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Abstract: Rotating nonlinear waves of excitation in the heart cause dangerous cardiac arrhythmias.
Frequently, ventricular arrhythmias occur as a result of myocardial infarction and are associated with
rotation of the waves around a post-infarction scar. In this paper, we perform a detailed in silico
analysis of scroll waves in an anatomical model of the human ventricles with a generic model of
the infarction scar surrounded by the gray zone with modified properties of the myocardial tissue.
Our model includes a realistic description of the heart shape, anisotropy of cardiac tissue and a
detailed description of the electrical activity in human ventricular cells by a TP06 ionic model. We
vary the size of the scar and gray zone and analyze the dependence of the rotation period on the
injury dimensions. Two main regimes of wave scrolling are observed: the scar rotation, when the
wave rotates around the scar, and the gray zone rotation, when the wave rotates around the boundary
of the gray zone and normal tissue. The transition from the gray zone to the scar rotation occurs
for the width of gray zone above 10–20 mm, depending on the perimeter of the scar. We compare
our results with simulations in 2D and show that 3D anisotropy reduces the period of rotation. We
finally use a model with a realistic shape of the scar and show that our approach predicts correctly
the period of the arrhythmia.

Keywords: cardiac arrhythmia; scroll wave; myocardial infarction; cardiac modeling

1. Introduction

Rotational activity of excitation waves in the heart is the most important mechanism
of the dangerous cardiac arrhythmias. Such rotational activity, which in cardiology is called
reentry, can be of two main types: anatomical and functional reentry. Anatomical reentry is
a rotation of a wave around a compact region in the heart, which may be an inexcitable
obstacle (scar), a large blood vessel or another anatomical structure. Functional reentry
is a rotation around a functional obstacle which is created by the wave itself and is not
associated with tissue heterogeneity or anatomical structures.

From mathematical point of view, excitation waves in the heart belong to a large
class of non-linear waves in the reaction–diffusion equations, where anatomical reentry
is the rotation of wave around an obstacle and functional reentry is normally referred
to as a rotating spiral (or scroll) wave. In mathematical biology, anatomical reentry in
most of the cases was considered in generic 2D formulations [1–6]. These studies revealed
important characteristics of the waves, such as non-monotonic dependency of the period of
rotation on obstacle size [1], dynamical instabilities [6], anchoring [2], and transitions from
anatomical to functional reentry [1,3]. However, application of these results in cardiology is
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not straightforward. This is because real anatomical obstacles in the heart have a complex
structure [7]. For example, in atria, obstacles such as cardiac valves and pulmonary veins
are surrounded by cardiac fibers with a complex anisotropy [8]. In the ventricles of the
heart, the situation is even more complicated, as wave rotation there is three-dimensional.
In addition, in most of the cases obstacles related to ventricular arrhythmias occur as a
result of myocardial infarction. In that case such obstacles contain a compact scar which is
fully inexcitable region, surrounded by so called gray zone—a region where properties of
cardiac tissue are different from the properties of the normal myocardium [9].

In current literature, rotational activity in myocardium with post-infarction injury is
mainly studied using bio-engineering approach where patient specific models of the heart
are created, and researchers try to mimic clinical procedures of induction of arrhythmias
and their possible management by ablation [10–12]. There are also studies [13] which ad-
dress the role of infarction scar dimension in the repolarization properties and contribution
of the anisotropic structure of the border zone around the scar in initiation of arrhythmia.
Another paper [14] studies the role of dynamical instabilities in the gray zone as the triggers
of arrhythmia. All these studies mainly address a very important question of initiation
of arrhythmias. However, they do not analyze in a consistent way dynamic properties of
arrhythmia evaluation in time.

We have recently performed an extensive study of the dynamics of wave rotating
around an obstacle surrounded by heterogeneous tissue in 2D, which is a generic model of
the myocardial infarction scar [15]. We found how the period of rotation depends on the
size of the scar and gray zone and revealed two possible regimes of wave rotation either
around the scar: scar rotation, or around the gray zone: gray zone rotation. We also identified
the factors which determine the transition between the regimes.

The main aim of this paper was to extend this study to a realistic anatomical model of
the human ventricles with a post-infarction injury of various size. We created more than 60
models in which, similar to the work in [15], we varied the size of the scar and gray zone,
found periods of the scroll waves, and classified the rotation regimes. Compared to the
paper in [15], these models have a realistic three-dimensional shape of the ventricles and
account for anisotropy of cardiac tissue, which substantially affects the velocity of wave
propagation. We found in the anatomical models both a scar rotation regime and also the
gray zone rotation regime. We estimated characteristic sizes of the obstacle and gray zone for
which change in the rotation regime occurs. We found that dependency of the period of the
arrhythmia on the geometry of the scar can be qualitatively understood from the results
obtained in [15]. However, quantitative values are substantially affected by the anisotropy
and 3D nature of the model. We quantified these effects.

Finally, we performed simulations in a patient-specific model with a post-infarction
scar and found that dependencies in our study quantitatively correctly predict the period
of arrhythmia in that case.

2. Materials and Methods
2.1. Model of the Ventricular Geometry

In this study, we used an anatomical bi-ventricular model derived from a four-chamber
heart model from an available dataset [16] with Creative Commons Attribution 4.0 Inter-
national license. The geometric model contains information on the myocardial fiber field
and universal ventricular coordinates [17] assigned. To form the bi-ventricular model, we
removed (cut off with a plane) atrial geometries from the original model. The size of the
resulting finite-difference grid was 43 × 65 × 55 mm3. Figure 1 shows the final ventricular
geometry used further for electrophysiological simulations. To convert a finite-element
tetrahedral model into a finite-difference hexagonal model, a finite-element mesh was
overlaid with a 3D regular Cartesian grid. For each tetrahedron of the finite-element
model, a sphere which circumscribed this element was constructed and all voxels of the
finite-difference grid within this sphere were marked as myocardium.
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Figure 1. Anatomical model of the left (blue) and right (white) ventricles from the human heart.
(The image was generated by the authors from the open data set from file 01.tar.gz which can be
found at https://doi.org/10.5281/zenodo.3890034, (accessed on 13 August 2021) in a supplement for
paper [16]). There are 405382 points on the image.

2.2. Infarction Scar Construction

Post-infarction scars of various sizes and corresponding border zones around the scar
were incorporated into a personalized geometric model of heart ventricles. We simulated a
transmural post-infarction scar of an idealized circular shape (Figure 2a). The radius of the
scar vary from 14 to 34 mm, ranging from 2.5% to 15% of the total myocardium volume of
the left ventricle with a step of 2.5% of myocardial volume. Corresponding perimeters of
the infarct scar on epicardium varied from 89 to 214 mm. The volume of the border zone
range from 2.5% to 25% of the total myocardium volume of the left ventricle with a step of
2.5%. The corresponding width of the border zone varies between 3 and 30 mm for the
smallest scar radius of 14 mm, and between 1 and 19 mm for the largest scar radius of 34
mm. Figure 2a shows an example of a scar with the border zone.

Figure 2. View of the post-infarction scars (blue) and gray zone (gray) around it. Healthy area is
shown in red. (a) Post-infarction scar and gray zone has an ideal circular shape. Radius of the scar is
18 mm (perimeter of 114 mm), width of the border zone is 5 mm. There are 381612 points for healthy
tissue, 8109 points for the gray zone tissue, and 15661 points for the scar tissue. (b) Post-infarction
scar of realistic shape derived from a CT clinical infarction image. There are 161783 points on the
image. (The image was generated by the authors from open data source from the file 1-mesh-uvc.vtk
which can be found at https://doi.org/10.18742/RDM01-570, (accessed on 13 August 2021) in a
supplement for the paper in [18]). The scar perimeter is 72 mm and gray zone width is 7.5 mm. Light
blue color displays the scar on the epicardial surface and dark blue color displays the scar on the
endocardial surface.

https://doi.org/10.5281/zenodo.3890034
https://doi.org/10.18742/RDM01-570
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We have also generated a model with realistic shape of post-infarction scar (Figure 2b)
based on clinical CT recordings from an open dataset [18] with ODC-BY 1.0 license. Three
samples of the gray zone with various widths on the epicardial surface were built around
the scar (see an example in Figure 2b).

2.3. Electrophysiological Model of Healthy Myocardium and Gray Zone

To describe propagation of the excitation wave in the myocardial tissue we used a
3-dimensional monodomain formulation [4]:

Cm
∂V
∂t

= ∇D∇V − Iion, (1)

where V is the transmembrane potential; D is a electro-diffusion tensor for anisotropic tis-
sue; Iion is a sum of all transmembrane ionic currents, described in a biophysically detailed
cellular ionic TP06 model [19] of action potential in human ventricular cardiomyoytes:

Iion = INa + IK1 + Ito + IKr + IKs + ICaL + INaCa + INaK + IpCa + IpK + IbNa + IbCa, (2)

where INa is the Na+ current, IK1 is the inward rectifier K+ current, Ito is the transient
outward current, IKr is the delayed rectifier current, IKs is the slow delayed rectifier current,
ICaL is the L-type Ca2+ current, INaCa is the Na+/Ca2+ exchanger current, INaK is the
Na+/K+ ATPhase current, IpCa and IpK are plateau Ca2+ and K+ currents, and IbNa and
IbCa are background Na+ and Ca2+ currents. Specific details about each of those currents
can be found in the original paper [19]. In general, equations for each current normally
have the following form:

I◦ = G◦gα
◦g

β
•(Vm −V◦), (3)

where
∂gi
∂t

=
g∞

i (Vm)− gi

τi(Vm)
, i = ◦, •, (4)

Here, a hypothetical current I◦ has a maximal conductivity of G◦ = const, and its value
is calculated from expression (3). The current is zero at Vm = V∗, where V◦ is the so-called
Nernst potential, which can be easily computed from concentration of specific ions outside
and inside the cardiac cell. The time dynamics of this current is governed by two gating
variables g◦,g• to the power α,β. The variables g◦,g• approach their voltage-dependent
steady state values g∞

i (Vm) with characteristic time τi(Vm). Thus integration of model
Equations (1)–(4)) involves a solution of a parabolic partial differential Equation (1) and
of many ordinary differential Equations (3) and (4). For our model the system (1)–(4) has
18 state variables.

An important part of the model is the electro-diffusion tensor D. We considered
myocardial tissue as an anisotropic medium, in which the electro-diffusion tensor D is
orthogonal 3× 3 matrix with eigen values D f iber and Dtransverse which account for electrical
coupling along the myocardial fibers and in the orthogonal directions. In our simulations
D f iber = 0.154 mm2/ms and ratio D f iber/Dtransverse of 4:1 which is within the range of
experimentally recorded ratios [20]. It gives a conduction velocity of 0.7 mm/ms along
myocardial fibers and 0.28 mm/ms in the transverse direction, which corresponds to
anisotropy of the human heart.

To find electro-diffusion tensor D for anatomical models, we used the following
methodology. Electro-diffusion tensor at each point was calculated from fiber orientation
filed at this point using the following equation [13]:

Di,j = (D f iber − Dtransverse)aiaj + Dtransverseδij (5)

where ai is a unit vector in the direction of the myocardial fibers, δij is a the Kronecker
delta, and D f iber and Dtransverse are the diffusion coefficients along and across the fibers,
defined earlier.
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Fiber orientations were a part of the open datasets [18]. Three fiber orientations at
each node were determined using an efficient rule-based approach developed in [21]. Fiber
orientations were determined from the individual geometry of the ventricles. For that,
a Laplace–Dirichlet method was applied [21–23]. The method involves computing the
solution of Laplace’s equation at which Dirichlet boundary conditions at corresponding
points or surfaces were imposed. Based on that potential, a smooth coordinate system
inside the heart is constructed to define the transmural and the orthogonal (apicobasal)
directions inside the geometry domain. The fiber orientation was calculated depending on
the transmural depth of the given point between the endocardial and epicardial surfaces
normalized from 0 to 1. The main idea here is that there is a rotational anisotropy in the
heart, i.e., the fiber angle smoothly changes from epicardial to endocardial surface [24]. Such
rotation was introduced and the method was validated on experimentally measured data
in [21]. All additional details on the method can be also found in [21]. The original finite
element geometry from publicly available dataset [16] contains about 2 · 106 tetrahedrons,
which is comparable to the number of elements in computational finite-difference heart
domain. For the transfer of fiber orientation vectors to the computational geometry, we used
nearest neighbor interpolation method, which reassigned fibers from centers of individual
tetrahedrons of initial mesh to each voxel of computational finite difference model.

Initial conditions for voltage were set as the rest potential V = Vrest for the cardiac
tissue and steady state values for gating variables. Boundary conditions were formulated
as the no flux through the boundaries:

~nD∇V = 0, (6)

where~n is the normal to the boundary.
For each type of ventricular myocardial tissue (healthy myocardium, post-infarction

scar, and gray zone), its own electrophysiological properties were set.
Baseline parameter values of TP06 [19] ionic model were used to simulate a healthy

myocardium. Post-infarction scar elements were simulated as non-conducting inexcitable
obstacles and considered as internal boundaries (no flux) for the myocardial elements.
To simulate the electrical activity of the border zone, the cellular model was modified
in accordance with [25]. The maximal conductances of the several ionic channels were
reduced, particularly, INa by 15%, ICaL by 20%, IKr by 30%, IKs by 80%, IK1 by 70 %, and
Ito by 90%.

2.4. Spiral Wave Initiation

A standard S1-S2 protocol [26] was implemented (Figure 3) for ventricular stimulation.
The S2 stimulus was applied 465 ms after the S1 stimulus.

Figure 3. Initiation of the rotational activity using S1–S2 protocol: S1 stimulus (A), S2 stimulus (B),
and wave rotation around a scar (C,D). Arrows show direction of the wave rotation. There are 397273
points in a geometry on the image.

Numerical Methods

To solve the monodomain model we used a finite-difference method with 18-point
stencil discretization scheme as described in [26] with 0.45 mm for the spatial step and
0.02 ms for the time step. Our estimates on 2D grids showed that such spatial discretization
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is sufficient to reproduce all important rotation regimes (Table S1 and Figure S1 in the
Supplementary Materials). The Laplacian was evaluated at each point (i, j, k) in the human
ventricular geometry:

4 (i, j, k) =
∂

∂i
(Dij

∂Vm

∂Xj
) (7)

It was descritized by finite difference method which can be represented by the follow-
ing equation:

L(i, j, k) = ∑ w1Vm(l) (8)

where L is an index running over the 18 neighbors of the point (i, j, k) and the point itself,
and wl are the weights defined for each neighboring point l which defines contribution of
voltage at that point to to the Laplacian. The method for weights calculation is described in
detail in [27]. Next, Equation (1) was integrated using explicit numerical scheme:

Vn(i, j, k) = Vn−1(i, j, k) + ht ∗ Ln−1(i, j, k)/Cm − ht ∗ In−1
ion (i, j, k)/Cm, (9)

where ht is the time integration step, Vn(i, j, k) and Vn−1(i, j, k) are the values of the variable
V at grid point (i, j, k) at time moments n and n− 1, and Ln−1(i, j, k) and In−1

ion (i, j, k) are
values of the Laplacian and ion current at node (i, j, k) at moment n− 1.

For the solution of ordinary differential equations for gating variables, the Rush–
Larsen algorithm was used [28]. For gating variable g described by Equation (4) it is
written as

gn(i, j, k) = g∞ + (gn−1(i, j, k)− g∞)e−ht/τg (10)

where g∞ denotes the asymptotic value for the variable g, and τg is the characteristic
time-constant for the evolution of this variable, ht is the time step, gn−1 and gn are the
values of g at time moments n − 1 and n. All calculations were performed using an
original software developed in [27]. Simulations were performed on clusters “URAN”
(N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian
Academy of Sciences) and “IIP” (Institute of Immunology and Physiology of the Ural
Branch of the Russian Academy of Sciences, Ekaterinburg). The program uses CUDA for
GPU parallelization and is compiled with a Nvidia C Compiler “nvcc”. Computational
nodes have graphical cards Tesla K40m0. The software described in more detail in study
by De Coster [27].

3. Results

We studied ventricular excitation patterns for scroll waves rotating around a post-
infarction scar. Figure 3 shows an example of such excitation wave. In most of the cases, we
observed stationary rotation with a constant period. We studied how this period depends
on the perimeter of the compact infarction scar (Piz) and the width of the gray zone (wgz).
We also compared our results with 2D simulations from our recent paper [15].

3.1. Rotation Period

Figure 4a,b shows the dependency of the rotation period on the width of the gray
zone wgz for six values of the perimeter of the infarction scar: Piz = 89 mm (2.5% of
the left ventricular myocardium volume), 114 mm (5%), 139 mm (7.5%), 162 mm (10%),
198 mm (12.5%), and 214 mm (15%). We see that all curves for small wgz are almost
linear monotonically increasing functions. For larger wgz, we see transition to horizontal
dependencies with the higher asymptotic value for the larger scar perimeter. Note that in
Figures 4a,b and 5, and subsequent similar figures, we also show different rotation regimes
by markers, and it will be discussed in the next subsection.

Figure 5 shows dependency of the wave period on the perimeter of the infarction scar
Piz for three widths of the gray zone wgz = 0, 7.5, and 23 mm. All curves show similar
behaviour. For small size of the infarction scar the dependency is almost horizontal. When
the size of the scar increases, we see transition to almost linear dependency. We also observe
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that for largest width of the gray zone the slope of this linear dependency is smallest: for
wgz = 23 mm the slope of the linear part is 3.66, while for wgz = 0, and 7.5 mm the slopes
are 7.33 and 7.92, correspondingly.

We also performed simulations for a realistic shape of the infarction scar (perimeter is
equal to 72 mm, Figure 2b) for three values of the gray zone width: 0, 7.5, and 23 mm. The
periods of wave rotation are shown as pink points in Figure 5. We see that simulations for
the realistic shape of the scar are close to the simulations with idealized circular scar shape.

Note that qualitatively all dependencies are similar to those found in 2D tissue models
in [15]. We will further compare them in the subsequent sections.

Figure 4. Dependence of the wave rotation period on the width of the gray zone in simulations with
various perimeters of infarction scar. Here, and in the figures below, various symbols indicate wave
of period at points where simulations were performed. A star indicates functional rotation, a triangle
indicates gray zone rotation, a square indicates scar rotation, and a circle indicates scar rotation two. (a)
Dependence for infarction perimeter 114 mm, 162 mm, and 214 mm. (b) Dependence for infarction
perimeter 89 mm, 139 mm, and 198 mm.

Figure 5. Dependence of the wave rotation period on the perimeter of the infarction scar at various
gray zone width. A pink points indicate the results for realistic shape infarct. A star indicates
functional rotation, a triangle indicates gray zone rotation, a square indicates scar rotation, and a circle
indicates scar rotation two.

The results of all numerical experiments are presented in Table 1.

3.2. Wave Rotation Regimes

In [15], we classified the wave patterns into two main rotation regimes depending on
the scar perimeter and gray zone width: the scar rotation, where the wave rotation edge
follows the boundary of the scar, and the gray zone rotation, where the wave rotation edge
follows the boundary of the gray zone and normal tissue. In these regimes the period is
determined by the perimeter of the scar or the gray zone, correspondingly. Additional
regime of functional rotation reported in [15] occurs where the period of rotation does not
depend on the size of the scar. It was observed only for small scars and is a transition from
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anatomical to functional reentry. Let us use this classification to analyze the ventricular
excitation patterns which we observed in the 3D anatomical model.

Table 1. Wave rotation period (in milliseconds) for different gray zone size (horizontally), and for different size of the scar
(vertically) expressed as the percentage of healthy tissue.

GZ Scar 0% 2.5% 5% 7.5% 10% 12.5% 15% 17.5% 20% 22.5% 25%

2.5% 295 346 376 404 427 448 464 469 469 469 472
5% 333 374 400 417 448 469 469 480 504 480 480
7.5% 362 402 427 451 467 483 483 488 493 493 493
10% 392 427 451 474 488 499 499 507 513 513 513
12.5% 432 442 469 491 504 516 516 523 525 525 524
15% 456 464 493 511 528 533 533 544 549 544 544

In Figure 5, for small scars we see a flat dependency of the period on the scar perimeter
for each fixed gray zone width. For all curves it approximately occurs for the scar perime-
ters Piz =< 50 mm. Here, the waves rotate in the functional rotation regime. An example of
such wave pattern is shown in Figure 6a. We see the rotation effectively occurs around a
circle with the radius larger than the size of the scar and thus size of the scar does not affect
the rotation period. Similar wave behaviour in the functional rotation regime at small scar
sizes we observed in 2D simulations [15].

Figure 6. Examples of different rotation regimes (inside view of the left ventricle): (a) functional
rotation, (b) gray zone rotation, (c) scar rotation, and (d) scar rotation two. Arrows indicate wave direction.
Dots show the border of the gray zone. Gray color means the scar. The infarction perimeter for (a,b)
is 35 mm, for (c,d) is 162 mm. The gray zone perimeter for (a,d) is 0 mm, for (b,d) is 7.5 mm. There
are 398922 points on the images (a,b), and 366962 points on the images (c,d).

Another important regime we found in the ventricular model is gray zone rotation.
Figure 6b shows an example of such wave pattern. We clearly see that the wave rotates
around the outer border of the gray zone. One of the hallmarks of gray zone rotation is
that the period depends only on the perimeter of the gray zone, independently on the
size of the compact scar inside it. Thus, if we plot dependencies of the wave period on
the perimeter of the gray zone for different values of Piz all curves should be close to each
other. Indeed, we see (Figure 7) that all curves, corresponding to different perimeters of
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the infarction scar, almost perfectly match each other in the range of the perimeter of gray
zone PGZ < 220 mm, thus we expect the gray zone rotation regime in such parameter range.

Figure 7. Dependence of the wave rotation period on the perimeter of the gray zone for different
perimeters of the infarction scar. A star indicates functional rotation, a triangle indicates gray zone
rotation, a square indicates scar rotation, and a circle indicates scar rotation two.

For large gray zone width wGZ, in the anatomical ventricular model we observe
wave rotation around the scar inside the gray zone named as scar rotation two regime. We
illustrate this wave pattern in Figure 6d. It is characterized by a flat dependency of the
period on the size of the gray zone (Figure 4a,b). It occurred for wGZ > 10 mm for the
largest scar perimeter of 214 mm and for wGZ > 18 mm for the smallest scar perimeter of
114 mm. Thus, the transition to the scar rotation two regime occurs at more narrow border
zone for a larger scar. These observations are qualitatively in line with 2D results reported
in [15].

3.3. Comparison with 2D

Now, let us compare the dependencies found in our anatomical model with those
in 2D case and quantify 3D effects. For that, we performed additional 2D simulations in
which we studied rotation around the scar of the same perimeter of PIZ = 162 mm as one
used in Figure 4a (the blue line). We implemented two cases of 2D model simulations:
isotropic cardiac tissue (the diffusion coefficients ratio 1:1) and anisotropic tissue with the
anisotropy ratio of 4:1; the latter is as that in our anatomical model. In the anisotropic case,
we considered parallel fibers directed along the horizontal axis of the tissue sheet. The
results derived from 3D and 2D simulations at various gray zone widths are shown in
Figure 8. We see that the all curves show qualitatively similar initial linear growth and
further saturation of the period with gray zone width increase. However, quantitatively,
the dependency in 3D (the blue curve) lies in between the curves for 2D isotropic and
anisotropic cases. Moreover, we clearly see that the 3D case is closer to the 2D isotropic
case than the 2D anisotropic case. To quantify it, we calculated the ratio of periods in 2D to
that in 3D for both 2D cases. We see that if we compare 2D isotropic case with 3D then the
ratio of periods is around 0.86 (−14% relative difference) for the gray zone width of 7.5 mm
and 0.94 (−6%) for gray zone of 18 mm. If we compare the periods in 2D anisotropic model
against the 3D, we see that here the period ratio is larger: 1.35 (+35%) for the gray zone of
7.5 mm, and 1.13 (+13%) for gray zone of 18 mm.

In another series of simulations (see Figure 9), we compared dependencies of the wave
period on the scar perimeter derived from 3D anatomical model and 2D tissue simulations.
Again, we see qualitatively similar behaviour of the curves, and the period in 3D model
is smaller than that in the 2D anisotropic case, but larger than that in the 2D isotropic
case except for a few points at small scar size. For these small infarction scar perimeters
(22–54 mm in Figure 9), 3D and 2D isotropic cases are close to each other: the ratio of
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periods is approximately equal to 1. With further decrease in the scar perimeter (0–22 mm),
3D dependency has a horizontal segment, while for both 2D cases we see a decrease in
the period. As a result, the periods in the 2D anisotropic tissue become closer to that in
the ventricles.

The main difference of 2D and 3D anisotropy is that in 3D the ventricular myocardium
has a rotational anisotropy, when the fiber orientation rotates to up to 150 degrees through
the myocardial wall [24]. In 2D, we consider the case of constant fiber orientation. Thus,
we can make the following conclusion: Although anisotropy with constant fiber direction
increases the period compared with 2D isotropic tissue, the rotation of the fibers in 3D
reduces the effect of anisotropy and the wave rotation occurs almost as if we have an
isotropic medium with the diffusion coefficient corresponding to the maximal eigen value of
the diffusion matrix in Equation (1), which showed that the rotational anisotropy increases
wave propagation velocity and the velocity approaches the fastest possible propagation
velocity in the tissue.

Figure 8. Comparison of dependencies of the wave period on the gray zone width in 3D anatomical
model (blue line) and 2D tissue simulations (isotropic case, purple line; anisotropic case, red line).
The perimeter of the infarction scar in all models is 162 mm. A triangle indicates gray zone rotation, a
square indicates scar rotation, and a circle indicates scar rotation two.

Figure 9. Comparison of dependencies of the wave period on the perimeter of the infarction scar in
3D anatomical model (blue line) and 2D tissue simulations (isotropic case, purple line; anisotropic
case, red line). The width of the gray zone for all models is 7.5 mm. A star indicates functional rotation
and a triangle indicates gray zone rotation.
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4. Discussion

In this paper, we performed a comprehensive study of the factors affecting the period
of rotational activity in the ventricles of the human heart in the presence of post-infarction
scar. We represented an infarction injury area by a compact scar region and gray zone
around it and used a generic circular geometry for the domains, and state-of-the-art model
for cardiac cells [19]. Moreover, we used also the geometry of human heart obtained
from the patient MRI data [16] to compare with generic models. This study is a direct
continuation of our previous research of the same phenomena in 2D myocardial tissue [15];
however, it includes essential additional features of the system, which are a realistic 3D
shape of the ventricles, and realistic anisotropy of the cardiac tissue. We showed that in
the realistic 3D model we also observe two main rotation regimes: the scar rotation and
the gray zone rotation. We also observed two scar rotation regimes: scar rotation which
occurred at a very small or absent gray zone and scar rotation two which occurred at a larger
gray zone. However, because an infarction scar is usually surrounded by a substantial
gray zone, only the scar rotation two regime, i.e., rotation inside the gray zone, can have
practical importance.

Note that mathematical methods are widely used in various applications in cardiology,
such as in the basic study of arrhythmia sources [29], correlation of cardiovascular risk
markers [30], to support and optimize the relevant choices in cardiac surgery via building
us mathematical models [31], and to develop novel ways of assessment of properties of
the heart via ultrafast shear wave imaging based on multiphysics platform which includes
modeling parts [32].

For the transition from the gray zone to the scar rotation two regime we found the
following. For scars of a small perimeter (114 mm or less, see Figure 4a, red line), we
observed the transition from gray zone rotation to the scar rotation two regime at the widths
of the gray zone of about 20 mm. For the larger size of the scar (the perimeter above
190 mm, see Figure 4a, green line and Figure 4b aquamarine line ) the transition to the scar
rotation two regimes occurred for lower gray zone widths of approximately 10–15 mm. Such
difference can be explained based on our 2D simulations [15] as follows. The transition
from the gray zone to scar rotation two regime occurs, when the period of rotation of the wave
around the scar is smaller than the period of rotation around the gray zone. The period in
turn is determined by the velocity of wave propagation, thus important here is a relation
between the velocity of wave propagation inside the gray zone versus the normal tissue.
For larger scars (where period of wave rotation around scar is greater), this difference in the
wave speed between the normal and gray zone tissue is smaller (see restitution curves, i.e.,
the wave speed against the cycling period, in the normal tissue and gray zone in Figure 5
in [15]). Thus, the transition between the rotation regimes occurs for a smaller width of
the gray zone as compared with that for small scars. Note that in comparison with the
work in [15], our case (3D model) is much more complex. First, the 3D wave rotation here
is a result of 2D rotations in transmural layers with different perimeters of scar and thus
there is no single value of velocity of wave rotation which determines the period as in
2D simulations. In addition, in 3D models the tissue is anisotropic, thus even during the
rotation in a given ventricular layer, the velocity will change due to anisotropy. However,
our study shows that general qualitative relationships found in 2D can still qualitatively
correctly predict the observed 3D results.

We performed a direct comparison of our 3D results with two types of 2D simulations
using isotropic and anisotropic cardiac tissue. We found that the period of rotation in 3D
is closer to 2D isotropic tissue in most of the cases. The main idea of the mechanism of
this phenomenon can be explained as follows. The main determinant of the period is the
velocity of wave propagation. Let us compare the velocities of the wave propagating in
3D anisotropic tissue, 2D isotropic, and 2D anisotropic tissue. In 2D isotropic tissue, the
velocity of wave propagation in all directions is the same. In 2D anisotropic tissue with
parallel fibers, the velocity of wave propagation depends on the direction. Let us denote
the velocity of wave along the fibers as v f , across the fibers as vt, and in other directions the
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velocity v will be vt < v < v f . Now, let us consider wave propagation in 3D anisotropic
tissue. 3D anisotropy of the heart is a rotational anisotropy, which can be qualitatively
explained as follows. Let us consider a line which is extended through the myocardial
wall and is (approximately) orthogonal to the inner and outer surfaces. If we now consider
fiber directions at different depth along this line, we find that the direction of the fibers
rotates counterclockwise when we go from the epicardial to the endocardial surface, and
total rotation angle is approximately 120–150 degrees [24]. (The most widely used generic
mathematical model for such anisotropy is a 3D slab with thickness Z, where at each layer
orthogonal to Z we have parallel fibers and the direction of these fibers rotates with the
thickness [33].) As in 2D, we assume that in 3D the wave velocity along the fibers is v f
and across the fibers is vt. Now, let us consider what will be the velocity of the wave
propagation between two points A and B, which are located sufficiently far from each other.
This problem was studied in [34]. It was shown that if the total rotation angle is 180 degrees
or more, then the velocity of the wave in any direction will be close to v f . Thus, the 3D
wave velocity will be close to the wave velocity in 2D isotropic tissue. The reason for that
is the following. Because the total rotation angle is 180 degrees, there always be a fiber
which orientation coincides with the direction of the line connecting point A and B (more
accurately with the projection of this line to the horizontal plane). Thus, there exists the
following path from point A to B. It goes first from point A to the plane where the fiber is
directed to the point B, then along the fibers to the projection of point B to that plane, and
then from this point to the point B. If points A and B are sufficiently far from each other, the
main part of this path will be along the fibers where wave travels with a velocity v f and
overall travel time will be determined by the velocity v f , independently on the direction.
Thus it is similar to propagation in isotropic tissue with the velocity v f . Similar process
was also studied in [35].

In the case studied in our paper, we have a slightly different situation. We have
rotation of the wave and also the real rotation of fibers in the heart is normally in less
than 180 degrees. However, if we consider the results in [34,35] qualitatively, we can
conclude that 3D rotational anisotropy accelerates the wave propagation. Because of that,
the period of rotation in 3D is smaller than that in 2D anisotropic tissue, what we clearly see
in Figure 9. Furthermore, the observed proximity of the 3D dependency to 2D dependency
for isotropic tissue with velocity v f indicates that effect of acceleration is sufficiently large
and is close to that found in [34]. It would be interesting in investigate that relation in more
details. Here, it would be good to study wave rotation in a 3D rectangular slab of cardiac
tissue with fibers located in parallel horizontal planes, and in such system find where the
leading edge of the wave is located and if its position changes during rotation.

In our paper, we were mainly interested in the factors which determine the period
of the source. However, the other extremely important question is how such a source can
be formed. This problem was addressed in many papers based on the patient specific
models [10,11] and also in papers which address in details the mechanisms of formation
of such sources. In [13], the authors study the role of infarct scar dimension, repolariza-
tion properties and anisotropic fiber structure of scar tissue border zone on the onset of
arrhythmia. The authors performed state-of-the-art simulations using a bidomain model of
myocardial electrical activity and excitation propagation, finite element spatial integration,
and implicit-explicit finite differences approach in time domain. They studied the infarction
with a scar region extending transmurally across the ventricular wall, from sub-endocardial
to sub-epicardial surface, as in our paper. They also considered additional case when
the scar is not fully transmural, and there is a gray zone region shaped as a central sub-
epicardial isthmus. The authors showed that initiation of arrhythmias strongly depends on
the injury geometry. For example, it is much easier to evoke arrhythmia in a very narrow
rather than wide epicardial gray zone region and the sustainability of arrhythmia depends
on the stimulation site and tissue anisotropy. In view of this paper, it will be interesting
to extend our study in several aspects. First, it would be interesting to study not only
fully transmural scars, but also a scar which does not extend completely from endo to
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epirardial surface. This can affect not only the induction and sustanability of arrhythmia,
but will definitely effect on its period. Furthermore, the gray zone geometry in the form of
sub-epicardial channel is the definitely interesting and important geometric configuration.
Finally, it would be interesting to see if using of the bidomain model for cardiac tissue can
affect the results of simulations.

Furthermore, in [14], the authors study the mechanisms underlying the onset of
arrhythmias in a three-dimensional computational model of acute regional ischaemia,
when an already non-conductive scar and a gray zone are formed. The authors found the
arrhythmia is formed here as a result of alternating conduction blocks in the gray zone.
They observed 2:1 conduction blocks lead to discordant APD alternans, which in turn lead
to wave breaks and formation of the arrhythmia. The heterogeneity in the gray zone in [14]
is different from that used in our paper as we were aiming to reproduce a chronic infarction
scar and not acute ischemia. In [14], the modulation of cellular activity is characterized
by a decreased APD, while in our case APD in the gray zone is longer than in normal
tissue. It will be interesting to study wave rotation for the tissue heterogeneity used in [14]
and investigate if the same rotation regimes can also be obtained there. Furthermore, a
prolonged APD in the border zone can facilitate the onset of early after depolarizations,
which can lead to arrhythmias [36] and also affect the wave propagation regime. It would
be interesting to study if such effects can be found in our model if we further increase the
duration of APD in the gray zone.

The main aim of our paper is the fundamental study of processes which determine the
period of arrhythmia due to rotation of wave around infraction scar. Although our study
is generic and thus is a simplification of real clinical cases, we see the following potential
clinical application of our results. The period of arrhythmia is very easy to measure from
ECG and it is always done during clinical procedures (so called R–R interval). In our study,
we show that during arrhythmia in the infarcted hearts the wave, in most of the cases,
rotates around the gray zone, thus it actually propagates outside the infarcted area. Thus,
we claim that the measured period most likely reflects the size of the whole damaged
region and not the size of the compact scar. This finding, in our view, provides a new
way to interpret wave propagation patterns inside the heart. In many cases, the most
efficient way to remove cardiac arrhythmias is so-called cardiac ablation [37]. This is a
procedure in which catheters are inserted inside the heart through the veins or arteries.
Using these catheters, cardiologists can map electrical activity on the endocardial surface
of the heart and then using heat or cold create tiny scars in the heart to block abnormal
wave propagation and stop cardiac arrhythmias. Our findings show that in case of gray
zone rotation, mapping of the wave can reflect not only the boundary of the scar, but also
the boundary of the gray zone, and it can potentially affect the planning of the ablation
procedure. Of course, for more practical recommendations, more studies are necessary
which will use realistic shapes of infarction scars and also reproduce local electrograms
recoded by cardiac mapping systems [38,39].

5. Conclusions

We showed that in an anatomical model of the ventricles with the infarction scar
surrounded by the gray zone, we can observe two main regimes of wave rotation: the
scar rotation regime, i.e., when wave rotates around a scar inside the gray zone, and gray
zone regime, when the wave rotates around the gray zone on the border of the normal
tissue. The transition to the scar rotation occurs if the gray zone width is larger than
10–20 mm, depending on the perimeter of the scar. A comparison of an anatomical 3D
ventricular model with generic 2D myocardial models revealed that rotational anisotropy
in the depth of ventricular wall accounts for faster wave propagation as compared with 2D
anisotropic case without rotation, and thus leads to ventricular arrhythmia periods closer
to isotropic tissue.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/math9222911/s1, Figure S1: Dependence of the wave rotation period on the perimeter of gray
zone at different space step, Table S1: Dependence of the wave rotation period on the perimeter of
the gray zone at different space step.
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