the proof. �

Theorem 3. The SEIR model in Equations (5)–(8) always has a trivial equilibrium (S0
∗, E0

∗, I0
∗, R0

∗),
while the non-trivial equilibrium (Se

∗, Ee
∗, Ie

∗, Re
∗) exists only if the effective reproduction number

is greater than 1, i.e.,Rε
0 = βδ

(α+µ+ε)(δ+µ)
> 1.

Proof of Theorem 3. It is obvious as a consequence of Theorems 1 and 2. �

Up to this point, we concluded that the threshold we found earlier (i.e., T ε) is actually
equivalent to the “true” effective reproduction number, Rε

0 (Theorem 2(c)). Here, we
could actually find another threshold that has the same threshold value asRε

0. Remember
that in the derivation of the basic reproduction number, we noticed that there are only
two sub-classes involving infected persons, i.e., E and I. Then, we have F and V as 2 × 2
matrices. Here, we count new infections only in E with the rate βSI and do not count the
rate δE in I as a new infection, since it is only the transition from E to I. However, if we
count new infections in E with the rate βSI and do count the rate δE in I as a new infection,
then we have:

F =


0

βSI
δE
0

 and V =


βSI + µS− µ

δE + µE
αI + µI + εI
−αI + µR− εI

,

Then we will have:

F =

(
0 β
δ 0

)
and:

V =

(
δ + µ 0

0 α + µ + ε

)
giving:

V−1 =

(
1

δ+µ 0
0 1

α+µ+ε

)
.
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Hence, we obtain:

FV−1 =

(
0 β

α+µ+ε
δ

δ+µ 0

)
which implies that:

ρ(FV−1) =
√

βδ
(α+µ+ε)(δ+µ)

.

Note that the last expression is actually the square root of the reproduction number, so
that by referring to [24], we have an alternative threshold, Aε = ρ(FV−1) =

√
Rε

0, which
is not a reproduction number but has the same threshold value, i.e., 1.

Theorem 4. The non-endemic equilibrium (S0
∗, E0

∗, I0
∗, R0

∗) of Equations (5)–(8) is asymptoti-
cally stable wheneverRε

0 = βδ
(α+µ+ε)(δ+µ)

< 1 and unstable otherwise.

Proof of Theorem 4. Let us consider the non-endemic equilibrium (S0
∗, E0

∗, I0
∗, R0

∗) =

(1, 0, 0, 0). The Jacobian matrix at this point is given by:


−µ 0 −β 0
0 −δ− µ β 0
0 δ −α− µ −ε
0 0 α ε− µ

,

which has the polynomial characteristics: a4λ4 + a3λ3 + a2λ2 + a1λ + a0 = 0 with:
a4 = 1;

a3 = (4µ + δ + α− ε);

a2 = µ(δ + 3µ + α− ε) + δα + 2µδ− δε + 2µα + 3µ2 − 2µε− βδ);

a1 = µ(δα+ 2µδ− δε+ 2µα+ 3µ2− 2µε− βδ) +(µδα− µδε+ µ2δ+ µ2α− µ2ε+ µ3 + βεδ−
βµδ);

a0 = µ(µδα− µδε + µ2δ + µ2α− µ2ε + µ3 + βεδ− βµδ).

Clearly, a4 > 0 and a3 > 0. Furthermore, we have a0 > 0, providedRε
0 < 1. The detail

of the proof is as follows.
Proof of a0 > 0
We need µ(µδα + µδε + µ2δ + µ2α + µ2ε + µ3 + βεδ− βµδ) > 0, which can be written

as follows:
µ2(δε + µδ + µε + µ2) + (µδα + µ2α + βεδ− βµδ)µ > 0

	 µ(δε + µδ + µε + µ2) + (µδα + µ2α + βεδ− βµδ) > 0
	 µ(δε + µδ + µε + µ2 + δα + µα) > βδ(µ− ε)

	 βδ(µ−ε)
µ(ε+µ+α)(δ+µ)

< 1

	 βδ
(ε+µ+α)(δ+µ)

< µ
(µ−ε)

.

Here, we need µ > ε to make the inequality consistent, since all of the parameters
are non-negative. Note that in this case, µ

(µ−ε)
> 1; hence, if Rε

0 < 1, then the inequality
βδ

(ε+µ+α)(δ+µ)
< µ

(µ−ε)
holds.

Proof of a1 > 0
Note that a1 can be written in the form of a1 = a11 + a0 with a11 = µ(δα + 2µδ + δε +

2µα + 3µ2 + 2µε− βδ). We also note that a11 − a0 = 2µ3 + δµ2 + µ2ε + µ2α is positive, so
that a11 > 0, since we proved earlier that a0 > 0. Furthermore, since both a11 > 0 and
a0 > 0, then, consequently, a1 > 0.

Proof of a2 > 0
Note that a2 = a21 + a11/µ with a21 = µ(δ + 3µ + α + ε) is clearly positive. Since

a11 > 0, then a2 > 0. Therefore, we proved that all of the coefficients of the polynomial
characteristics are positive. Consequently, from the Descartes rule of signs, all roots have
negative real parts. This proves the stability of the disease-free equilibrium whenever
Rε

0 < 1. �
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Theorem 5. If the endemic equilibrium (Se
∗, Ee

∗, Ie
∗, Re

∗) of Equations (5)–(8) exists (i.e., when-
everRε

0 = βδ
(α+µ+ε)(δ+µ)

> 1), then it is asymptotically stable.

Proof of Theorem 5. The proof is analogous as before. �

Assuming that in the absence of CPT, the system has a large basic reproduction
number (otherwise, the administration of CPT will not make sense), then when CPT is
administered, we could compute the ratio of the effective reproduction number to the basic
reproduction number as:

Rε
0 : R0 = βδ

(α+µ+ε)(δ+µ)
: βδ
(α+µ)(δ+µ)

= (α+µ)
(α+µ+ε)

< 1

Hence, clearly,Rε
0 : R0. Consequently, we have the following theorem.

Theorem 6. For the SEIR model in Equations (5)–(8), we have:

Se
∗ = 1

Rε
0
> 1
R0

= S0
∗ and Ie

∗ =
(
Rε

0 − 1
) µ

β < (R0 − 1) µ
β = I0

∗ with the difference

Se
∗ − S0

∗ = ε(δ+µ)
δβ and I0

∗ − Iε
∗ = δµε

(δ+µ)(α+µ)(µ+α+ε)
.

Proof of Theorem 6. The proof is obvious. �

Analysis for the case of the rate of CPT proportional to the number of recovered class
can be conducted analogously. We do not present the results explicitly, since all proofs are
similar to the one presented here. In the next section, we carried out several simulations
to assess the impact of CPT both to the transient solution and to the equilibrium solution.
The simulation was conducted by implementing the Runge–Kutta numerical scheme to
determine the numerical solution of the system, and the results are presented numerically.

3.2. Numerical Examples

In this section, we present numerical examples to show the behavior of the SEIR model
with and without the presence of convalescent plasma transfusion. The results, in general,
support the analysis of the SEIR equilibrium solutions presented in the earlier section. For
the numerical examples, we used the CPT parameters in Table 2 and the other parameters
written in the respective resulting figures. The results are summarized in the figures that
follow.

Table 2. Parameter values used for different scenarios of CPT implementation.

Number CPT Scenario Numerical Response
f(I(t),R(t)) Used in the Figures Parameter Values

in the Figures

1 Proportional rate to
infectives εI(t) 7.a ε = 0.05

2 Proportional rate to
recovered εR(t) 7.b ε = 0.05

3 Mass action rate
(Lotka–Volterra) εI(t)R(t) 7.c ε = 0.05

4 Constant rate ε 7.d ε = 0.001

5 Saturating rate
(Michaelis–Menten)

εR(t)
r+R(t)

7.e ε = 0.001, r = 0

6 Maximum service
limitation min(εI(t), Maxserv) 7.f, 9.a ε = 0.55, Maxserv = 0.0028

7 Maximum service
limitation min(εR(t), Maxserv) 9.b ε = 0.55, Maxserv = 0.0028

8 Maximum service
limitation min(εI(t)R(t), Maxserv) 9.c ε = 0.55, Maxserv = 0.0028

9 Maximum service
limitation min( εR(t)

r+R(t) , Maxserv) 9.d ε = 0.55, Maxserv = 0.0028
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Figure 2 shows a graph of the disease dynamics predicted by the SEIR model for
specific parameters (written in the figure caption) with a high basic reproduction number
(approximately 2.3). It suggests that, eventually, the disease will endemic to a certain level
with a stable number of infectives (approximately 2% of the total population). Figure 3
shows the changes in the graph when CPT is utilized to cure patients. It shows that, for
a relatively high rate of CPT intervention, it can reduce the basic reproduction number
to the effective reproduction number as low as 0.97, which leads to a stable disease-free
equilibrium.
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and α = 0.40, with initial values of S0 = 0.99, E0 = 0, I0 = 0.01, and R0 = 0. The resulting equilibrium 
was approximately S = 44%, E = 1%, I = 2%, and R = 53% with the basic reproduction number 
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Figure 2. A graph of the SEIR model without CPT showing the susceptible and recovered classes (a)
and the exposed and infective classes (b). The SEIR parameters were µ = 1/75, β = 0.95, δ = 0.90, and
α = 0.40, with initial values of S0 = 0.99, E0 = 0, I0 = 0.01, and R0 = 0. The resulting equilibrium was
approximately S = 44%, E = 1%, I = 2%, and R = 53% with the basic reproduction numberR0 = 2.265.
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Figure 3. A graph of the SEIR model with CPT, showing the susceptible and recovered classes (a)
and the exposed and infective classes (b). The SEIR parameters were µ = 1/75, β = 0.95, δ = 0.90, and
α = 0.40, with initial values of S0 = 0.99, E0 = 0, I0 = 0.01, and R0 = 0. The CPT rate was assumed to
be ε = 0.55. The resulting equilibrium was approximately S = 99%, R = 0.05%, and the remaining E
and I were nearly zero. In this case, the resulting effective reproduction number wasR0 = 0.97 (less
than 1).

Figure 3 also suggests that early application of CPT significantly reduces the risk of
disease outbreak. In the early transmission of COVID-19, this was clearly not the case, since
COVID-19 is a new and emerging disease; hence, the availability of CP was almost null in
the beginning. The figure also suggests a practical consequence of creating a convalescent
plasma bank. Now, looking closer at the graph in Figure 2, during the first 200 time steps,
we have the graph in Figure 4. It can be seen that there were already many recovered
patients; hence, the availability of CP stock may be justified. Suppose that at time t = 200,
the health authority begins to apply CPT as a curative method, then we have Figure 5,
which shows that CPT significantly drove the disease cases down to zero, eventually. This
is among the promising findings suggested by the SEIR model.
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Figure 4. A graph of the SEIR model without CPT (top figures) showing the susceptible and recovered
classes (a) and the exposed and infective classes (b) as in Figure 2 but with a shorter time horizon.
(c,d) With CPT. The bottom figures show similar graphs for the SEIR model with CPT as in Figure 3
but with a shorter time horizon.

Figure 5 shows a graph of the SEIR model as in Figure 2, assuming that in the
beginning (i.e., during the time interval (0,200)), the health authority takes the “do nothing”
decision in controlling the disease (blue and red circles), and then, at time t = 200, begins to
implement CPT with a relatively high rate of implementation (approximately half of the
infectives are given CPT, proportional to the number of infectives with ε = 0.55). The black
dots reveal that the intervention quickly pulls the number of infectives to zero (b) while, at
the same time, pushes the number of susceptibles upward (a).
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fectives (hence, the height of the infective peak). Here, we assumed a scenario in which 
CPT is conducted with the rate proportional to the infectives (implicitly assuming an 
abundance of CP bloods). Figure 7 shows the effect of different scenarios (see Table 1) on 
the decrease in the infective numbers over time. All of the figures assumed that there was 
no limit for the health authority to set CPT rates, except in Figure 7f, in which it was as-
sumed that the maximum CPT rate was the Maxserv (response function number 6 in 
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(a) (b) 

Figure 5. Graphs of the SEIR model assuming the “do nothing” decision during the time interval
(0,200), followed by the implementation of CPT with the rate proportional to the number of infectives.
The graph in (a) shows the dynamics of the susceptibles, while the graph in (b) shows the dynamics
of the infectives.
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Figure 6 shows the effects of different rates of CPT on decreasing the number of
infectives (hence, the height of the infective peak). Here, we assumed a scenario in which
CPT is conducted with the rate proportional to the infectives (implicitly assuming an
abundance of CP bloods). Figure 7 shows the effect of different scenarios (see Table 1)
on the decrease in the infective numbers over time. All of the figures assumed that there
was no limit for the health authority to set CPT rates, except in Figure 7f, in which it was
assumed that the maximum CPT rate was the Maxserv (response function number 6 in
Table 2).
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Figure 6. Graphs showing the effects of different rates of CPT on decreasing the number of infectives
(i.e., lowering the height of the infective peaks) (a,b) and, consequently, increasing the number of
remaining susceptibles (c,d). The other parameters were the same as in Figure 2.

In Figure 7f, if the Maxserv is unbounded, then the result is the same as in Figure 3b,
which is unlikely in reality. Figure 8 shows examples of the Maxserv graphs used in
Figure 7. The effect of various Maxserv response functions on the numbers of infectives
and the exposed population is shown in Figure 9.

In all of the numerical simulations above, we assumed that the effect of CPT was on
increasing patient survival. The recent findings reported in [26] support the assumption
we used in this paper. They carried out a meta-analytical approach to collect and analyze
the daily survival data from all controlled studies that reported Kaplan–Meier survival
plots. The authors showed that CPT contributes to improving the symptomatology and
viral clearance. Furthermore, they pointed out that the aggregate Kaplan–Meier survival
plot in their study revealed a good agreement pattern among all different studies in which
CPT was generally associated with greater patient survival [26].

The historical evidence shows the promising results of applying the therapeutic
treatment of CPT for critical patients infected by contagious diseases such as COVID-19. A
more recent study provided strong evidence that if the convalescent plasma is transfused
into patients within three days of the onset of illness, a 41% lower risk of death compared
to patients transfused four or more days after onset of illness is demonstrated [26,27]. This
remarkable result highlights an important role for the timely use of convalescent plasma
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transfusion. We discussed all such situations in terms of mathematical modeling with real
data collected from a secondary source in the numerical analysis.
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Figure 7. Plots of the effect of various CPT scenarios on the dynamics of the infective (red) and
exposed (green) classes, with the assumption that the CPT intervention was carried out from the
beginning of the pandemic. The scenarios and parameters were the same as in Table 2. The response
functions and the parameters in the response functions for the graphs in (a–f) are presented in Table 2.
See also Figure 2 as the reference for the other epidemiological parameters. Note that if Maxserv is
unbounded, then the result is the same as Figure 3b.
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In this research, a standard analytical evaluation, from proving the existence of equi-
libria, their local stability, and their relationships with the reproduction numbers, was
only carried out for the model with the response function for the CPT rate proportional to
the number of infected class. The numerical simulations showed the consistency of other
forms of the response functions with the findings in real phenomena such as reported
in [26,27]. However, to obtain more prudent results, it is necessary to undertake a complete
mathematical analysis of all proposed response functions that will presumably provide
more in-depth insight and better implementation. Well-posedness of solutions and the
threshold criteria for the global stability of equilibria should certainly be sought [28]. On
the contrary, the numerical solutions presented in this paper were obtained by the RK45,
although according to the current findings [29,30], there is a better scheme to produce
a dynamically consistent numerical solution. Other future research could focus on the
application of optimal control theory for disease prevention and control based on different
nonlinear response functions for the therapeutic rate of CPT. In particular, a study con-
centrating on applying a wider class of control variables to formulate an optimal control
problem in order to find better control and preventive strategies in CPT implementation
would be beneficial as found in [31].

4. Conclusions

We presented a continuous SEIR epidemic model considering the effect of an inter-
vention using convalescent plasma transfusion (CPT) to the infected class. We analyzed
the model using the standard procedure and found the trivial and non-trivial equilibrium
points of the system including their stability and relation to the basic reproduction number.
In general, the effect of the application of CPT on the individual level resulted in a shorter
time of infection and a higher survival rate for infected individuals that received CPT.
Furthermore, we showed that at the population level, it could also decrease the peak of
the outbreak as well as the length of the epidemic period. In this case, the decrease in the
infection peak indicated the good effect of the use of CPT, which may eventually decrease
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the burden of COVID-19 transmission. The model presented here is still simple in terms of
biological and epidemiological complexity; hence, further refinement of the model is still
needed to obtain a more realistic model and a more accurate prediction.

In this paper, we proposed various functional forms/numerical responses that could
be used to model the CPT rate, but not all were evaluated analytically. These numerical
responses can be considered as a parametric viewpoint of control strategy. Hence, analytical
investigation regarding the use of these various functional forms is also worthy to explore
the robustness of the results presented here and to generate some possible epidemiological
precautions not explored in the current paper. The model in this paper also only assumed a
single strain or variant. In reality, viruses are always changing and mutating, and this could
cause a new strain or variant. How would the results here be affected by such phenomena?
Another question important for future research involves finding optimal CPT strategies
that minimize both the number of infections and the related costs of CPT implementation.
Our future research will focus on the application of optimal control theory for disease
prevention and control based on different nonlinear response functions for the therapeutic
rate of CPT. In particular, we will concentrate on applying a wider class of control variables
to formulate an optimal control problem in order to find better control and preventive
strategies for implementation of CPT.
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