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Abstract: For the spatially-distributed Fermi–Pasta–Ulam (FPU) equation, irregular solutions are
studied that contain components rapidly oscillating in the spatial variable, with different asymptoti-
cally large modes. The main result of this paper is the construction of families of special nonlinear
systems of the Schrödinger type—quasinormal forms—whose nonlocal dynamics determines the
local behavior of solutions to the original problem, as t→ ∞. On their basis, results are obtained on
the asymptotics in the main solution of the FPU equation and on the interaction of waves moving
in opposite directions. The problem of “perturbing” the number of N elements of a chain is consid-
ered. In this case, instead of the differential operator, with respect to one spatial variable, a special
differential operator, with respect to two spatial variables appears. This leads to a complication of the
structure of an irregular solution.

Keywords: Fermi–Pasta–Ulam problem; quasinormal forms; asymptotics; special distributed chains

1. Introduction

The system of equations

M
d2uj

dt2 = Fj,j+1 − Fj−1,j, (1)

which is named after Fermi–Pasta–Ulam, was proposed in [1]. Here,

Fj−1,j = k(∆l) + α(∆l)2 + β(∆l)3, ∆l = uj − uj−1 (k > 0),

M, k, α, β are some coefficients and the coefficients M, k are positive. We can assume that
k = 1, the index j varies from 1 to N and the ‘periodicity’ conditions u0 ≡ uN , uN+1 ≡ u1
hold. The values of uj(t) can be associated with the values of the function of two variables
u(t, xj) at the uniformly distributed on some circle points with the angular coordinate
xj. The basic assumption in this paper is that the value of N is sufficiently large, i. e., the
quantity ε = 2πN−1 is sufficiently small:

ε = 2πN−1 � 1. (2)

It is natural to use the continuous variable x ∈ [0, 2π] instead of the discrete one
xj under the above condition. It is also convenient to preliminary normalize the time
t→ M1/2ε−1t. Then, the system (1) takes the following form
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ε2 ∂2y
∂t2 = y(t, x + ε)− 2y(t, x) + y(t, x− ε) +

+ α
[
y2(t, x + ε)− 2y(t, x)y(t, x + ε) + 2y(t, x)y(t, x− ε)− y2(t, x− ε)

]
+

+ β
[
(y(t, x + ε)− y(t, x))3 − (y(t, x)− y(t, x− ε))3

]
(3)

and the periodicity condition
y(t, x + 2π) ≡ y(t, x) (4)

holds.
The Equation (3) has been studied by many authors (see, for example, [1–11]) with

the main focus on the so-called regular solutions. We recall that regular solutions were
distinguished by the condition of ‘good’ dependence on the parameter ε. The asymptotic
representation

u(t, x + ε) = u(t, x) + ε
∂

∂x
u(t, x) +

1
2

ε2 ∂2

∂x2 u(t, x) + . . . (5)

holds for these solutions. The transition from the Equation (3) to a special nonlinear
partial differential equation was made to study regular solutions with a certain degree of
accuracy, with respect to the parameter ε. The basic results mainly concerned the problems
of finding the exact solutions and revealing the integrability properties of the obtained
partial differential equations.

We also note that interesting results, in the wave interactions in such equations, were
obtained in [11].

We emphasize once again that the value of N determines the parameter ε in (3). We
are interested in the study of influence of this value on the asymptotics of the solutions.
Let the number of elements in (1) be equal to N + c where c is an arbitrary fixed integer
value. Let µ = 2π(N + c)−1. Then, the parameter µ appears in the Equation (3) instead of
the parameter ε:

ε2 ∂2y
∂t2 = y(t, x + µ)− 2y(t, x) + y(t, x− µ) +

+ α
[
y2(t, x + µ)− 2y(t, x)y(t, x + µ) + 2y(t, x)y(t, x− µ)− y2(t, x− µ)

]
+

+ β
[
(y(t, x + µ)− y(t, x))3 − (y(t, x)− y(t, x− µ))3

]
. (6)

We have the asymptotic formula

µ = ε
(

1 + εc(2π)−1
)−1

= ε

(
1− cε

2π
+

c2ε2

4π2 + . . .
)

(7)

for µ.
By E±(t, x, ε) we denote the functions

E±(t, x, ε) = (δ + εΘ)x±
(

2 sin
δ

2
+ ε

(
Θ− δc

π
cos

δ

2

))
t.

In this paper, we study the irregular solutions to the boundary value problem (4) and
(6). The structure of such solutions consists of the superposition of functions that depend
smoothly (regularly) on the parameter ε as well as the functions that depend smoothly on
the parameter ε−1. We dwell on this in more detail.

First of all, we note that any identically constant function u0(t, x) ≡ const. is an
equilibrium state of the boundary value problem (4) and (6). We investigate the local
behavior of solutions in the vicinity of each equilibrium state mentioned above. Thus,
we study the solutions with sufficiently small and ε-independent deviations of their 2π—
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periodic and continuous with respect to x initial conditions u(0, x) = ϕ1(x), ∂u
∂t (0, x) =

ϕ2(x) and max
x

(|ϕ1(x)− const |+ |ϕ2(x)|) � 1. The linearized on equilibrium states

boundary value problem

ε2 ∂2u
∂x2 = u(t, x + µ)− 2u(t, x) + u(t, x− µ), u(t, x + 2π) ≡ u(t, x) (8)

plays a prominent part in the study of the local behavior of the solutions. In turn, the
structure of solutions to the boundary value problem (8) is determined by the location of
the roots of the characteristic equation

ε2λ2 = −4 sin2
(

1
2

ε

(
1− εc

2π
+

ε2c2

4π2 + . . .
)

k
)

, k = 0,±1,±2, . . . . (9)

We consider now the asymptotic behavior of the roots of (9) for the sufficiently large
values k of order ε−1.

First of all, we fix arbitrarily the value δ > 0 and assume that

δ 6= 2πn (n = 1, 2, . . .). (10)

Below, we denote by Θ = Θ(δ, ε) ∈ [0, 1) the value that complements δε−1 to an
integer expression.

Let Kε be a set of integers that are given by the formal relation

Kε =
{

δε−1 + Θ + 2πnε−1 + m; m, n = 0,±1,±2, . . .
}

.

We note that the value 2πnε−1 is an integer by virtue of the equality ε = 2πN−1.
Below, we consider the question of the solutions to the boundary value problem (4)

and (6), the formation of which is based on modes with numbers from Kε. To find the
main parts of such solutions, special partial differential equation systems are going to be
obtained, which are systems of two coupled nonlinear Schrödinger equations.

Each element of the set Kε corresponds to the value of the root λ±m,n(ε) of the charac-
teristic Equation (9), and

ε2(λ±m,n(ε)
)2

= −4 sin2
[

1
2

ε

(
1− εc

2π
+

ε2c2

4π2 + . . .
)(

δε−1 + Θ + m + 2πnε−1
)]

.

From here,

λ±m,n(ε) = ±2iε−1
[

sin
δ

2
+

1
2

ε

(
Θ + m− δc

π
− cn

)
cos

δ

2
+

+ε2 1
4

((
δc2

2π2 −
c(Θ + m)

π
+

nc2

π

)
cos

δ

2
+

(
δc
π
− (Θ + m) + cn

)2
sin

δ

2

)]
+ O

(
ε3
)

. (11)

Each root λ±m,n(ε) corresponds to the linear boundary value problem (8) solution

u±m,n(t, x, ε) = exp
[
iε−1(δ + ε(Θ + m) + 2πn)x + λ±m,n(ε)t

]
.

This means that the same boundary value problem has the set of solutions

u(t, x, ε) =
∞

∑
m,n=−∞

ξm,n±u±m,n(t, x, ε). (12)

We introduce some notation in order to significantly simplify this expression. Let
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x± = x± t cos
δ

2
, y = 2πε−1x, y± = y∓ ct cos

δ

2
. (13)

Then, (12) transforms to the form u(t, x, ε) = u+(t, x, ε) + u−(t, x, ε), and

u±(t, x, ε) = exp
(

iε−1E±(t, x, ε)
)
×

×
∞

∑
m,n=−∞

ξm,n± exp
(

i
(

mx± + ny± ±
iε
2

((
δc2

2π2 −
(Θ + m)c

π
+

nc2

π

)
cos

δ

2
+

+

(
δc
π
− (Θ + m) + cn

)2
sin

δ

2

)
+ O(ε)

)
t

)
=

= ξ+(τ, x+, y+) exp
(

iε−1E+(t, x, ε)
)
+ ξ−(τ, x−, y−) exp

(
iε−1E−(t, x, ε)

)
where τ = εt, ξ±(τ, x±, y±) =

∞
∑

m,n=−∞
ξm,n±(τ) exp(imx± + iny±),

ξm,n±(τ) = ξm,n± exp
(
± i

2

((
δc2

2π2 −
(Θ + m)c

π
+

nc2

π

)
cos

δ

2
+

+

(
δc
π
− (Θ + m) + cn

)2
sin

δ

2
+ O(ε)

)
τ

)
.

In the next section, we formulate the basic result from which follows that the nonlinear
boundary value problem (4) and (6) has a set of irregular solutions whose basic terms of
the asymptotics are determined by the expression

u(t, x, ε) = ε
(

ξ+(τ, x+, y+) exp
(

iε−1E+(t, x, ε)
)
+ cc+

+ξ−(τ, x−, y−) exp
(

iε−1E−(t, x, ε)
)
+ cc + O(ε2)

)
.

Below, a special system of coupled nonlinear Schrödinger equations is presented to
determine the unknown amplitudes ξ±(τ, x±, y±). Here and below we denote by cc the
expressions that are complex conjugate to the previous term.

The justification of this result is provided in Section 2.2. We separately consider the
case when the equality

δ = 2πk0 (14)

holds for some integer k0 in Section 2.3. We note—right away—that this case differs
significantly from the case of (10).

2. Results
2.1. Basic Result

Firstly, we introduce some notation. We denote by D, J and J0 operators, which
are defined on the continuously differentiable functions v(x, y) of two variables x and y,
according to the rules

Dv(x, y) =
∂v
∂x
− c

∂v
∂y

,

Jv(x, y) =

x∫
0

v(s, cx + y− cs)ds,

J0v(x, y) =
1

2π

2π∫
0

v(s, cx + y− cs)ds.
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The above imply the following relations

Dv(cx + y) = 0, D(J − J0)v(x, y) = DJv(x, y) = v(x, y), (15)

which are required below.
We denote by W2

(
τ, t, x±, y±, ε−1(δ + εΘ)x

)
the function

w21(ξ+(τ, x+, y+))
2 exp(2E+) + cc + w21(ξ−(τ, x−, y−))

2 exp(2E−) + cc +

+ w23ξ+(τ, x+, y+)ξ−(τ, x−, y−) exp(E+ + E−) + cc +

+ w24ξ+(τ, x+, y+)ξ−(τ, x−, y−) exp(E+ − E−) + cc +

+ ξ+(τ, x+, y+) f+(τ, x, y) exp(E+) + cc + ξ−(τ, x−, y−) f−(τ, x, y) exp(E−) + cc

where
w21 = iαctg

δ

2
, w23 = 2itg

δ

2
, w24 = i sin δ, (16)

f+(τ, x, y) = iσ1(4 sin δ)−1(J − J0)|ξ−(τ, x, y)|2,

f−(τ, x, y) = −iσ1(4 sin δ)−1(J − J0)|ξ+(τ, x, y)|2.
(17)

Let us formulate the basic result. We consider the boundary value problem

2i
∂ξ+
∂τ

= sin
(

δ

2

)
D2ξ+ − 2iΘ sin

(
δ

2

)
Dξ+ + Θ2 sin

(
δ

2

)
ξ+ +

+ 8 sin
(

δ

2

)
ξ+
[
σ0|ξ+|2 + σ1 J0|ξ−|2

]
, (18)

− 2i
∂ξ−
∂τ

= sin
(

δ

2

)
D2ξ− − 2iΘ sin

(
δ

2

)
Dξ− + Θ2 sin

(
δ

2

)
ξ− +

+ 8 sin
(

δ

2

)
ξ−
[
σ0|ξ−|2 + σ1 J0|ξ+|2

]
, (19)

ξ±(τ, x + 2π, y) ≡ ξ±(τ, x, y + 2π) ≡ ξ±(τ, x, y) (20)

where

σ0 = α2 cos
(

δ

2

)
+ 6β sin

(
δ

2

)
,

σ1 = − sin
(

δ

2

)
2
[(

1 + 2 sin2 δ

2

)
α2 + 6β sin2

(
δ

2

)]
.

Below, we use εk(Θ0) (k = k0, k0 + 1, . . .) for a sequence such that εk(Θ0) → 0, as
k→ ∞. The value of Θ does not change on this sequence: Θ(εk(Θ0)) = Θ0.

Theorem 1. We fix the arbitrarily positive value δ 6= πk (k = 0, 1, 2, . . .), and Θ0 ∈ [0, 1).
Let (ξ+(τ, x, y), ξ−(τ, x, y)) be the solution of the boundary value problem (18)–(20), which is
bounded together with the derivative, with respect to τ, and with the first and second derivatives,
with respect to x and y for τ → ∞, x ∈ [0, 2π], y ∈ [0, 2π] as Θ = Θ0. Then, the function

u(t, x, εk) = εk(Θ0)
(

ξ+(τ, x+, y+) exp(E+) + cc + ξ−(τ, x−, y−) exp(E−) + cc
)
+

+ ε2
k(Θ0)W2

(
τ, t, x±, y±, ε−1(δ + εΘ)x

)
(21)

satisfies the boundary value problem (4) and (6) up to O
(
ε3

k(Θ0)
)

as τ = εk(Θ0)t, x± = x ±
t cos

(
δ
2

)
, y± = y∓ ct cos

(
δ
2

)
, y = 2πε−1

k (Θ0)x.
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In terms of this result, we note two circumstances. Firstly, the same values of the
arguments τ, x, y in both equations of the boundary value problems (18)–(20) and (17)
and the arguments of the functions ξ±(τ, x±, y±) in the formula (21) are different. We
succeeded to bring (18)–(20) and (17) to the same arguments due to the fact that the nonlin-
ear expression

(
J|ξ−|2 − J0|ξ−|2

)
in (17) and the nonlinear expression

(
J|ξ+|2 − J0|ξ+|2

)
depend on the argument cx + y. This fact, in turn, follows from the equalities (13) and (15):
cx + y = cx+ + y+ = cx− + y−.

Secondly, using Lyapunov transformations, the boundary value problem can be
simplified by ‘removing’ the terms Θ2 sin

(
δ
2

)
ξ± and 16σ1 sin

(
δ
2

)
ξ± J0|ξ∓|2 from it. To do

this, we set

ξ±(τ, x, y) exp

±iσ18 sin
(

δ

2

) τ∫
0

J0|ξ∓(s, x, y)|2ds∓ i
2

Θ2 sin
(

δ

2

)
τ

 = η±(τ, x, y) (22)

in (19) and (20). As a result, we obtain the ‘split’ boundary value problem

± 2i
∂η±
∂τ

= sin
(

δ

2

)
D2η± − 2iΘ sin

(
δ

2

)
Dη± +

+ 16σ0 sin
(

δ

2

)
η±|η±|2, η(τ, x + 2π, y) ≡ η(τ, x, y + 2π) ≡ η(τ, x, y). (23)

From (22) it follows that ξ±(τ, x±, y±) are expressed in terms of η±(τ, x±, y±) using
the formula

ξ±(τ, x, y) = η±(τ, x, y) exp

∓iσ18 sin
(

δ

2

) τ∫
0

J0|η∓(s, x, y)|2ds± i
2

Θ2 sin
(

δ

2

)
τ

.

We note that the possibility of these substitutions is due to the equalities (15).

2.2. Justification of Theorem 1

We use the technique developed in [11–15]. It is based on the assumption that a
certain set of solutions to the boundary value problem (4) and (6) can be represented as an
asymptotic series

u(t, x, ε) = ε
(

ξ+(τ, x+, y+) exp
(

iε−1E+

)
+ cc + ξ−(τ, x−, y−) exp

(
iε−1E1

)
+ cc

)
+

+ ε2W2

(
τ, t, x±, y±, ε−1(δ + εΘ)x

)
+ ε3W3

(
τ, t, x±, y±, ε−1(δ + εΘ)x

)
+ . . . . (24)

We substitute (24) into the boundary value problem (4) and (6) and equate the coeffi-
cients of the same powers of ε on the left and right parts of the resulting formal identity.
We obtain the correct equality for ε1 and arrive at the relation

ε2 ∂W2

∂t2 −W2

(
τ, t, x±, y±, ε−1(δ + εΘ)x + δ

)
+ 2W2 −W2

(
τ, t, x±, y±, ε−1(δ + εΘ)x− δ

)
=

= 2i(sin 2δ− 2 sin δ)
[
ξ2
+ exp

(
i2ε−1E+

)
− ξ2

+ exp
(
−2iε−1E+

)
+

+ ξ2
− exp

(
2iε−1E−

)
− ξ2
− exp

(
−2iε−1E−

)
+ 2ξ+ξ− exp

(
iε−1(E+ + E−)

)
−

− 2ξ+ ξ− exp
(
−iε−1(E+ + E−)

)
+ 2ξ+ξ− exp

(
iε−1(E+ − E−)

)
−

−2ξ+ξ− exp
(

iε−1(−E+ + E−)
)]

(25)

for ε2. Therefore, the function W2 is sought in the form
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W2 = W21ξ2
+ exp

(
2iε−1E+

)
+ cc + W21ξ2

− exp
(

2iε−1E−
)
+ cc +

+ W23ξ+ξ− exp
(

iε−1(E+ + E−)
)
+ cc + W24ξ+ξ− exp

(
iε−1(E+ − E−)

)
+ cc +

+ f+(τ, x, y) exp
(

iε−1E+

)
+ cc + f−(τ, x, y) exp

(
iε−1E−

)
+ cc. (26)

From this, we obtain the equalities (16) at once. We do not define the functions
f±(τ, x, y) at this step.

Then, we equate the coefficients at ε3. As a result, we obtain the equality

ε2 ∂2W3

∂t2 −W3

(
τ, t, x±, y±, ε−1(δ + εΘ)x + δ

)
+ 2W3 −

−W3

(
τ, t, x±, y±, ε−1(δ + εΘ)x− δ

)
= B+(τ, t, x+, y+) exp

(
iε−1E+

)
+ cc +

+ B−(τ, t, x−, y−) exp
(

iε−1E−
)
+ cc + B0

(
τ, t, x±, y±, ε−1(δ + εΘ)x

)
(27)

where the last term is the sum of some coefficients with exponents ±2E±, ±(E+ + E−),
±(E+ − E−), ±3E±, ±(2E± ± E∓). The functions of t, τ, x±, y± are 2π-periodic with

respect to x±, y± and π
(

sin δ
2

)−1
-periodic with respect to t coefficients at these exponents.

Let W3 = W30 + W31 in (27). The function W30 is the solution to the equation

ε2 ∂2W30

∂t2 −W30

(
τ, t, x±, y±, ε−1(δ− εΘ)x + δ

)
+ 2W30 −

−W30

(
τ, t, x±, y±, ε−1(δ + εΘ)x− δ

)
= B0

(
τ, t, x±, y±, ε−1(δ + εΘ)x

)
. (28)

It has the same structure as the B0 function and is explicitly defined by (28). We do
not present its explicit form here as unnecessary.

It remains to consider the equation for W31:

ε2 ∂2W31

∂t2 −W31

(
τ, t, x±, y±, ε−1(δ + εΘ)x + δ

)
+ 2W31 −

−W31

(
τ, t, x±, y±, ε−1(δ + εΘ)x− δ

)
= B+(τ, t, x+, y+) exp

(
iε−1E+

)
+ cc +

+ B−(τ, t, x−, y−) exp
(

iε−1E−
)
+ cc (29)

where

B±(τ, x, t) = ±2i sin
(

δ

2

)
∂ξ±
∂τ

+

(
cos2

(
δ

2

)
− cos δ

)
D2ξ± +

+ 2iΘ
(

cos2
(

δ

2

)
− cos δ

)
Dξ± + Θ2

(
cos δ− cos2

(
δ

2

))
ξ± +

+ ξ±
[
σ0|ξ±|2 + σ1|ξ∓|2

]
+ 2i sin

(
δ

2

)
ξ±D f±. (30)

The Equation (29) has a solution in the indicated class of function under the condition

B+(τ, x, t) ≡ B−(τ, x, t) ≡ 0 (31)

only. Each of these equalities contains the unknown functions f±(τ, x, y). We choose
these functions in such a way as to simplify the corresponding expressions B± as much as
possible. The dependence of B+ only on τ, x+, y+ and of B− only on τ, x−, y− define this
simplification. From the above and from (30) and (31) the equalities

∓2iD f± = σ1

(
|ξ∓|2 − J0|ξ∓|2

)
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arise. We obtain (17) from them. Considering these formulas in (26), we obtain the resulting
expressions (18) and (19).

The theorem is proved.

2.3. Case of δ = 2πn0 Results

The set of integers Kε has the form

Kε =
{

m + 2πnε−1; m, n = 0,±1,±2, . . .
}

in this case. The asymptotic equalities

λ±m,n(ε) = ±i
[

ε
(

1− εc
2π

)
(m− nc)− 1

6
ε3(m− nc)3

]
+ . . .

hold for the roots λ±m,n(ε) of the characteristic Equation (9).
Based on the structure of the solutions to the linearized boundary value problem (8)

with modes from Kε, we seek solutions to the nonlinear boundary value problem (4) and (6)
in the form

u(t, x, ε) = ε(ξ+(τ, x+, y+) + ξ−(τ, x−, y−)) +

+ ε2(W2+(τ, x+, y+) + W2−(τ, x−, y−) + W20(τ, x±, y±)) + . . . (32)

where τ = ε2t, x± = x± t, y± = y± ct.
We substitute (32) into (6) and equate the coefficients of the same powers of ε. We

obtain the correct equality for ε1. At the next step, we arrive at the equation for W20, W2±.
We find out from it that

W20 = −1
2

αD(ξ+ξ−).

From the condition of solvability of the equations, with respect to W2±, we obtain the
relations for ξ±(τ, x, y):

± 2
∂

∂τ
Dξ± = D4ξ± − 2αDξ±D2ξ±, (33)

ξ±(τ, x + 2π, y) ≡ ξ±(τ, x, y + 2π) ≡ ξ±(τ, x, y). (34)

Hence, the resulting statement follows:

Theorem 2. Let the boundary value problem (33) and (34) has a bounded as τ → ∞, x ∈ [0, 2π],
y ∈ [0, 2π] solution ξ±(τ, x, y) that is continuously differentiable, with respect to τ, and four times
continuously differentiable, with respect to x and y. Then, the function

u(t, x, ε) = ε(ξ+(τ, x+, y+) + ξ−(τ, x−, y−))− ε2 1
2

αD(ξ+(τ, x+, y+)ξ−(τ, x−, y−))

satisfies the boundary value problem (4) and (6) up to O
(
ε3).

We note that the Equations (33) can be simplified. Let

η±(τ, x±, y±) = Dξ±(τ, x±, y±).

As a result, we obtain the boundary value problem

± 2
∂η±
∂τ

= D3η± − 2αη±Dη±, η(τ, x + 2π, y) = η(τ, x, y + 2π) ≡ η(τ, x, y). (35)
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It is natural to call this boundary value problem the Korteweg–de Vries equation in a
two-dimensional spatial domain.

The functions ξ± can be expressed in terms of η±:

ξ±(τ, x, y) = (J − J0)η±(τ, x, y).

3. Discussion

The proposed approach allows one to take into account higher in order ε terms for
constructing the asymptotics of solutions. In addition, problems with several parameters
δ1, . . . , δj can be considered even, in particular, if there are resonance relations among them.

We note that there is an ‘internal’ parameter Θ in the boundary value problems
(18) and (19), which varies infinitely many times from 0 to 1 as ε → 0. This points to the
fact that an unlimited process of straight and reverse reconstructions of phase portraits can
occur.

It is shown that various partial differential equations arise while describing the leading
approximations of solutions in different domains of the phase space of the boundary value
problem (3).

For δ 6= 2πn and δ = 2πn0, special nonlinear boundary value problems are con-
structed to find the slowly varying amplitudes ξ±(τ, x±, y±). These boundary value
problems are different for each of these two cases. In the first of them, systems of two
Schrödinger equations were obtained, in contrast to the second case where a system of two
Korteweg–de Vries equations was obtained. Asymptotic representations of the irregular
solutions studied above contain superposition of functions depending on the following:
the ‘slow’ time τ = εt (or τ = ε2t), the ‘medium’ time t, and ‘fast’ time ε̃−1t. In addition,
they contain 2π-periodic with respect to the spatial variables x, y = 2πε−1x components,
which rapidly oscillate with respect to the variable ε̃−1x.

It follows from the above formulas that the mutual influence of the functions ξ+ and
ξ− leads only to the phase components change. If δ = 2πn0, then this influence is much
weaker [11] when the higher infinitesimal order terms in the corresponding boundary
value problems are taken into account. Therein, one can trace some analogies with the
conclusions from [16–19].

The coefficients σ0 and σ1 in (18) and (19) depend both on the parameter α and on the
parameter β as δ 6= 2πn. Only the parameter α appears in (33) and (34) when δ = 2πn0.
The ‘orders’ of the ‘slow’ time τ also turned out to be different. In the first case, τ = εt, and
in the second, τ = ε2t, i.e., the processes are sufficiently slower as δ = 2πn0. We also note
that the amplitude of the principal terms of the solutions is of the order ε in both cases.

A wave moving in one direction mainly affects only the phase coordinate of a wave
moving in the opposite direction. In this regard, a number of conclusions from the theory
of solitons [16–19] remain valid for irregular waves. We also note that the mutual effect of
waves on each other differs significantly from the regular case of δ = 0.
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