
mathematics

Article

The Rescaled Pólya Urn and the Wright—Fisher Process
with Mutation

Giacomo Aletti 1,† and Irene Crimaldi 2,*,†

����������
�������

Citation: Aletti, G.; Crimaldi, I. The

Rescaled Pólya Urn and the

Wright—Fisher Process with

Mutation. Mathematics 2021, 9, 2909.

https://doi.org/10.3390/

math9222909

Academic Editors: Emanuele Dolera

and Federico Bassetti

Received: 8 October 2021

Accepted: 13 November 2021

Published: 15 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Environmental Science and Policy Department, Università degli Studi di Milano, 20133 Milan, Italy;
giacomo.aletti@unimi.it

2 IMT School for Advanced Studies Lucca, 55100 Lucca, Italy
* Correspondence: irene.crimaldi@imtlucca.it
† These authors contributed equally to this work.

Abstract: In recent papers the authors introduce, study and apply a variant of the Eggenberger—
Pólya urn, called the “rescaled” Pólya urn, which, for a suitable choice of the model parameters,
exhibits a reinforcement mechanism mainly based on the last observations, a random persistent
fluctuation of the predictive mean and the almost sure convergence of the empirical mean to a
deterministic limit. In this work, motivated by some empirical evidence, we show that the mul-
tidimensional Wright—Fisher diffusion with mutation can be obtained as a suitable limit of the
predictive means associated to a family of rescaled Pólya urns.

Keywords: Pólya urn; predictive mean; urn model; Wright—Fisher diffusion

1. Introduction

The well-known standard Eggenberger—Pólya urn [1,2] works as follows. An urn
initially contains N0, i balls of color i, for i = 1, . . . , k, and at each time-step, a ball is drawn
from the urn and then it is returned into the urn together with α > 0 additional balls
of the same color (here and in the following, the expression “number of balls” is not to
be understood literally, but all the quantities are real numbers, not necessarily integers).
Hence, denoting by Nn, i the number of balls of color i inside the urn at time-step n, we have

Nn, i = Nn−1, i + αξn, i for n ≥ 1,

where ξn, i = 1 if the drawn ball at time-step n is of color i, and ξn, i = 0 otherwise.
The parameter α tunes the reinforcement mechanism: the greater the α, the greater the
dependence of Nn, i on ∑n

h=1 ξh, i.
In [3–5], the rescaled Pólya (RP) urn has been introduced, studied, generalized and

applied. This model differs from the original one by the introduction of a parameter β
such that

Nn, i = bi + Bn, i with

Bn+1, i = βBn, i + αξn+1, i n ≥ 0.

Therefore, at time-step 0, the urn contains bi + B0, i > 0 balls of color i and the
parameters α > 0 and β ≥ 0 regulate the reinforcement mechanism. More precisely, the
term βBn, i connects Nn+1, i to the “configuration” at time-step n by means of the “scaling”
parameter β, and the term αξn+1, i connects Nn+1, i to the outcome of the drawing at time-
step n + 1 by means of the parameter α. The case β = 1 corresponds to the standard
Eggenberger—Pólya urn with an initial number N0, i = bi + B0, i of balls of color i. When
β < 1, the RP urn model shows the following three characteristics:

(i) A reinforcement mechanism mainly based on the last observations;
(ii) A random persistent fluctuation of the predictive mean ψn, i = E[ξn+1, i = 1|, ξh, j, 0 ≤

h ≤ n, 1 ≤ j ≤ k];
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(iii) The almost sure convergence of the empirical mean ∑N
n=1 ξn, i/N to the deterministic

limit pi = bi/ ∑n
i=1 bi, and a chi-squared goodness of fit result for the long-term

probability distribution {p1, . . . , pk}.
Regarding point (iii), we specifically have that the chi-squared statistics

χ2 = N
k

∑
i=1

(Oi/N − pi)
2

pi
,

where N is the sample size and Oi = ∑N
n=1 ξn, i the number of sampled observations equal

to i, is asymptotically distributed as χ2(k− 1)λ, with λ > 1. Therefore, the presence of
correlation among observations attenuates the effect of N, which multiplies the chi-squared
distance between the observed frequencies and the expected probabilities. This is a key
feature for statistical applications in the framework of a “big sample”, where a small value
of the chi-squared distance might be significant, and hence a correction related to the
correlation between observations is required. In [3,5], a possible application in the context
of clustered data was described, with independence between clusters and correlation due
to a reinforcement mechanism inside each cluster.

In [4], the RP urn was applied as a good model for the evolution of the sentiment
associated with Twitter posts. Precisely, we analyzed three data sets: (i) the “COVID-19
epidemic” data set covers the period from 21 February to 20 April to 2020 and includes
tweets in Italian about the COVID-19 epidemic; (ii) the “Migration debate” data set refers
to the period from 23 January to 22 February 2019 and the collected posts are related to the
Italian debate on migration; (iii) the “10 days of traffic” data set collects the entire traffic of
posts in Italian in the period from 1 September to 10 September 2019. For every post, the
relative sentiment, that is, the positive or negative connotation of the text, was computed
using the polyglot python module developed in [6], which provides a numerical value
v ∈ [−1, 1] for the sentiment of a post (for a survey on sentiment analysis, also known as
opinion mining, we refer to [7] and references therein). We fixed a threshold T so that a
tweet with v > T was classified as a tweet with a positive sentiment and one with v < −T
was classified as a tweet with a negative sentiment. Tweets with a value v ∈ [−T, T] were
discarded. We took the following different values for T: T = 0, T = 0.35 and T = 0.5. We
applied the RP urn model, ordering the tweets according to their creation time and taking
each tweet with a positive/negative classification as an extraction in the urn model. More
specifically, we applied the RP model with k = 2: the time series of the tweets represents
the time series of the extractions from the urn, that is, the random variables ξn, 1. The event
{ξn, 1 = 1}means that tweet n exhibits a positive sentiment, while {ξn, 1 = 0}means that
tweet n exhibits a negative sentiment. For all the considered data sets, the estimated values
of β were strictly smaller than 1, but very near to 1 (details about the parameters estimation
can be found in [4]). Note that the RP urn dynamics with such a value for β cannot be
approximated by the standard Pólya urn (β = 1), because one would lose the fluctuations
of the predictive means and the possibility of touching the barriers {0, 1}. In this work, we
show that the law of such an RP urn process can be approximated by a Wright—Fisher
diffusion with mutation. More precisely, we prove that the multidimensional Wright—
Fisher diffusion with mutation can be obtained as a suitable limit of the predictive means
associated with a family of RP urns with β ∈[0,1), β→ 1. As an example, in Figure 1, for
the data set “COVID-19 epidemic”, we show the plot of the process (ψn, 1)n, reconstructed
from the data (details about the reconstruction process can be found in [4]) and rescaled in
time as t = n(1− β)2, the plot of a simulated (by the Euler–Maruyama method) trajectory
of the Wright—Fisher process, the plot of the approximation of this trajectory by means of
the RP urn and the approximation of the data process by means of the standard Pólya urn.
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Figure 1. “COVID-19 epidemic” Twitter data set: the black line is the process (ψn, 1)n, reconstructed
from the data and rescaled in time as t = n(1− β)2; the red line is a simulated trajectory of the
Wright—Fisher process; the orange line is the approximation of this trajectory by means of the RP urn
and the blue line is the approximation of the data process by means of the standard Pólya urn. The
numbers 0, 0.35 and 0.5 refer to the values chosen for the threshold T. The corresponding estimated
values for 1− β are: 0.000776 (8× 10−4), 0.00115 (11× 10−4) and 0.00130 (13× 10−4).

The Wright–Fisher (WF) class of diffusion processes models the evolution of the
relative frequency of a genetic variant, or allele, in a large randomly mating population
with a finite number k of genetic variants. When k = 2, the WF diffusion obeys the
one-dimensional stochastic differential equation

dXt = F(Xt)dt +
√

Xt(1− Xt)dWt, X0 = x0, t ∈ [0, T]. (1)

The drift coefficient, F : [0, 1]→ R, can include a variety of evolutionary forces such as
mutation and selection. For example, F(x) = p1 − (p1 + p2)x = p1(1− x)− p2x describes
a process with recurrent mutation between the two alleles, governed by the mutation rates
p1 > 0 and p2 > 0. The drift vanishes when x = p1/(p1 + p2) which is an attracting point
for the dynamics. Equation (1) can be generalized to the case k > 2. The WF diffusion pro-
cesses are widely employed in Bayesian statistics, as models for time-evolving priors [8–11]
and as a discrete-time finite-population construction method of the two-parameter Poisson–
Dirichlet diffusion [12]. They have been applied in genetics [13–18], in biophysics [19,20],
in filtering theory [21,22] and in finance [23,24].

The benefit coming from the proven limit result is twofold. First, the known prop-
erties of the WF process can give a description of the RP urn when the parameter β is
strictly smaller than one, but very near to one. Second, the given result might furnish the
theoretical base for a new simulation method of the WF process. Indeed, the simulation
from Equation (1) is highly nontrivial because there is no known closed form expression
for the transition function of the diffusion, even in the simple case with null drift [25].

The rest of the paper is organized as follows. In Section 2, we set up our notation and
we formally define the RP urn model. Section 3 provides the main result of this work, that
is, the convergence result of a suitable family of predictive means associated with RP urns
with β→ 1. In Section 4, employing the boundary classification of the WF diffusion with
mutation and connecting it to the parameters of the RP urn model, we introduce an RP urn
with a value of β very near to 1 the notion of recessive subsets of colors and the notion of
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dominant color. These two concepts are related to the possibility of reaching the barriers 0
and 1 by the predictive means of the urn process. Finally, Section 5 summarizes the work
and concludes it.

2. The Rescaled Pólya Urn

For a vector x = (x1, . . . , xk)
> ∈ Rk, we set |x| = ∑k

i=1 |xi| and ‖x‖2 = x>x =

∑k
i=1 |xi|2. Moreover we denote by 1 and 0 the vectors with all the components equal to 1

and equal to 0, respectively.
Let α > 0 and β ≥ 0. At time-step 0, the urn contains bi + B0, i > 0 distinct balls of

color i, with i = 1, . . . , k. We set b = (b1, . . . , bk)
> and B0 = (B0, 1, . . . , B0, k)

>. We suppose
b = |b| > 0 and we set p = b

b . At each time-step (n + 1) ≥ 1, a ball is drawn at random
from the urn and we define the random vector ξn+1 = (ξn+1, 1, . . . , ξn+1, k)

> as

ξn+1, i =

{
1 when the drawn ball at time-step n + 1 is of color i
0 otherwise.

The number of balls inside the urn is updated as follows:

Nn+1 = b + Bn+1 with Bn+1 = βBn + αξn+1 , (2)

which gives

Bn = βnB0 + αβn
n

∑
h=1

β−hξh . (3)

Similarly, from the equality

|Bn+1| = β|Bn|+ α ,

we get, using ∑n−1
h=0 xh = (1− xn)/(1− x),

|Bn| = βn|B0|+ α
n

∑
h=1

βn−h = βn
(
|B0| −

α

1− β

)
+

α

1− β
. (4)

Setting r∗n = |Nn| = b + |Bn|, that is the total number of balls inside the urn at
time-step n, we get the relations

r∗n+1 = r∗n + (β− 1)|Bn|+ α (5)

and

r∗n = b +
α

1− β
+ βn

(
|B0| −

α

1− β

)
. (6)

Denoting by F0 the trivial σ-field and setting Fn = σ(ξ1, . . . , ξn) for n ≥ 1, the
conditional probabilities ψn = (ψn, 1, . . . , ψn, k)

> of the extraction process, also called
predictive means, are

ψn = E[ξn+1|Fn] =
Nn

|Nn|
=

b + Bn

r∗n
n ≥ 0 (7)

and, from (3) and (4), we have

ψn =
b + βnB0 + α ∑n

h=1 βn−hξh

b + α
1−β + βn

(
|B0| − α

1−β

) . (8)

The dependence of ψn on ξh is regulated by the factor f (h, n) = αβn−h, with 1 ≤ h ≤
n, n ≥ 0. In the case of the standard Eggenberger—Pólya urn (i.e., the case β = 1), each
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observation ξh has the same “weight” f (h, n) = α. Instead, when β < 1 the factor f (h, n)
increases with h, and the main contribution is given by the most recent drawings. The case
β = 0 is an extreme case, for which ψn depends only on the last drawing ξn.

By means of (7), together with (2) and (5), we get

ψn+1 −ψn = − (1− β)

r∗n+1
b
(
ψn − p

)
+

α

r∗n+1

(
ξn+1 −ψn

)
. (9)

Setting ∆Mn+1 = ξn+1−ψn and letting εn = b(1− β)/r∗n+1 and δn = α/r∗n+1, from (9)
we obtain

ψn+1 −ψn = −εn(ψn − p) + δn∆Mn+1 . (10)

3. Main Result

Consider the RP urn with parameters α > 0, β ∈ [0, 1), b > 0 and B0 such that
|B0| = r(β) = α/(1− β). Consequently, the total number of balls in the urn along the

time-steps is constantly equal to r∗(β) = b + r(β) and if we denote by ψ(β) = (ψ
(β)
n )n the

predictive means corresponding to the fixed value β, we have the dynamics

ψ
(β)
n −ψ

(β)
n−1 = −ε(β)

(
ψ
(β)
n−1 − p

)
+ δ(β)∆M(β)

n , (11)

where

ε(β) =
b(1− β)2

α + b(1− β)
, δ(β) =

α(1− β)

α + b(1− β)
(12)

and ∆M(β)
n = ξ

(β)
n −ψ

(β)
n−1. Note that we have ε(β) ∼ cδ(β)2 for β→ 1, with c = b/α > 0.

Finally, we define X(β) = (X(β)
t )t≥0, where

X(β)
t = ψ

(β)
bt/(1−β)2c ⇐⇒ X(β)

t = ψ
(β)
n−1, t ∈ [ (n− 1)(1− β)2, n(1− β)2 ). (13)

The following result holds true:

Theorem 1. Suppose that X(β)
0 weakly converges towards some process X0 when β→ 1. Then,

for β → 1, the family of stochastic processes {X(β), β ∈ [0, 1)} weakly converges towards the
k-alleles Wright—Fisher diffusion X = (Xt)t≥0, with type-independent mutation kernel given by
p and with dynamics

dXt = −b
Xt − p

α
dt + Σ(Xt)dWt, (14)

with Σ(Xt)Σ(Xt)> =
(

diag(Xt)− XtXt
>
)

and 1>Σ(Xt) = 0>, that is,

Σ(Xt)ij =


0 if Xt,iXt,j = 0 or i < j√

Xt,i
∑k

l=i+1 Xt,l

∑k
l=i Xt,l

if i = j and Xt,iXt,j 6= 0

−Xt,i

√
Xt,j

∑k
l=j Xt,l ∑k

l=j+1 Xt,l
if i > j and Xt,iXt,j 6= 0.

(15)

Proof. Fix a sequence (βn), with βn ∈ [0, 1) and βn → 1. The sequence of processes
{X(βn), n ∈ N} is bounded, hence we have to prove the tightness of the sequence in the
space Dk[0, ∞) of right-continuous functions with the usual Skorohod topology, and the
characterization of the law of the unique limit process.

For any f ∈ C2
b , define
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γ
(β, f )
n (x) = Â(β) f ((n− 1)(1− β)2)(x)

= E
[ f (X(β)

n(1−β)2 )− f (X(β)
(n−1)(1−β)2 )

(1− β)2

∣∣∣X(β)
(n−1)(1−β)2 = x

]
= E

[ f (ψ(β)
n )− f (ψ(β)

n−1)

(1− β)2

∣∣∣ψ(β)
n−1 = x

]
by ψ

(β)
n −ψ

(β)
n−1=−ε(β)

(
ψ

(β)
n−1−p

)
+δ(β)∆M(β)

n
=

1
(1− β)2

(
E
[

f (x) + ∑
i

∂ f
∂xi

(x)(−ε(β)(xi − pi) + δ(β)∆Mn,i
(β))

+ 1
2 δ(β)2 ∑

ij

∂2 f
∂xi∂xj

(x)∆M(β)
n,i ∆M(β)

n,j + O((1− β)3)
∣∣∣Fn−1

]
− f (x)

)

= − b
α+b(1−β) ∑

i

∂ f
∂xi

(x)(xi − pi) +
1
2

α2

(α+b(1−β))2 ∑
ij

∂2 f
∂xi∂xj

(x)(xi1i=j − xixj)

+ O(1− β) .

(16)

We note that, for any f ∈ C2
b , the partial derivatives in (16) are uniformly bounded, as x

belongs to the compact simplex S = {xi ≥ 0, ∑i xi = 1}. The family {γ(β, f )
n (x), n ∈ N, β <

1, x ∈ S} is then uniformly integrable. Thus, as a consequence of [26] (Theorem 4) (or [27]
(ch. 7.4.3, Theorem 4.3, p. 236)), we have that the sequence of processes {X(βn), n ∈ N} is
tight in the space of right-continuous functions with the usual Skorohod topology. Since,

for any n and t, X(βn)
t ∈ S, then 1>Σ(Xt) = 0>. Moreover, the generator of the limit

process is determined by the limit

A f (t)(x) = lim
n→∞

γ
(βn , f )
bt/(1−β)2c(x)

= − b
α ∑

i

∂ f
∂xi

(x)(xi − pi) +
1
2 ∑

ij

∂2 f
∂xi∂xj

(x)(xi1i=j − xixj).

Hence, the weak limit of the sequence of the bounded processes X(βn) is the
diffusion process

dXt = −b
Xt − p

α
dt + Σ(Xt)dWt, Σ(Xt)Σ(Xt)

> =
(

diag(Xt)− XtXt
>
)

.

The expression (15) follows from [28] (Corollary 3).

Remark 1 (Limiting ergodic distribution). Since the simplex has dimension k− 1 with respect
to the Lebesgue measure, it is convenient to change the notations. Let Tk−1 be the k− 1-dimensional
simplex defined by

Tk−1 := {y ∈ Rk−1 : y1 ≥ 0, . . . , yk−1 ≥ 0, 1− y1 − y2 − · · · − yk−1 ≥ 0},

where, with the old definition, we have xi = yi, i < k and xk := 1 − y1 − y2 − · · · − yk−1.
Obviously, there is a one-to-one natural correspondence between Tk−1 and the simplex {x ∈ Rk :
x1 ≥ 0, . . . , xk ≥ 0, ∑i xi = 1} defined by

y = (y1, . . . , yk−1) ←→ (y1, . . . , yk−1, 1− y1 − y2 − · · · − yk−1) = (x1, . . . , xk−1, xk) = x.

The Markov diffusion process Xt in (14) may be redefined as Yt = (Xt,1, . . . , Xt,k−1) on
y ∈ Tk−1 with the corresponding generator

L f (y) = − b
α

k−1

∑
i=1

∂ f
∂yi

(y)(yi − pi) +
1
2

k−1

∑
i,j=1

∂2 f
∂yi∂yj

(y)(yi1i=j − yiyj). (17)
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The Kolmogorov forward equation for the density p(y, t) of the limiting process Y t is

∂

∂t
p(y, t) =

1
2

(
b
α

k−1

∑
i=1

∂

∂yi

(
p(y, t)(yi − pi)

)
+

k−1

∑
i=1

∂2

∂y2
i

(
yi(1− yi)p(y, t)

)
− 2 ∑

1≤i<j≤k−1

∂2

∂yi∂yj

(
yiyj p(y, t)

))
. (18)

Therefore, it is not hard to show that the limit invariant ergodic distribution is

p(y) =
1

B(2 b
α p)

(1− y1 − · · · − yk−1)
2b(1−p1−···−pk−1)

α −1
k−1

∏
i=1

y
2bpi

α −1
i , (19)

because it satisfies (18) (see also [29]). The above distribution is the Dirichlet distribution Dir
(
2 b

α p
)

as a function of x = (y, 1− y1 − · · · − yk−1).

Remark 2 (Transition density of the limit process). The transition density p(y0, y; t) is
defined by

P(Yt ∈ S|Y0 = y0) =
∫

S∩Tk−1
p(y0, y; t)dy

and it can be represented in terms of series of orthogonal polynomials [30] as shown in [31].
Moreover, we refer to [9,32,33] for the explicit form of the reproducing kernel orthogonal polynomials.

4. Recessive and Dominant Colors in an RP Urn with β Near to 1

Let J = {J1, . . . , Jk J} be a partition of {1, . . . , k}, in that Jl 6= ∅, Ji1 ∩ Ji2 = ∅, and

∪k J
l=1 = {1, . . . , k}. Here k j denotes the cardinality of J . Define the k J-dimensional objects

(ψ
(β,J)
n )n, (ξ(β,J)

n )n and p(J) as

ψ
(β,J)
n,i = ∑

l∈Ji

ψ
(β)
n,l

ξ
(β,J)
n,i = ∑

l∈Jl

ξ
(ε)
n,l

p(J)
i = ∑

l∈Ji

pl


for i = 1, . . . , k J ,

and X(β,J)
t = ψ

(β,J)
bt/(1−β)2c. With these definitions, from (11), we immediately get that

(ψ
(β,J)
n )n is a k J-dimensional RP urn following the dynamics

ψ
(β,J)
n −ψ

(β,J)
n−1 = −ε(β)

(
ψ
(β,J)
n−1 − p(J))+ δ(β)

(
ξ
(β,J)
n −ψ

(β,J)
n−1

)
(20)

and that Theorem 1 holds for X(β,J)
t . Consequently, the convergence to the Wright—Fisher

diffusion still holds if we group together some components of the process. For instance,
when we consider two groups of components, we have the following result:

Corollary 1. Let J = {J, Jc} with J 6= ∅, Jc 6= ∅. Under the hypothesis of Theorem 1, each
component of the sequence of processes X(β,J)

t converges, for β → 1, to the one-dimensional
diffusion process with values in [0, 1] that satisfies the SDE

dX(J)
t,i = −b

X(J)
t,i − pi

α
dt + (−1)i+1

√
X(J)

t,i (1− X(J)
t,i )dWt.

In addition, X(J)
t,1 = ∑l∈J Xt,l and X(J)

t,2 = ∑l∈Jc Xt,l .
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Now, if we further specialize the grouping choice to J = ({i}, {1, . . . , i− 1, i+ 1, . . . , k}),
we get:

Corollary 2. Under the conditions of Theorem 1 the i-th component of the sequence of processes
X(β) converges, for β → 1, to the one-dimensional diffusion (Xt,i)t≥0 with values in [0, 1]
satisfying the SDE

dXt,i = −b
Xt,i − pi

α
dt +

√
Xt,i(1− Xt,i)dWt.

For instance, the above two results are useful in order to translate the well-known
classification of the boundaries of the WF process with mutation [34] (p. 239, Example 8)
(see also [35]) to the RP urn model when the parameter β is strictly smaller than 1, but very
near to 1. Indeed, Corollary 1 implies that Zt = ∑l∈J Xt,l satisfies the SDE

dZt = −b
Zt −∑l∈J pl

α
dt +

√
Zt(1− Zt)dWt

=

(
− b

α

(
1−∑

l∈J
pl

)
Zt +

b
α ∑

l∈J
pl(1− Zt)

)
dt +

√
Zt(1− Zt)dWt.

Setting a0 = b
α ∑l∈J pl and a1 = b

α − a0 and noting that ∩i∈J{Xt,i = 0} = {Zt = 0},
we obtain:

(1) a0 < 1/2, i.e., ∑l∈J pl <
α
2b , if and only if P(∃t : ∩i∈J {Xt,i = 0}) = 1;

(2) a0 ≥ 1/2, i.e., ∑l∈J pl ≥ α
2b , if and only if P(∃t : ∩i∈J {Xt,i = 0}) = 0.

With the same spirit, Corollary 2 states that Zt = 1− Xt,i satisfies the SDE

dZt = −b
Zt −∑l 6=i pl

α
dt +

√
(1− Zt)ZtdWt

=
(
− b

α
piZt +

b
α
(1− pi)(1− Zt)

)
dt +

√
Zt(1− Zt)dWt.

Setting a0 = b
α (1− pi) and a1 = b

α − a0, we get:

(3) a0 < 1/2, i.e., pi > 1− α
2b , if and only if P(∃t : {Xt,i = 1}) = 1;

(4) a0 ≥ 1/2, i.e., pi ≤ 1− α
2b , if and only if P(∃t : {Xt,i = 1}) = 0.

Therefore, for an RP urn with β < 1, but very near to 1, we can give the
following definition:

Definition 1. We call recessive a non-empty subset J ( {1, . . . , k} of colors such that ∑l∈J pl <
α
2b .

We call dominant a color i ∈ {1, . . . , k} such that {1, . . . , k} \ {i} is recessive.

Obviously, every subset of a recessive set is recessive. Moreover, when α
b > 2(1−mini pi),

every set J ( {1, . . . , k} is recessive. The terms “recessive” and “dominant” are justified by the
fact that, recalling properties (1)–(4) of the WF process, if a set of colors is recessive, then we
can observe that at some times the corresponding predictive means of the urn process are very
near to zero. On the contrary, when a color is dominant, we can observe that at some times the
corresponding predictive mean of the urn process is very near to one. In Figure 2, we plot the
process (ψn,1) related to the simulation of an RP urn with k = 2, α/b = 1 and p = 0.75, where
it is possible to observe the excursions near the barrier 1.
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Figure 2. Simulation: plot of the process (ψn,1) related to the simulation of an RP urn with k = 2,
α/b = 1 and p = 0.75.

5. Conclusions

We have proven that the multidimensional WF diffusion with mutation can be ob-
tained as the limit of the predictive means associated with a family of RP urns with β < 1,
β→ 1. As a consequence, the known properties of the WF process can give a description of
the RP urn when the parameter β is strictly smaller than 1, but very near to 1. For instance,
starting from the known classification of the boundaries for the WF process and connecting
it to the model parameters of the RP urn, we have obtained for an RP urn with a value of
β very near to one, the notion of recessive subsets of colors and the notion of a dominant
color. These two concepts are related to the possibility of reaching the barriers 0 and 1
by the predictive means of the urn process. Other classical problems, together with the
corresponding known results for the WF process, can be found in [31]. These results can be
used in order to give an approximated answer to the considered problems in the case of an
RP urn with a value of β near 1.
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