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Abstract: The reconstruction problem in X-ray computed tomography (XCT) is notoriously difficult
in the case where only a small number of measurements are made. Based on the recently discov-
ered Compressed Sensing paradigm, many methods have been proposed in order to address the
reconstruction problem by leveraging inherent sparsity of the object’s decompositions in various
appropriate bases or dictionaries. In practice, reconstruction is usually achieved by incorporating
weighted sparsity enforcing penalisation functionals into the least-squares objective of the associated
optimisation problem. One such penalisation functional is the Total Variation (TV) norm, which has
been successfully employed since the early days of Compressed Sensing. Total Generalised Variation
(TGV) is a recent improvement of this approach. One of the main advantages of such penalisation
based approaches is that the resulting optimisation problem is convex and as such, cannot be affected
by the possible existence of spurious solutions. Using the TGV penalisation nevertheless comes with
the drawback of having to tune the two hyperparameters governing the TGV semi-norms. In this
short note, we provide a simple and efficient recipe for fast hyperparameters tuning, based on the
simple idea of virtually planting a mock image into the model. The proposed trick potentially applies
to all linear inverse problems under the assumption that relevant prior information is available about
the sought for solution, whilst being very different from the Bayesian method.

Keywords: XCT reconstruction; sparsity enforcing penalties; hyperparameter selection; Bayesian
optimisation; virtual planted reference image

1. Introduction
1.1. Motivations

X-ray computed tomography (XCT) is increasingly used as a non-destructive eval-
uation tool to inspect industrial and medical components [1]. Conventional XCT using
analytical reconstruction algorithms require scans with thousands of projection images,
which is a time-consuming process. After the discretisation stage, the mathematical model
is as follows: a number of measurements is collected in a vector y, and the operator which
sends the original image x0 to the vector of measurements, denoted by A, enters the model
as described in the following equation

y = A(x0) + ζ, (1)

where ζ is the observation noise vector, usually assumed i.i.d. Gaussian N (0, σ2), with
variance σ2. The recent breakthroughs of sparse reconstruction theory, better known as
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Compressed Sensing [2–6], enriched by algorithmic improvements such as in [7], or [8,9]
where the problem of not knowing the noise variance is addressed, have provided a better
understanding of how sparsity promoting penalisations could be devised in order to
achieve accurate reconstruction using a very small number of projections.

Let us denote by Φ the matrix whose columns represent the discretised Fourier,
wavelet or shearlet basis elements, into which the original image’s decomposition is
known to be sparse, or almost sparse (which in the approximation theoretic terminology is
described as having a small best K-term approximation error decay as a function of K in
these bases). The optimisation problem resulting from this modelling is often set up as a
penalised least-squares problem of the form

x̂ = argminx∈Rp
1
2
‖y−A(x)‖2

2 + λ p(Φx) (2)

where p(c) is a penalisation function which promotes sparsity of the vector c to which
it is applied. Although the most natural penalisation is obtained by taking p to be the
sparsity, i.e., the number of non-zero components, this choice is rarely adopted because
of its non-convexity and the fact that the resulting optimisation problem (2) becomes
computationally intractable [10]. Compressed Sensing theory developed tools which
permitted the understanding of when sparsity could be profitably replaced with the `1-
norm, i.e., p(c) = ‖c‖1, or p(c) = ‖c‖TV , where TV stands for Total Variation, which
is a semi-norm (due to the fact ‖c‖TV = 0 does not imply that c = 0) defined as the `1
norm of the vector of local differences of the components of c, i.e., p(c) = ‖∇c‖1, where
∇ denotes the gradient, which readily extends to 2D or 3D objects. The main reason for
these choices is that the resulting penalisation functional is convex and many efficient
algorithms have been devised for such problems [11–13]. Oftentimes, different penalties
are combined for promoting various properties of the reconstructed object and the resulting
problem becomes

x̂ = argminx∈Rp
1
2
‖y−A(x)‖2

2 + λ1 p1(Φ1x) + . . . + λR pR(ΦRx) (3)

where Φ1, . . . , ΦR are various bases or dictionaries and λ1, . . . , λR are various hyperparam-
eters associated with penalisation functionals p1, . . . , pR.

1.2. The Hyperparameter Tuning Problem

Several methods have been proposed for the calibration of the hyperparameters in
tomographic reconstruction problems. In many recent papers, hyperparameter tuning
is performed by human evaluation. However, the goal of the current research is to fo-
cus on automated ways of tuning them. Cross-Validation is a standard approach to the
hyperparameter calibration problem. As a main downside, Cross-Validation (CV) is not
yet guaranteed to work in the setting of TGV-penalised reconstruction (TGV is not men-
tioned in [14], either, to the best of our knowledge, in any other mathematical publication
analysing the theoretical underpinnings of Cross-Validation). Moreover, CV requires multi-
ple subsampling in order to approximate the statistical risk to be optimised. Even if one can
afford extensive subsampling, CV is subject to the deficiency of performing reconstruction
on substantially smaller data sets, hence wasting a certain amount of statistical power.
Using more handy criteria that do not require sampling, such as analysing the histogram
of the reconstruction errors, may appear convenient when the number of hyperparameters
is not too large to allow for exhaustive search [15]. Traditional alternatives to exhaustive
search include Racing algorithms [16] or [17]; see also bandit based algorithms such as [18].
These algorithms require setting up an online sampling schedule which might not converge
sufficiently fast in measurement starving cases. Another approach often used in penalised
least-squares reconstruction is the Stein Unbiased Risk Estimator (SURE) [19,20]. This
approach uses a very clever estimator of the risk in order to plot the risk function as a
function of all the hyperparameters and find the minimum value. Hyperparameter tuning
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using the SURE approach is less time consuming than Cross-Validation, but it requires
computing some crucial theoretical quantities, a work which has been achieved in the
simpler case of the LASSO [21] but which seem tedious to obtain in the TGV-based setup.
Moreover, up to the present knowledge of the authors, the Stein estimator approach has
not yet been put to work for the TGV based reconstruction problem.

Bayesian Optimisation is often mentioned as a new efficient approach to accelerate
standard techniques for hyperparameter tuning [22–25], especially when the number of
hyperparemeters is large. However, defining an appropriate cost function is the crucial
step before putting this approach to work. This is the main problem we aim at addressing
in the present work.

Recent research on hyperparameter optimisation also includes Bilevel Programming [26].
Bilevel optimisation is a non-convex approach which can be put to work using gradient
based algorithms and which is empirically proven to work in many applications related to
inverse problems.

1.3. Our Contribution

As we have just seen, previous methods mainly use grid search (such as for Cross-
Validation or minimisation of the Stein estimated risk), bandit type algorithms, bilevel
optimisation or Bayesian optimisation, to name the most prominent. All of the previous
methods nevertheless need the user to design a relevant cost functional to optimise which
does not make use of the true solution. Our approach takes a different route as we propose
a novel way of performing accurate hyperparameter tuning, based on introducing crucial
information about what has to be reconstructed. More precisely, our approach is based on
the simple trick of planting a virtual shape into the unknown image and on using linearity
of the forward operator to compute the projection of the resulting “artificially augmented”
unknown image. We then propose a natural choice of the cost functional to optimise, which
is nothing but the reconstruction error on the restricted area where the planted virtual
shape was stitched. Fast optimisation of this reconstruction error on the planted virtual
image can easily be performed using, e.g., Bayesian optimisation. Our idea is to work on
the challenging problem of fast hyperparameter tuning for XCT, and we demonstrated that
our natural augmentation scheme can save computational effort by avoiding exhaustive
search while preserving good reconstruction accuracy.

2. Total Variation and Total Generalised Variation

Our main example in this project is the Total Generalised Variation penalised recon-
struction approach. The Total Variation and Total Generalised Variations penalisations are
sometimes more intuitive to apprehend for functions. Let x0 denote the image we want to
recover, but in this section, x0 will be a function of two position variables. More precisely,
we can temporarily assume that x0 is differentiable and define its TV-semi-norm as

‖x0‖TV =
∫

Ω
‖∇x0(ω)‖1 dω. (4)

Using an integration by parts, and the fact that the divergence is the adjoint of the
gradient together with the fact that the `∞-norm is the dual norm to the `1 norm, the
TV-norm can be rewritten as

‖x0‖TV = sup
x′∈C1

c (Ω,Rd)
‖x′‖∞≤1

∫
Ω

x0(ω)div(x′(ω)) dω. (5)

The TGV semi-norm is defined as

‖x0‖TGVk
α
= sup

x′∈Ck
c (Ω,Symk(Rd))

‖divl(x′)‖2,∞≤αl , l=0,...,k

∫
Ω

x0(ω)divk(x′(ω)) dω (6)
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where Symk(Rd) denotes the space of symmetric tensors on Rd and divk denotes the kth
divergence operator. Accurate discretisations are discussed in [27].

In XCT reconstruction problems, reconstruction is performed by solving

x̂ = argminx∈Rp
1
2
‖y−A(x)‖2

2 + ‖x‖TGV2
α

. (7)

A is called the forward operator and models the operator that transforms the 2D object
into the observed projections. In our experiments, we will restrict to the case of k = 2 for
simplicity. The associated hyperparameters are α1 and α2.

3. Estimating the Reconstruction Error Using a Planted Virtual Image Approach

In this section, we present our approach to hyperparameter tuning and we apply it to
the TGV-penalised least squares inversion for the XCT reconstruction problem.

3.1. Main Idea: Planting Known Shapes in the Image

Contrarily to standard statistical approaches such as Cross-Validation and the Stein
estimator of the risk, or visual quality assessment, our approach explicitly leverages the
linear structure of the problem by injecting some specific information into the problem,
whilst not substantially corrupting the information carried out in the observed projections.
In mathematical terms, our approach consists of artificially planting a virtual shape into the
image and tuning the hyperparameters so that this specific noise-free region of the image,
which is known exactly beforehand, is accurately recovered. Figure 1 shows an example
of a planted signal (here a star) into a cross-section image with a test sample. The test
sample used was developed by the National Physical Laboratory, UK, where the sample
incorporates geometries commonly seen in industrial applications. The goal of the present
work is to advocate that choosing the hyperparameters so as to recover the planted shape
(here, a star) accurately is a sensible approach to hyperparameter calibration.

Figure 1. An example of a planted signal (here a star). The test sample used was developed by
the National Physical Laboratory, UK, where the sample incorporates common geometries seen in
industrial applications.The unit of axes is in pixels.

3.2. Numerical Validation

In order to assess the relevance of using a virtual planted signal in the reconstruction
scheme, we perform some numerical experiments comparing the reconstruction error on
the planted signal with the reconstruction error on the total image.

3.2.1. Comparison of the Reconstruction Errors: 20 Projections

The reconstruction error in the case of 20 projections is plotted in Figure 2. The left
hand side figure shows the error landscape as a function of the two hyperparameters on
the planted shape only. The right hand side figure shows the error landscape on the full
unknown image.
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Figure 2. Reconstruction error as a function of the hyperparameters α1 and α2 from (7): planted star
error (left) and full image (right).

3.2.2. Comparison of the Reconstruction Errors: 50 Projections

As in the case of 20 projections in the previous section, the reconstruction error is
plotted in Figure 3 for the case of 50 projections. The left hand side figure shows the error
landspace as a function of the two hyperparameters on the planted shape only. The right
hand side figure shows the error landscape on the full unknown image.

Figure 3. Reconstruction error as a function of the hyperparameters α1 and α2 from (7): planted star
error (left) and full image (right).

3.2.3. Comparison of the Reconstruction Errors: 100 Projections

As in the case of 20 and 50 projections in the previous section, the reconstruction error
is plotted in Figure 4 for the case of 100 projections. The left hand side figure shows the
error landscape as a function of the two hyperparameters on the planted shape only. The
right hand side figure shows the error landscape on the full unknown image.

Figure 4. Reconstruction error as a function of the hyperparameters α1 and α2 from (7): planted star
error (left) and full image (right).
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3.2.4. Comments on the Numerical Results

The reconstruction error as a function of the hyperparameters has not previously been
studied in the literature and the error landscape shows interesting features which vary as a
function of the number of projections/observations. For instance, there seems to exist an
abrupt change in the reconstruction error when α1 crosses the level 37 for sufficiently small
values of α2, when the number of projections is 100.

The various results obtained in the numerical experiments presented in this section
show that the error landscape on the planted shape nearly faithfully reflects the error
landscape on the full image. These empirical findings ensure that the proposed approach
of using the reconstruction error on the virtual planted image is a relevant surrogate for
tuning the hyperparameters, at least on a preliminary coarse scale. In the next section, we
show how to use Bayesian Optimisation for selecting the best hyperparameters without
running an exhaustive search on the 2D-grid of values of (α1, α2).

4. Minimising the Reconstruction Error on the Planted Virtual Image Using
Bayesian Optimisation

In the previous section, we showed that the reconstruction error for the planted virtual
image was a good proxy for the reconstruction error of the total image. In this section, we
describe the Bayesian Optimisation framework for minimising this proxy as a function of
the hyperparameters.

4.1. Description of the Method

Recently, the Bayesian optimisation approach for the model selection and tuning task
has received much attention in tuning deep belief networks, Markov chain Monte Carlo
methods, and convolutional neural networks; see [24]. Technically, Bayesian Optimisation
relies on two main ingredients: a Bayesian statistical model for the objective function and
an acquisition function for deciding where to sample next.

After evaluating the objective function according to an initial space-filling experimen-
tal design, often consisting of points chosen uniformly at random, we proceed as follows.
A statistical model is chosen as a Gaussian process which provides a Bayesian posterior
distribution which describes the uncertainty about the values of f (x) at any candidate
point x. At each iteration, we observe f at a new point and update the posterior distribution
of the Gaussian process. The details of the method are given in Algorithm 1 below.

Bayesian Optimisation is a well-known technique for zeroth order optimisation. Recall
that zeroth order optimisation is concerned with the problem of optimising functions in the
case where we have access to its values at query points but not its gradient. In our recovery
problem in particular, one can only compute the recovery error of the star signal planted in
our image, but we do not have access to the gradient of this error as a function of α1 and α2.
The computation of the recovery error for the planted image being expensive, Bayesian
Optimisation is the tool of choice for our hyperparameter tuning problem.

Algorithm 1: Basic pseudo-code for Bayesian optimisation.

Place a Gaussian process prior on f ;
Observe f at n0 points according to an initial space-filling experimental design.

Set n = n0;
while n ≤ N do

Update the posterior probability distribution on f using all available data.;
Let xn be a maximiser of the current posterior distribution.;
Observe yn = f (xn);
Increment n;

end
Return a solution: either the point evaluated with the largest f (x) or the point
with the largest posterior value.
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4.2. Computational Results

We now present some computational results obtained using our virtual planted image
scheme combined with the Bayesian Optimisation procedure (the unit of axes of all figures
plotted in this paper is in pixels).

4.2.1. Reconstruction Results: 20 Projections

The optimal TGV-penalised reconstruction with 20 projections, obtained using the
Bayesian optimisation approach displayed in Figures 5 and 6.

Figure 5. Reconstruction based on 20 projections, with a planted star in a void area of the object used
to calibrate the hyperparameters. The unit of axes is in pixels.

Figure 6. Derivatives in x and y of the reconstructed image shown in Figure 5.

4.2.2. Reconstruction Results: 50 Projections

The optical TGV-penalised reconstruction with 50 projections, obtained using the
Bayesian optimisation approach and its derivatives are shown in Figures 7 and 8.

Figure 7. Reconstruction based on 50 projections, with a planted star in a void area of the object used
to calibrate the hyperparameters. The unit of axes is in pixels.
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Figure 8. Derivatives in x and y of the reconstructed image shown in Figure 7.

4.2.3. Reconstruction Results: 100 Projections

The optical TGV-penalised reconstruction with 100 projections, obtained using the
Bayesian optimisation approach and its derivatives are shown in Figures 9 and 10.

Figure 9. Reconstruction based on 100 projections, with a planted star in a void area of the object
used to calibrate the hyperparameters. The unit of axes is in pixels.

Figure 10. Derivatives in x and y of the reconstructed image shown in Figure 9.

4.3. Reconstruction of a Medical Image

In this subsection, we include an example of medical image reconstruction using our
approach. The original image to reconstruct is a standard aorta image from the literature
shown in Figure 11.
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Figure 11. Original aorta image.

4.3.1. Reconstruction with 50 Projections

We start with an experiment using 50 projections. The reconstruction result is shown
in Figure 12. The derivatives are shown in Figure 13.

Figure 12. Reconstructed image based on 50 projections.

Figure 13. Derivatives in x and y of the reconstructed aorta image.

These experiments confirm that our method of tuning the TGV-based reconstruction
using our planted virtual image approach readily applies to this medical image reconstruc-
tion problem without changing the star shape planted image reference.

4.3.2. Reconstruction with 100 Projections

We now turn to an experiment using 100 projections. The reconstruction result is
given in Figure 14. The derivatives are given in Figure 15.
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Figure 14. Reconstructed image based on 100 projections.

Figure 15. Derivatives in x and y of the reconstructed aorta image.

The result of the TGV-based reconstruction using our planted virtual image approach
is satisfactory for the case of 100 projections as well. Convergence was reached after 11 min
and 47 s via Colab on CPUs.

4.3.3. Reconstruction with 100 Projections and Four Parameters

We now turn to an experiment using 100 projections but with four hyperparameters.
The reconstruction result is given in Figure 16. The derivatives are given in Figure 17.

Figure 16. Reconstructed image based on 100 projections.

Figure 17. Derivatives in x and y of the reconstructed aorta image.



Mathematics 2021, 9, 2960 11 of 12

TheoOptimisation was performed within 15 min and 38 s via Colab on CPUs.

4.4. Discussion of the Benefits as Compared with the Other Approaches

We now provide the main ideas underlying the differences and potential benefits of
our Bayesian optimisation approach to minimising the reconstruction error on the virtual
planted image as compared with standard approaches to hyperparameter tuning.

The statistical viewpoint provides us with a rigorous framework for the hyperparam-
eter calibration problem. As is well known, the errors incurred when hyperparameter
calibration is not optimal are of two types: the bias and the variance. First, independent
of the hyperparameter calibration method, penalised least-squares approaches induce an
inherent bias. Debiasing is possible in some models, such as for the LASSO, as studied
in [28], but it seems difficult for more general models such as obtained via TGV-based
penalised least squares. In our approach, putting all our efforts into minimising the recon-
struction error for the virtual planted image may induce an additional bias, which can only
be mitigated if the virtual planted image is appropriately chosen. The more similar the
virtual image is to the image to be reconstructed, the smaller the expected bias. If the bias
induced by the choice of the virtual planted image is small, then the error committed on
the virtual image is known exactly, which makes a huge difference with other statistical ap-
proaches such as Cross-Validation which can only guess the error out of strongly correlated
reconstructions without ever seeing the truth. Moreover, Cross-Validation type methods
work if we set a prediction task such as predicting the value of one projection given the
observed values of other projections, a task which is different in a subtle manner from the
actual minimisation of the reconstruction error as performed by our scheme (on a reduced
area of the image). Finally, on the computational side, Bayesian Optimisation was able to
find an appropriate solution at least 10 times faster than an exhaustive enumeration of all
the possible combinations of the possible hyperparameter values, which is itself faster than
Cross-Validation.

One of the main defects of the proposed approach is the problem of selecting an
appropriate Virtual Reference Image that we superimpose to the original image to be
reconstructed. Our experiments suggest that a simple surrogate such as a virtual star
image can be sufficient for reaching a satisfactory reconstruction accuracy. It remains to
theoretically quantify the bias incurred using our technique, a task which seems a priori
quite demanding. Another possible issue we need to underline is the one of appropriately
placing the virtual planted reference image into the image to be reconstructed. For this
purpose, we need to know ahead of time where there should be no signal in the original
image, a quite reasonable assumption in many cases. Lastly, we also would like to underline
that our approach only works in the case where a linear approximation of the tomographic
acquisition process is sufficiently good. In the case of a truly non-linear observation, this
approach needs to be carefully extended, a task we leave for future work.

5. Conclusions

In this paper, we introduced a novel approach to efficiently calculate hyperparame-
ters for XCT-type reconstruction problems. Our main contribution is to show that using
appropriately chosen Virtual Planted Images as surrogates for the reconstruction error can
help achieve satisfactory empirical performance on manufactured data at a low computa-
tional price. The approach is intuitive and very simple to implement using off-the-shelf
Bayesian optimisation codes. Further studies are envisaged concerning the impact on
the reconstruction error of the location of the virtual planted image in the full image to
be reconstructed.
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