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Abstract: Max-plus algebra is the similarity of the classical linear algebra with two binary operations,
maximum and addition. The notation Ax = Bx, where A, B are given (interval) matrices, represents
(interval) two-sided (max, plus)-linear system. For the solvability of Ax = Bx, there are some
pseudopolynomial algorithms, but a polynomial algorithm is still waiting for an appearance. The
paper deals with the analysis of solvability of two-sided (max, plus)-linear equations with inexact
(interval) data. The purpose of the paper is to get efficient necessary and sufficient conditions for
solvability of the interval systems using the property of the solution set of the non-interval system
Ax = Bx. The main contribution of the paper is a transformation of weak versions of solvability to
either subeigenvector problems or to non-interval two-sided (max, plus)-linear systems and obtaining
the equivalent polynomially checked conditions for the strong versions of solvability.

Keywords: interval solution; solvability; max-plus matrix

1. Introduction and Preliminaries

An algebraic structure in which addition is substituted by maximum and multiplica-
tion by addition is called max-plus algebra. The solvability of systems of linear equations
is one of the crucial questions that are considered in max-plus algebra. Systems of (max,
plus)-linear equations are used in the modeling and analysis of discrete dynamic systems
and various versions of real-life optimizations.

Consider a generalization of discrete event dynamic systems ([1–3]) with m entities
E1, . . . , Em producing entity outputs O1, . . . , On (data, products, etc.) working in stages
whereby each entity contributes to the completion of each entity output and works for all
outputs simultaneously. The state of entity Ei after some stage k is described by entry xi(k)
of a vector x(k), and the element aij of a matrix A formulates the influence of the activity
of Ej in the previous stage on the activity of Ei in the current stage whereby we want to
complete the partial entity output Oi. Moreover, all entities must wait until their preceding
entities finish their activity and necessary influence constraints, formally expressed as
(A ⊗ x(k))i =

⊕
j aij ⊗ xj(k). Further, similarly to in [2], suppose that m other entities

F1, . . . , Fm prepare partial entity outputs for entity outputs U1, . . . , Un, whereby bij and yj,
alike as above, encode the influence of the work and the state of the corresponding entity,
respectively, obtaining (B⊗ x(k))i =

⊕
j bij ⊗ xj(k).

Consider a model with a synchronization condition: to find the states of all 2m entities
so that each pair (Oi, Ui) is completed at the same state. Algebraically, we must solve the
two-sided max-plus system, A⊗ x = B⊗ x.

The study of properties of systems of two-sided (max, plus)-linear systems is impor-
tant for many applications. If the matrix and vector entries are estimated incorrectly, then
one of methods of restoring solvability is to substitute a matrix and vectors by interval
matrix and interval vectors, respectively.
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In this paper, we consider the properties of matrices and vectors with inexact (interval)
entries and analyze several versions of the solvability of the interval systems with respect
to quantifiers and their order. The goal of this paper is to present weak and strong versions
of the solvability of A ⊗ X = B ⊗ X and prove its necessary and sufficient conditions
for vector X and matrices A, B with inexact (interval) entries. Moreover, some of the
equivalent conditions of strong versions of solvability can be checked in a polynomial
number of arithmetic operations. Systems of two-sided (max, plus)-linear equations
A⊗ x = B⊗ x have been studied by many authors [3–17]. The motivation for this research
are papers [8,10]. Paper [8] studies six types of solutions of systems of two-sided (max,
plus)-linear equations A⊗ x = B⊗ x and suggests a method for computing the solution
set of a two-sided (max, plus)-linear system. Notice that this paper generalizes the results
obtained in [8].

Let us now give more details on the organization of the paper and on the results
obtained there. The next section presents the notation and definitions of solvability of
a two-sided max-plus system A ⊗ x = B ⊗ x for A ≤ B. Sections 2 and 3 deal with
definitions and properties of subeigenvectors and two-sided max-plus systems. Section 4
is devoted to classification of interval solutions of interval two-sided max-plus systems
and the characterization of the necessary and sufficient conditions for the strong and the
weak versions of solvability. Based on the results, we also give a method for testing the
equivalent conditions obtained in Theorems 13 and 16.

Denote the set of real numbers by R and the set of all natural numbers by N. The sym-
bol R will stand for R ∪ {−∞}. For two elements a, b ∈ R, we set a⊕ b = max(a; b) and
a⊗ b = a + b. Throughout the paper, we denote −∞, the neutral element with respect
to ⊕, by ε and the neutral element 0 with respect to ⊗, by e. For given natural numbers
n, m ∈ N, we use the notations N = {1, 2, . . . , n} and M = {1, . . . , m}. The matrix opera-
tions over R ∪ {−∞} are defined formally in the same manner (with respect to ⊕, ⊗) as
matrix operations over any field. The rth power of a matrix A is denoted by Ar.

Suppose that n ≥ 1, m ≥ 1 are given integers. The set of n×m matrices over R is
denoted by R(n, m), especially the set of n× 1 vectors over R is denoted by R(n). The
triple (R,⊕,⊗) is called max-plus algebra. If each entry of a matrix A ∈ R(n, n) (a vector
x ∈ R(n)) is equal to ε, we shall denote this as A = ε (x = ε).

For A ∈ R(m, n), C ∈ R(m, n), we write A ≤ C if aij ≤ cij holds true for all i, j ∈ N.
Similarly, for x = (x1, . . . , xn)T ∈ R(n) and y = (y1, . . . , yn)T ∈ R(n), we write x ≤ y if
xi ≤ yi for each i ∈ N.

By digraph, we understand a pair G = (VG , EG), where VG is a non-empty finite
set, called the node set, and EG , EG ⊆ VG × VG is called the arc set. A digraph G ′ is a
subdigraph of digraph G, if VG ′ ⊆ VG and EG ′ ⊆ EG . A walk in G is the sequence of nodes
W = (i0, i1, . . . , il) such that (ik−1, ik) ∈ EG for all k = 1, 2, . . . , l. The number l ≥ 0 is called
the length of W and denoted l(W). If i0 = il , then W is a cycle of length l. A cycle is
elementary if all nodes except the terminal node are distinct. A digraph is called strongly
connected if any two distinct nodes of G are contained in a common cycle.

By a strongly connected component of a digraph G = (VG , EG), we mean a subdigraph
K = (VK, EK), where the node set VK ⊆ VG is such that any two distinct nodes i, j ∈ VK
are contained in a common cycle, EK = EG ∩ (VK ×VK) and VK is the maximal subset with
this property. A strongly connected component K of a digraph is called non-trivial if there
is a cycle of positive length in K.

For a given matrix A ∈ R(n, n), the weighted digraph G(A) associated with A is the
digraph with the node set VG(A) = N and the edge set EG = {(i, j) ∈ N × N; aij 6= ε}. If
G = G(A), then the weight of W = (i0, i1, . . . il) is defined by w(W) = ai0 i1 + ai1 i2 + . . . +
ail−1 il . The cycle mean of cycle c is defined by w(c) = (ai0 i1 + ai1 i2 + . . . + ail−1 i0)/l(c) and
the maximum cycle mean of A is defined as λ(A) = max

c
w(c).

A ∈ R(n, n) is called irreducible if G(A) is strongly connected and reducible otherwise.
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For a given matrix A ∈ R(n, n), the number λ ∈ R and the n-tuple x ∈ R(n), x 6= ε are
the so-called eigenvalue (subeigenvalue) and eigenvector (subeigenvector) of A, respectively, if

A⊗ x = λ⊗ x (A⊗ x ≤ λ⊗ x).

2. Subeigenvectors

The column span of a matrix A with columns A1, . . . , An is defined {⊕
i∈N

αi⊗Ai; α1, . . . ,

αn ∈ R} and will be denoted by span(A).
For a given A ∈ R(n, n), λ ∈ R denotes Aλ = λ−1 ⊗ A and A∗ = I ⊕ A⊕ A2 ⊕ A3 ⊕

. . . , called the Kleene star.
An eigenspace V(A, λ) is defined as the set of all eigenvectors of A with associated

eigenvalue λ, i.e.,
V(A, λ) = {x ∈ R(n)\{ε} : A⊗ x = λ⊗ x},

and subeigenspace V∗(A, λ) is defined as the set of all subeigenvectors of A with associated
subeigenvalue λ, i.e.,

V∗(A, λ) = {x ∈ R(n); A⊗ x ≤ λ⊗ x}.

The set Λ(A) = {λ ∈ R; V(A, λ) 6= ε} will be called the spectrum of A.
Any reducible matrix A can be transformed by simultaneous permutations of rows

and columns to a Frobenius normal form

A′ =


A11 ε . . . ε
A21 A22 . . . ε
. . . . . . . . . . . .
Ar1 Ar2 . . . Arr

,

where A11, . . . , Arr are irreducible square submatrices of A′ ([1,18]). N1, . . . , Nr denote the
corresponding partition subsets of the node set of G(A). The symbol Ni → Nj means that
there is a directed path from Ni to Nj in a reduced digraph with nodes N1, N2, . . . , Nr and
the arc set {(Ni, Nj); (∃k ∈ Ni)(∃s ∈ Nj) aks > ε}.

The diagonal block Ajj is called spectral if λ(Ajj) = max
Ni→Nj

λ(Aii), and we denote

λmin = min{λ(Aii); Aii spectral}(= min Λ(A)). For the more details see [1,18].

Theorem 1 ([18]). Let A ∈ R(n, n). Then V∗(A, λ) 6= {ε} if and only if λ ≥ λmin and
V∗(A, λ) = span(G), where G is the matrix consisting of the columns gj of the matrix (Aλ)

∗ with
indices j ∈ ⋃

i∈I∗(λ)
Ni, where I∗(λ) = {i ∈ {1, . . . , r}; λ(Aii) ≤ λ, Aii is spectral}.

Notice that the basis of V∗(A, λ) 6= {ε} can be found in O(n3) time [19].

3. Systems of Two-Sided (Max, Plus)-Linear Equations

In this section we consider the two-sided max-plus linear system A⊗ x = B⊗ x for
A ≤ B.

The set of solutions to the system A⊗ x = B⊗ x will be denoted S(A, B), that is,

S(A, B) = {x ∈ R(n) \ {ε}; A⊗ x = B⊗ x}

and put
Mi(A, B) = {j ∈ N; aij = bij}.

Lemma 1. Suppose A ∈ R(m, n), B ∈ R(m, n) with A ≤ B. If S(A, B) 6= ∅, then Mi(A, B) 6=
∅ for any i ∈ M.
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Proof. Suppose that there is x ∈ R(n) such that A⊗ x = B⊗ x. Then for an arbitrary but
fixed i ∈ M, there are j, k ∈ N such that aij ⊗ xj = (A⊗ x)i = (B⊗ x)i = bik ⊗ xk. Then we
get aij ⊗ xj = bik ⊗ xk ≥ bij ⊗ xj and hence aij ≥ bij. According to the assumption aij ≤ bij,
we obtain the equality aij = bij and hence j ∈ Mi(A, B).

For J = (j1, . . . , jm) ∈ M = ×i∈M Mi(A, B), put

N J
k = {` ∈ M; j` = k} for any k ∈ N

and define the matrix C J(A, B) = (cJ
ij) ∈ R(n, n), where

cJ
`j =

max
k∈N J

`

{bkj − bk`}, for ` 6= j

ε, if N J
` = ∅ or ` = j.

(1)

The matrix C J(A, B) will be written briefly as C J .

Theorem 2. Suppose A, B ∈ R(m, n) and A ≤ B. Then x ∈ S(A, B) if and only if there is
J ∈ M such that C J(A, B)⊗ x ≤ x.

Proof. Suppose that A ≤ B and J = (j1, . . . , jm) ∈ M. Then x is an element of S(A, B) if
and only if

max{a11 + x1, . . . , a1n + xn} = max{b11 + x1, . . . , b1n + xn} = b1j1 + xj1
...

max{am1 + x1, . . . , amn + xn} = max{bm1 + x1, . . . , bmn + xn} = b1jm + xjm

(2)

Since A ≤ B and J = (j1, . . . , jm) ∈ M, the system (2) is equivalent to

max
j 6=j1
{b1j + xj} ≤ b1j1 + xj1

... ⇔
max
j 6=jm
{bmj + xj} ≤ bmjm + xjm

max
j 6=j1
{b1j − b1j1 + xj} ≤ xj1

...
max
j 6=jm
{bmj − bmjm + xj} ≤ xjm

(3)

Observe that some elements of J = (j1, . . . , jm) ∈ M can be equal. Denote the set {` ∈
M; j` = k} by N J

k for any k ∈ N. Now we can simplify (3) using N J
k in the equivalent

system C J(A, B)⊗ x ≤ x, where C J(A, B) = (cJ
ij) with

cJ
`j =

max
k∈N J

`

{bkj − bk`}, for ` 6= j

ε, if N J
` = ∅ or ` = j.

and the assertion follows.

Thus, Theorem 2 turns the problem of solvability of the system A⊗ x = B⊗ x into
the problem of finding J ∈ M and a corresponding subeigenvector of C J(A, B).

Example 1. Solve the system A⊗ x = B⊗ x, where matrices A, B, A ≤ B have the forms

A =


3 4 4
6 3 1
1 5 4
3 1 3

, B =


5 4 6
6 4 7
4 5 4
3 2 4

.
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Then we obtain M1(A, B) = {2}, M2(A, B) = {1}, M3(A, B) = {2, 3}, M4(A, B) = {1},
J1 = (2, 1, 2, 1), J2 = (2, 1, 3, 1) and N J1

1 = {2, 4}, N J1
2 = {1, 3} and N J1

3 = ∅. Similarly for
J2 = (2, 1, 3, 1), we have N J2

1 = {2, 4}, N J2
2 = {1} and N J2

3 = {3}. To solve the system A⊗ x =
B⊗ x, we shall consider a solvability of two systems A⊗ x = B(J1)⊗ x and A⊗ x = B(J2)⊗ x,
where

B(J1) =


5 4 6
6 4 7
4 5 4
3 2 4

, B(J2) =


5 4 6
6 4 7
4 5 4
3 2 4

.

Case (i). System A⊗ x = B(J1)⊗ x is transformed into equivalent system C J1 ⊗ x ≤ x as follows:

max{3 + x1, 4 + x2, 4 + x3} = max{5 + x1, 4 + x2, 6 + x3} = 4 + x2
max{6 + x1, 3 + x2, 1 + x3} = max{6 + x1, 4 + x2, 7 + x3} = 6 + x1 ⇔
max{1 + x1, 5 + x2, 4 + x3} = max{4 + x1, 5 + x2, 4 + x3} = 5 + x2
max{3 + x1, 1 + x2, 3 + x3} = max{3 + x1, 2 + x2, 4 + x3} = 3 + x1

max{1 + x1, 2 + x3} ≤ x2
max{−2 + x2, 1 + x3} ≤ x1 ⇔

max{−1 + x1,−1 + x3} ≤ x2
max{−1 + x2, 1 + x3} ≤ x1

max{−1 + x2, 1 + x3} ≤ x1
max{1 + x1, 2 + x3} ≤ x2

and in vector-matrix form

C J1 ⊗ x =

 ε −1 1
1 ε 2
ε ε ε

⊗
 x1

x2
x3

 ≤
 x1

x2
x3

.

To obtain the set of all solutions of the system C J1 ⊗ x ≤ x we will use Theorem 1 and look for the
set of subeigenvectors for the matrix C J1 with λ = 0, i.e., V∗(C J1 , 0). Since λ(C J1) = λmin = 0
the set V∗(C J1 , 0) 6= ∅ and V∗(C J1 , 0) = span(G1), where G1 is the matrix consisting of the
columns of (C J1)∗0 . Thus, any solution of the system C J1 ⊗ x ≤ x can be expressed as max-plus
linear combination of the columns of V∗(C J1 , 0) = span(G1) (one of solutions is x = (1, 2, 0)T),
where

G1 = (C J1)∗0 =

 0 −1 1
1 0 2
ε ε 0

.

Case (ii). A⊗ x = B(J2)⊗ x is transformed into equivalent system C J2 ⊗ x ≤ x as follows:

max{3 + x1, 4 + x2, 4 + x3} = max{5 + x1, 4 + x2, 6 + x3} = 4 + x2
max{6 + x1, 3 + x2, 1 + x3} = max{6 + x1, 4 + x2, 7 + x3} = 6 + x1 ⇔
max{1 + x1, 5 + x2, 4 + x3} = max{4 + x1, 5 + x2, 4 + x3} = 4 + x3
max{3 + x1, 1 + x2, 3 + x3} = max{3 + x1, 2 + x2, 4 + x3} = 3 + x1

max{1 + x1, 2 + x3} ≤ x2
max{−2 + x2, 1 + x3} ≤ x1 ⇔

max{x1, 1 + x2} ≤ x3
max{−1 + x2, 1 + x3} ≤ x1

max{−1 + x2, 1 + x3} ≤ x1
max{1 + x1, 2 + x3} ≤ x2

max{x1, 1 + x2} ≤ x3

and in vector-matrix form

C J2 ⊗ x =

 ε −1 1
1 ε 2
0 1 ε

⊗
 x1

x2
x3

 ≤
 x1

x2
x3

,
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whereby according to Theorem 1, the set V∗(C J2 , 0) = ∅ since λ(C J2) = 3/2 > 0 = λ. We
can conclude that x is a solution of A⊗ x = B⊗ x if and only if x ∈ V∗(C J1 , 0) ∪V∗(C J2 , 0) =
span(G1).

Theorem 3. Suppose given A ∈ R(m, n), B ∈ R(m, n) with A ≤ B. Then S(A, B) 6= ∅ if and
only if

⋃
J∈×i∈M Mi(A,B)

V∗(C J , 0) 6= ε and Mi(A, B) 6= ∅ for any i ∈ M.

Proof. The proof follows from Theorem 1, Lemma 1, and Theorem 2.

Observe that
(i) solvability of the system A⊗ x = B⊗ x for A ≤ B can be recognized in k ·O(n3) time,

where k = | ×i∈M Mi(A, B)| (k can be exponentially large),
(ii) if x ∈ V∗(C J , 0) for some J ∈ ×i∈M Mi(A, B), then x can be expressed as max-plus

linear combination of basis of V∗(C J , 0) 6= {ε} which can be found in O(n3) time [19].

4. Interval Solutions

Similarly to [7,9–17,20–22], by an interval of R(m, n), we mean a subset of R(m, n) of
the form Y = (yij) for i ∈ M, j ∈ N, where each yij is an arbitrary interval belonging to R.
For each i, j we denote y

ij
:= inf yij and yij = sup yij. Then, we also have Y := (y

ij
) = inf Y

and Y := (yij) = sup Y . A set Y = (yij) for i ∈ M, j ∈ N a subset of R(m, n), is called an
interval matrix (a interval vector, if n = 1, Y = (yi)) if it is of the form Y = (yij) for yij

nonempty subsets of R taking any of the following four forms:

[y
ij

, yij], (yij
, yij), (yij

, yij], [yij
, yij)

([y
i
, yi], (yi

, yi), (yi
, yi], [yi

, yi)).

Now we can rewrite an interval vector with bounds x, x ∈ R(n) and interval matrices with
bounds A, A ∈ R(m, n), B, B ∈ R(m, n) as follows

X = [x, x] =
{

x ∈ R(n); x ≤ x ≤ x
}

,

A = [A, A] =
{

A ∈ R(m, n); A ≤ A ≤ A
}

,

B = [B, B] =
{

B ∈ R(m, n); B ≤ B ≤ B
}

.

We will consider the following various versions of interval solutions of the system

A⊗ X = B⊗ X, (4)

depending on the used quantifiers and their order, where the aim is either to suggest a
polynomial method for its solvability or to transform it into known max-plus linear systems
of equations and/or inequalities.

Definition 1. If A, B and X are given, then X is called weak

• XEA-solution of (4) if (∃x ∈ X)(∃A ∈ A)(∀B ∈ B) A⊗ x = B⊗ x,
• EAX-solution of (4) if (∃A ∈ A)(∀B ∈ B)(∃x ∈ X) A⊗ x = B⊗ x

and X is called strong

• XEA-solution of (4) if (∀x ∈ X)(∃A ∈ A)(∀B ∈ B) A⊗ x = B⊗ x,
• EXE-solution of (4) if (∃A ∈ A)(∀x ∈ X)(∃B ∈ B) A⊗ x = B⊗ x.

Notice that the denotation-weak XEA-solution corresponds with quantifiers and their
order as follows: weak corresponds with the existence quantifier of X, E corresponds with
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the existence quantifier of A, and A corresponds with the forall quantifier of B. Similarly,
a strong XEA-solution means that strong corresponds with the forall quantifier of X, E
corresponds with existence quantifier of A and A corresponds with the forall quantifier of B.

For given indices i ∈ M, j ∈ N, we define matrix Ã(ij) ∈ R(m, n) and vector x̃(i) ∈
R(n) by putting for every k ∈ M, l ∈ N

ã(ij)kl =

{
aij, for k = i, l = j
akl , otherwise

, x̃(i)k =

{
xi, for k = i
xk, otherwise

.

Lemma 2 ([23]). Suppose x ∈ R(n) and A ∈ R(m, n). Then

(i) x ∈ X if and only if x =
⊕

i∈N
γi ⊗ x̃(i) for some values γi ∈ R with xi − xi ≤ γi ≤ 0 ,

(ii) A ∈ A if and only if A =
⊕

i∈M,j∈N
αij ⊗ Ã(ij) for some values αij ∈ R with aij − aij ≤

αij ≤ 0 .

Lemma 3. Suppose A, B and x ∈ X. Then the following equivalences hold true:

(i) If A ∈ A, B ∈ B, then (∀x ∈ X) A ⊗ x = B ⊗ x if and only if (∀k ∈ N) A ⊗ x̃(k) =

B⊗ x̃(k).
(ii) If B ∈ B, then (∀A ∈ A) A⊗ x = B⊗ x if and only if (∀i ∈ M, j ∈ N) Ã(ij) ⊗ x = B⊗ x.
(iii) If A ∈ A, then (∀B ∈ B) A⊗ x = B⊗ x if and only if (∀i ∈ M, j ∈ N) A⊗ x = B̃(ij) ⊗ x.
(iv) (∀A ∈ A)(∀B ∈ B) A ⊗ x = B ⊗ x if and only if (∀j, r ∈ M, k, s ∈ N) A(ij) ⊗ x =

B(rs) ⊗ x.

Proof. (i) Suppose that A ∈ A, B ∈ B, x ∈ X and A⊗ x̃(k) = B⊗ x̃(k) holds for any k ∈ N.
Then in view of Lemma 2 (i) we get x =

⊕
k∈N γk ⊗ x̃(k). Therefore,

A⊗ x = A⊗
⊕
k∈N

γk ⊗ x̃(k) =
⊕
k∈N

γk ⊗ (A⊗ x̃(k)) =

⊕
k∈N

γk ⊗ (B⊗ x̃(k)) = B⊗
⊕
k∈N

γk ⊗ x̃(k) = B⊗ x.

The reverse implication trivially follows.

(ii) Suppose that there are A ∈ A and i ∈ M such that (A⊗ x)i 6= (B⊗ x)i. Consider
two cases:
1. If (A⊗ x)i > (B⊗ x)i, then there is s ∈ N such that

ais ⊗ xs =
⊕
j∈N

aij ⊗ xj >
⊕
j∈N

bij ⊗ xj.

Then for the generator Ã(is), we obtain

(Ã(is) ⊗ x)i ≥ ã(is)is ⊗ xs = ais ⊗ xs ≥ ais ⊗ xs > (B⊗ x)i.

2. If (A⊗ x)i < (B⊗ x)i, then for the generator Ã(ks), k ∈ M, k 6= i, we obtain⊕
j∈N

bij ⊗ xj >
⊕
j∈N

aij ⊗ xj ≥
⊕
j∈N

aij ⊗ xj = (Ã(ks) ⊗ x)i.

We have shown that there are k ∈ M, j ∈ N and i ∈ M such that (Ã(ks) ⊗ x)i 6= (B⊗ x)i.
The reverse implication trivially follows.
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(iii) The proof is analogical as the proof of (ii) after exchanging A to B.

(iv) Suppose that there are A ∈ A, B ∈ B, and i ∈ N such that (A⊗ x)i 6= (B⊗ x)i.
Consider two cases:
1. (A⊗ x)i > (B⊗ x)i. Thus, there is s, r ∈ N such that

ais ⊗ xs =
⊕
j∈N

aij ⊗ xj >
⊕
j∈N

bij ⊗ xj = bir ⊗ xr.

Then for the generators Ã(is) and B̃(ks), k 6= i, we obtain

(Ã(is) ⊗ x)i ≥ ã(is)is ⊗ xs = ais ⊗ xs ≥ ais ⊗ xs >⊕
j∈N

bij ⊗ xj ≥
⊕
j∈N

bij ⊗ xj = (B(ks) ⊗ x)i.

2. (A⊗ x)i < (B⊗ x)i. The proof of this case is analogical to the proof of the case (iv) 1.
We showed that there are j, r ∈ M, k, s ∈ N, and i ∈ M such that (Ã(jk) ⊗ x)i 6= (B̃(rs) ⊗ x)i.
The reverse implication trivially follows.

Theorem 4 ([8]). Suppose A, B, and x ∈ X.

(i) (∃A ∈ A)(∃B ∈ B) A⊗ x = B⊗ x if and only if A⊗ x ≤ B⊗ x and A⊗ x ≥ B⊗ x.
(ii) (∀A ∈ A)(∀B ∈ B) A⊗ x = B⊗ x if and only if A⊗ x = B⊗ x and A⊗ x = B⊗ x.
(iii) (∀A ∈ A)(∃B ∈ B) A⊗ x = B⊗ x if and only if A⊗ x ≥ B⊗ x and A⊗ x ≤ B⊗ x.

Theorem 5 ([24]). Suppose A ∈ R(m, n) and b ∈ R(m). Then the system A⊗ x = b is solvable
if and only if x∗(A, b) ∈ R(n) is its solution, where x∗j (A, b) = min

i∈M
{bi − aij} for j ∈ N.

Theorem 6 ([25]). Suppose B, C ∈ R(m, n) and b, c ∈ R(m). Then the system of inequalities
B⊗ x ≤ b, C⊗ x ≥ c has a solution if and only if C⊗ x∗(B, b) ≥ c.

Notice that the solvability of C⊗ x∗(B, b) ≥ c can be recognized in O(mn) time.

4.1. Weak XEA-Solution

Theorem 7. Suppose A, B, and X. Then X is a weak XEA-solution of A⊗ X = B⊗ X if and
only if

(∃x ∈ X)(∃A ∈ A) A⊗ x = B⊗ x = B⊗ x. (5)

Proof. Suppose that there are x ∈ X and A ∈ A such that A⊗ x = B⊗ x and A⊗ x = B⊗ x.
The implication follows from the formula

A⊗ x = B⊗ x ≤ B⊗ x ≤ B⊗ x = A⊗ x.

The reverse implication trivially follows.

The product A⊗ x can be expressed as a max-plus linear combination of generators
of A and X according to Lemma 2, i.e., A =

⊕
i∈M,j∈N

αij ⊗ Ã(ij), x =
⊕

i∈N
γk ⊗ x̃(k). After a

matrix-vector multiplication

A⊗ x =
⊕

i∈M,j∈N
αij ⊗ Ã(ij) ⊗

⊕
k∈N

γk ⊗ x̃(k) =
⊕

i∈M,j∈N

⊕
k∈N

αij ⊗ γk ⊗ Ã(ij) ⊗ x̃(k)

we obtain a combination of coefficients γk with αij, or in others words, in (5), we get a
quadratic part of the equality which we do not know to solve.
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Theorem 8. Suppose given A, B, and X. Then X is a weak XEA-solution of A⊗ X = B⊗ X if
and only if

(∃x ∈
⋃

J∈M
V∗(C J , 0))(∃A ∈ A) A⊗ x = B⊗ x. (6)

Proof. The proof follows from Theorem 7.

Observe that according to Theorem 4 (i), the Formula (6) can be rewritten into the
next form

(∃x ∈
⋃

J∈M
V∗(C J , 0)) A⊗ x ≤ B⊗ x ≤ A⊗ x. (7)

Suppose that the set of vectors {cJ
1, . . . , cJ

k} is a basis of V∗(C J , 0) for an arbitrary but
fixed J ∈ M = ×j∈M Mj(A, B). Then any vector x ∈ V∗(C J , 0) can be expressed as a

max-plus linear combination of vectors from {cJ
1, . . . , cJ

k}, i.e., x =
k⊕

i=1
δi ⊗ cJ

i , δi ∈ R. Now

we can reformulate the last theorem.

Theorem 9. Suppose given A, B, and X. Then X is a weak XEA-solution of A⊗ X = B⊗ X if
and only if there are J ∈ M and δ = (δ1, . . . , δk)

T ∈ R(k) such that

A⊗
k⊕

i=1

δi ⊗ cJ
i ≤ B⊗

k⊕
i=1

δi ⊗ cJ
i ≤ A⊗

k⊕
i=1

δi ⊗ cJ
i , (8)

where the set of vectors {cJ
1, . . . , cJ

k} is a basis of V∗(C J , 0).

Proof. The proof follows from Theorem 8.

Observe that (8) can be expressed in the following form

k⊕
i=1

A⊗ cJ
i ⊗ δi ≤

k⊕
i=1

B⊗ cJ
i ⊗ δi (9)

k⊕
i=1

B⊗ cJ
i ⊗ δi ≤

k⊕
i=1

A⊗ cJ
i ⊗ δi, (10)

or as the matrix-vector product(
A⊗ cJ

1 . . . A⊗ cJ
k

B⊗ cJ
1 . . . B⊗ cJ

k

)
⊗ δ ≤

(
B⊗ cJ

1 . . . B⊗ cJ
k

A⊗ cJ
1 . . . A⊗ cJ

k

)
⊗ δ (11)

and we get a hint for how to decide whether X is a weak XEA-solution of A⊗ X = B⊗ X.
It suffices to find J ∈ M for a polynomial-obtained basis of V∗(C J , 0) and then to find a
solution δ of (11). The solvability of A⊗ x = B⊗ x is polynomially equivalent to solving
a mean-payoff game [26]. Moreover, there are efficient pseudopolynomial algorithms for
solving a mean-payoff game but a polynomial algorithm for the solvability of the system
A⊗ x = B⊗ x (A⊗ x ≤ B⊗ x ) is waiting for an appearance ([8,26]).

4.2. Weak EAX-Solution

Theorem 10. Suppose A, B, and X. Then X is a weak EAX-solution of A⊗ X = B⊗ X if and
only if

(∃A ∈ A)(∀i ∈ N, j ∈ M)(∃x ∈ X) A⊗ x = B(kl) ⊗ x.

Proof. The proof follows from Lemma 3 (iii).
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Notice that we are able neither to suggest a transformation of Theorem 10 based on
the solvability of the equality A⊗ x = B(kl) ⊗ x into a non-quadratic version, similarly to
Theorem 8, nor to prove NP-hardness of this problem.

4.3. Strong XEA-Solution

Theorem 11. Suppose A, B, and X. Then X is a strong XEA-solution of A⊗ X = B⊗ X if and
only if

(∀k ∈ N)(∃A ∈ A)(∀B ∈ B) A⊗ x̃(k) = B⊗ x̃(k).

Proof. Suppose that there is x ∈ X such that for an arbitrary but fixed A ∈ A there are
B ∈ B and i ∈ M such that (A⊗ x)i 6= (B⊗ x)i. We shall show that there is k ∈ N such
that for an arbitrary A ∈ A there are B ∈ B and i ∈ M such that (A⊗ x̃(k))i 6= (B⊗ x̃(k))i.
By the assumption and the proof of Lemma 3 (i), the implication follows.

The reverse implication trivially results.

Theorem 12. Suppose given A, B, and X. Then X is a strong XEA-solution of A⊗ X = B⊗ X
if and only if

(∀k ∈ N)(∃A ∈ A) A⊗ x̃(k) = B⊗ x̃(k) = B⊗ x̃(k).

Proof. At first, we show that X is a strong XEA-solution of A⊗ X = B⊗ X if and only if
(∀x ∈ X)(∃A ∈ A) B⊗ x = A⊗ x = B⊗ x. Let x ∈ X be such that there is A ∈ A with
A⊗ x = B⊗ x and A⊗ x = B⊗ x. Then, by monotonicity of operations ⊕ and ⊗, we have
A⊗ x = B⊗ x ≤ B⊗ x ≤ B⊗ x = A⊗ x. The reverse implication trivially follows. Hence,
the proof follows from Theorem 11.

For each k ∈ N, define vectors C̃(k) ∈ R(m + mn), D̃(k) ∈ R(m + mn), and the matrix
Ẽ(k) ∈ R(m + mn, mn) as follows:

C̃(k) =


B⊗ x̃(k)

a11 − a11
...

amn − amn

, D̃(k) =


B⊗ x̃(k)

0
...
0

, (12)

Ẽ(k) =


Ã(11) ⊗ x̃(k) Ã(12) ⊗ x̃(k) . . . Ã(mn) ⊗ x̃(k)

0 ε . . . ε
...
ε . . . ε 0

. (13)

Consider max-plus linear system of inequalities

Ẽ(k)⊗ y(k) ≤ D̃(k)
Ẽ(k)⊗ y(k) ≥ C̃(k)

(14)

where the vector y(k) ∈ R(mn) consists of the variables yij ∈ R.

Theorem 13. Suppose given A, B and X. Then X is a strong XEA-solution of A⊗ X = B⊗ X
if and only if B⊗ x̃(k) = B⊗ x̃(k) and the max-plus linear system of inequalities (14) is solvable
for any k ∈ N.

Proof. Suppose that k ∈ N is arbitrary but fixed, B⊗ x̃(k) = B⊗ x̃(k) and y is a solution of
the linear system of inequalities (14) satisfying the condition aij− aij ≤ yij ≤ 0, for every i ∈
M, j ∈ N. Consider the matrix A =

⊕
i∈M,j∈N yij ⊗ Ã(ij) ∈ [A, A].
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From the inequalities Ẽ(k)⊗ y(k) ≤ D̃(k), Ẽ(k)⊗ y(k) ≥ C̃(k), we have the following
block inequalities

⊕
j∈M,l∈N

(
Ã(jl) ⊗ x̃(k)

)
⊗ yjl ≥ B⊗ x̃(k) ⇔

⊕
j∈M,l∈N

(
yjl ⊗ Ã(jl)

)
⊗ x̃(k) ≥ B⊗ x̃(k) ⇔ A⊗ x̃(k) ≥ B⊗ x̃(k)

and ⊕
j∈M,l∈N

(
Ã(jl) ⊗ x̃(k)

)
⊗ yjl ≤ B⊗ x̃(k) ⇔

⊕
j∈M,l∈N

(
yjl ⊗ Ã(jl)

)
⊗ x̃(k) ≤ B⊗ x̃(k) ⇔ A⊗ x̃(k) ≤ B⊗ x̃(k).

Thus, in view of Theorem 12, X is a strong XEA-solution of A⊗ X = B⊗ X.
For the converse implication, assume that X is a strong XEA-solution of A⊗ X =

B⊗ X, i.e., that for each x ∈ [x, x]), there exists A ∈ A such that for any B ∈ [B, B]), the
inequality A⊗ x = B⊗ x holds true. By Theorem 12 and Lemma 2 (ii), for any k ∈ N
there exist coefficients αij ∈ R, i ∈ M, j ∈ N such that A =

⊕
i∈M,j∈N αij ⊗ Ã(ij) and

aij − aij ≤ αij ≤ 0. Then y(k) ∈ R(mn, 1), where yij = αij for any i ∈ M, j ∈ N, satisfies the
inequalities Ẽ(k)⊗ y(k) ≤ D̃(k), Ẽ(k)⊗ y(k) ≥ C̃(k).

4.4. Strong EXE-Solution

Theorem 14. Suppose A ∈ A, B and X. Then for each x ∈ X, there is B ∈ B such that
A⊗ x = B⊗ x if and only if for each k ∈ N the inequalities B⊗ x̃(k) ≤ A⊗ x̃(k) ≤ B⊗ x̃(k)

hold true.

Proof. The proof follows from Lemma 3 (i) and Theorem 4 (i).

Theorem 15. Suppose A, B, and X. Then X is a strong EXE-solution of A⊗ X = B⊗ X if and
only if there is A ∈ A such that B⊗ x̃(k) ≤ A⊗ x̃(k) ≤ B⊗ x̃(k).

Proof. The proof follows from Theorem 14.

To compute A ∈ A in Theorem 15, define vectors C̃ ∈ R(2mn), D̃ ∈ R(2mn) and the
matrix Ẽ ∈ R(2mn, mn) as follows:

C̃ =



B⊗ x̃(1)
...

B⊗ x̃(n)

a11 − a11
...

amn − amn


, D̃ =



B⊗ x̃(1)
...

B⊗ x̃(n)

0
...
0


, (15)

Ẽ(A) =



Ã(11) ⊗ x̃(1) Ã(12) ⊗ x̃(1) . . . Ã(mn) ⊗ x̃(1)
...

Ã(11) ⊗ x̃(n) Ã(12) ⊗ x̃(n) . . . Ã(mn) ⊗ x̃(n)

0 ε . . . ε
...
ε . . . ε 0


. (16)



Mathematics 2021, 9, 2951 12 of 13

Consider the max-plus linear system

Ẽ(A)⊗ y ≤ D̃
Ẽ(A)⊗ y ≥ C̃

(17)

where the vector y ∈ R(mn) consists of the variables yij ∈ R.

Theorem 16. Suppose given A, B, and X. Then X is a strong EXE-solution of A⊗ X = B⊗ X
if and only if the max-plus linear system of inequalities, (17) is solvable.

Proof. Let y be a solution of (17) satisfying the condition aij − aij ≤ yij ≤ 0, for every
i ∈ M, j ∈ N. Then A ∈ R(m, n), A =

⊕
i∈M,j∈N yij⊗ Ã(ij) ∈ [A, A] in view of Lemma 2 (ii).

Moreover, from the inequalities Ẽ(A) ⊗ y ≤ D̃ and Ẽ(A) ⊗ y ≥ C̃, we have the
following block inequalities for every fixed i ∈ N

⊕
k∈M,l∈N

(
Ã(kl) ⊗ x̃(i)

)
⊗ ykl ≥ B⊗ x̃(i) ⇔

⊕
k∈M,l∈N

(
ykl ⊗ Ã(kl)

)
⊗ x̃(i) ≥ B⊗ x̃(i) ⇔ A⊗ x̃(i) ≥ B⊗ x̃(i)

and ⊕
k∈M,l∈N

(
Ã(kl) ⊗ x̃(i)

)
⊗ ykl ≤ B⊗ x̃(i) ⇔

⊕
k∈M,l∈N

(
ykl ⊗ Ã(kl)

)
⊗ x̃(i) ≤ B⊗ x̃(i) ⇔ A⊗ x̃(i) ≤ B⊗ x̃(i).

Thus, according to Theorem 15, X is strong EXE-solution of A⊗ X = B⊗ X.
For the converse implication, suppose that X is a strong EXE-solution of A⊗ X =

B⊗X; i.e., there is A ∈ A such that for any x ∈ [x, x]), there is B ∈ [B, B]) such that A⊗ x =
B⊗ x. By Lemma 2 (ii), there are αij ∈ R, i ∈ M, j ∈ N such that A =

⊕
i∈M,j∈N αij ⊗ Ã(ij)

and aij − aij ≤ αij ≤ 0. Then y ∈ R(mn), where yij = αij, for any i ∈ M, j ∈ N, satisfy
Ẽ(A)⊗ y ≤ D̃ and Ẽ(A)⊗ y ≥ C̃.

5. Conclusions

In this paper, we have dealt with a problem of interval solvability of A⊗ X = B⊗ X.
Necessary and sufficient conditions for four versions of interval solvability, namely weak
XEA-solution, weak EAX-solution, strong XEA-solution, and strong EXE-solution, have
been presented, and the computational complexity of methods for checking each of ob-
tained equivalent conditions has been suggested. The way to define the other versions of
weak/strong solutions, whereby some of them are each others equivalent, has been pre-
sented. The equivalent conditions of all versions of strong solution can be reduced to satisfy
some max-plus linear equations and inequalities. Hence, types of strong interval solutions
are of polynomial complexity. Weak solutions have been transformed into non-interval
two-sided max-plus system for which efficient pseudopolynomial algorithms exist.
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