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Abstract: The main objective of the present article is to prove some new V dynamic inequalities
of Hardy-Hilbert type on time scales. We present and prove very important generalized results
with the help of Fenchel-Legendre transform, submultiplicative functions. We prove the (v, a4)-nabla
conformable Holder’s and Jensen'’s inequality on time scales. We prove several inequalities due to
Hardy-Hilbert inequalities on time scales. Furthermore, we introduce the continuous inequalities
and discrete inequalities as special case.
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1. Introduction

In this section, we give several foundational definitions and notations of basic calculus
of time scales. Stefan Hilger in his PhD thesis [1] discovered a new calculus named after
that time-scale calculus to unify the discrete and continuous analysis (see [2]). Since then,
this theory has received a lot of attention. The book by Bohner and Peterson [3], on the
subject of time scales, briefs and organizes much of time scale calculus.

We begin with the definition of time scale.

Definition 1. A time scale T is an arbitrary nonempty closed subset of the set of all real numbers R.
Now, we define two operators playing a central role in the analysis on time scales.

Definition 2. If T is a time scale, then we define the forward jump operator o : T — T and the
backward jump operator p : T — T by

o(t) =inf{s € T :s > t},

and
p(t) =sup{s € T:s < t}.

In the above definitions, we put inf@ = sup T (i.e., if t is the maximum of T, then
o(t) =t)and sup@ = inf T (i.e., if ¢ is the minimum of T, then p(t) = t), where @ is the
empty set.

If T € {[a,b],[a,00),(—00,a],R}, then o(t) = p(t) = t. We note that o(t) and p(t) in T
when t € T because T is a closed nonempty subset of R.

Next, we define the graininess functions as follows:

Definition 3. (i) The forward graininess function y : T — [0, o) is defined by
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(ii) The backward graininess function v : T — [0, 00) is defined by

v(t) =t—p(t).
With the operators defined above, we can begin to classify the points of any time scale
depending on the proximity of their neighboring points in the following manner.

Definition 4. Let T be a time scale. A point t € T is said to be:

(1) Right-scattered if o(t) > t;
(2) Left-scattered if p(t) < t;
(3) Isolated if p(t) < t < o (t);
(4) Right-denseif o(t) =t;
(5) Left-dense if p(t) = t;

(6) Denseifp(t) =t =o(t).

The closed interval on time scales is defined by
[a,blr =[a,b]NT={teT:a<t<b}.
Open intervals and half-open intervals are defined similarly.

Two sets we need to consider are T* and T, which are defined as follows:
T* = T\ {M} if T has M as a left-scattered maximum and T* = T otherwise. Simi-
larly, Tx = T \ {m} if T has m as a right-scattered minimum and T, = T otherwise. In fact,
we can write

T* _ T\ (o(supT),supT], if supT < oo,
T, if supT = oo,

and

T _ T\ [infT,o(infT)), if infT > —co,
T if  infT = —oco.

Definition 5. Let f : T — R be a function defined on a time scale T. Then we define the function
f7:T—Rby

fr(t) = (feo)(t) = fle(t), teT,
and the function f° : T — R by

frt) = (fep)(t) = flp(t)),  teT

We introduce the nabla derivative of a function f : T — R at a point t € Ty as follows:

Definition 6. Let f : T — R be a function and let t € Ty. We define fV (t) as the real number
(provided it exists) with the property that for any € > 0, there exists a neighborhood N of t (i.e.,
N = (t—6,t + 6)r for some § > 0) such that

|[2() = £(5)] = Y (B)[o(t) = s| <elp(t) —s| forevery se€N.
We say that fV (t) is the nabla derivative of f at t.

Theorem 1. Let f : T — R be a function, and t € Ty. Then:

(i) f being nabla differentiable at t implies f is continuous at t.
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(ii) f being continuous at left-scattered t implies f is nabla differentiable at t with

fV(t) _ f(t) _fP(t) ) (1)

v(t)
(iii) If t is left-dense, then f is nabla differentiable at t if and only if the limit

o £ = £(5)

s—t t—s

exists as a finite number. In such a case,

fV(t) = lim f(t) _f(s).

s—t t—s
(iv) fP(t) = f(t) —v(t)fY (t) whenever f is nabla differentiable at t.
Example 1. (i) Let T = R. Then

(ii) Let T = Z. Then
Y0 =Vt = f(H) - f(t-1),

where V is the backward difference operator.

Theorem 2. Let f, g : T — R be functions that are nabla differentiable at t € T\. Then:

(i) Thesum f + g : T — R is nabla differentiable at t with
(F+V (D) =FY (1) +8" ().
(ii) If w € Ris a constant, then the function af : T — R is nabla differentiable at t with
(af)¥ (1) = af ¥ (t).
(iii) The product fg : T — R is nabla differentiable at t, and we obtain the product rule

(FRV (1) = FY (g (1) + fA(1)gY (1) = F(1)g¥ (1) + F¥ ()gF (b).

(iv) The function 1 : T — R is nabla differentiable at t with

f
1y¢ fY(t)
(7) ()= ———22~ f()fe(t) # 0.

f

(v) The quotient < : T — R is nabla differentiable at t, and we obtain the quotient rule

v
870 (g (1) #0.

Definition 7. We say that a function F : T — R is a nabla antiderivative of f : T — R if
FV(t) = f(t) forall t € Ty. In this case, the nabla-integral of f is defined by

/tf(f)VTZF(t)—F(a) forall te€ Ty
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Now, we introduce the set of all 1d-continuous functions to find a class of functions
that have nabla antiderivatives.

Definition 8 (Ld-Continuous Function (Cy;)). We say that the function f : T — R is ld-
continuous if it is continuous at all left-dense points of T and its right-sided limits exist (finite) at
all right-dense points of T.

Theorem 3 (Existence of Nabla Antiderivatives). Every ld-continuous function possess a
nabla antiderivative.

Theorem 4. Let f : T — R be a ld-continuous function, and let t € Ty. Then
t
[ f@ve=ube).
p(t)

Theorem 5. If f¥ (t) > 0 (respectively, f¥ (t) < 0), then f is nondecreasing (respectively, nonin-
creasing).

Theorem 6. Ifa,b,c € T,a € R, and f, g € Cyy, then
i) ) [f(1) + 8]Vt =fbf w+ffg<t>w
if) J) af(t Vt—ﬂéf f(t)

iii) f f(H)Vt = —fb

(
(
(
(iv) [} F(b) f;f<t>w+fff<t>w
(v) [T f(HVE=0;

(

(

vi) if f(t) > g(t) on [a,b), then [ F(1)Vt > [7 g(t) Vit
vii) if f(t) > 0on € [a,b), then fuhf(t)Vt > 0.

Theorem 7. Let f : T — R be a Id-continuous function, and a,b € T.

(i) In the case that T = R, we have

/abf(t)Vt - /abf(t)dt

where the integral on the right-hand side is the Riemann integral from calculus.

(ii) In the case that [a, b] consists of only isolated points, we have

Y, v(Of(), if a<b,

b te(ab)t

| fove=3o, i a=b,

’ — Y w(Of(t), if a>b.
fE(b,ﬂ]T

(iii) In the case that T = hZ = {hk : k € Z}, where h > 0, we have

b
h

Y hf(hk), if a<b,
[ syve= 1o, Foa=b
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(iv) In the case that T = 7Z, we have

b
Y. f(t), if a<b,
b t=a+1
| rwve=o i a=b
~ Y AW, i asb.
t=b+1

The formula for nabla integration by parts is as follows:

[ 070V = ()0 - () @) - [ 7009,

The following theorem gives a relationship between the delta and nabla derivative.

Theorem 8. (i) Let f : T — R be delta differentiable on T*. Then f is nabla differentiable at
tand fV(t) = f2(o(t)) for any t € Ty that satisfies o (p(t)) = t. If, in addition, f* is
continuous on T*, then f is nabla differentiable at t, and £V (t) = f*(p(t)) for each t € Ty.

(ii) Let f : T — R be nabla differentiable on Ty. Then f is delta differentiable at t and
2 = fV(o(t)) for any t € T* that satisfies p(o(t)) = t. If, in addition, fV is
continuous on Ty, then f is delta differentiable at t, and f2(t) = fV (c(t)) for each t € T*.

We will use the following relations between calculus on time scales T and either
continuous calculus on R or discrete calculus on Z. Please note that:

(i) f T =R, then

p(t)=t v(t)=0, fY(t)=Ff(1),
/abf(t)Vt — /abf(t)dt. @
(if) If T = Z, then
p(t)y=t—1, v(t)=1,
FY(8) = V£, 3)

b—1 b b
Lo, [ fovi= L 5,

t=a+1
where V is the forward difference operators, respectively.

Recently, depending just on the basic limit definition of the derivative, Khalil et al. [4]
proposed the conformable derivative T, f () (« € (0,1]) of a function f : RT — R

Tocf(t) — lim f(t + €t1_lx) — f(t)/

e—0 €

forallt >0, € (0, 1], this definition found wide resonance in the scientific community
interested in fractional calculus, see [5-7]. Iyiola and Nwaeze in [5] proposed an extended
mean value theorem and Racetrack type principle for a class of a-differentiable functions.
Therefore, calculating the derivative by this definition is easy compared to the definitions
that are based on integration. The researchers in [4] also suggested a definition for the
«-conformable integral of a function # as follows:

/abiy(t)d,xt = /abn(t)t“—ldt.
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After that, Abdeljawad [8] studied extensive research of the newly introduced con-
formable calculus. In his work, he introduced a generalization of the conformable derivative
T2f(t) definition. For t >a € RT as f : RT - R

Tgf(f) — lim f(t + e(t — a)l_lx) 7f(t).

e—0 €

Benkhettou et al. [9] introduced a conformable calculus on an arbitrary time scale,
which is a natural extension of the conformable calculus.

However, in the last few decades, many authors pointed out that derivatives and
integrals of non-integer order are very suitable for the description of properties of various
real materials, e.g., polymers. Fractional derivatives provides an excellent instrument for
the description of memory and hereditary properties of various materials and processes.
This is the main advantages of fractional derivatives in comparison with classical integer-
order models.

In [10], the authors studied a version of the nabla conformable fractional derivative
on arbitrary time scales. Specifically, for a function f : T — R, the nabla conformable
fractional derivative, Ty ,f(t) € R of order w € (0,1] at t €Ty and t > 0 was defined as:
Given any € > 0, there is a J- neighborhood U; C T of t, 6 > 0, such that

[f (1) = F&)IE ™ = Tou(H(BD)p(t) —s]| < elp(t) —s|
for all s € U;. The nabla conformable fractional integral is defined by
/f(t)Vat = /f(t)t'HVt.

Rahmat et al. [11] presented a new type of conformable nabla derivative and integral
which involve the time-scale power function G,(t,s) fors, t € T.

Definition 9. Suppose [s,t] C T and s < t. The generalized time-scale power function G, :
T x T — R for n € Ny is defined by

~ t—s)", if |t,s| dense;
cn<t,s>:{( AN @
Hj:o (t—p/(s)), fif [t,s] isolated;
and its inverse function G_,, : T x T —s R is then given by
_ (t—s)7", if [t,s] dense;
Gon(t,s)=¢ 1. : ©)
{mﬁmemw if [t,s] isolated.
Notice that: ,
G_n(c"(t),s) = —= . s, teT,s<t. 6
w07 (2),5) Gn(t,s) ©)

Corollary 1. Forh > 0, T = hZ = {hk : k € Z}, we have o*(s) = s — kh. Then
Cultys) = (t—s)\"
n

= (t —s+jh)
=0

)
- m(”f) . neN, @)

~
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and
Cults) = (t—s)\"
_ T(t—n—s+jn
I, (t—s—i—]h]:HO n=s+jh)
R (n)
_ h”(t : S+n> ,  neN, 8)
where
(n) _ T(x+n) (—n) _ 1 _ F(x — 7’1) 0) _
X 71,()() and x )™ o) neN, x 1.
For T = g™, we have o*(s) = sq~*. Then we write
Cultys) = (t—s)i
n—=1 .
= [Tt-s17)
j=0
T (1 T8 0<g=1<1 9
- H(‘t)' (0<a=5<1) ©)

Remark 1. Regarding the generalization of the power function, Gy(t,s) to real values of & > 0
(instead of integers), we have

(52 +4a) (t—s)(fx) _ (360 (s/t,§)eo
! q

(t—s5)\%) = p e/t

t#£0, (10)

where

(n D) =101 p2).

j=0

Definition 10 (Conformable nabla derivative). Given a function f : T — Randa € T, f is
(v, a)-nabla differentiable at t > a, if it is nabla differentiable at t, and its (vy, a)-nabla derivative is
defined by R

Vif(t)=Gi_o(ta)fV(t) t>a, (11)
where the function @1,7(1‘, a) as defined in (4). If V) [f(t)] exists in some interval (a,a + €)T, € >

0, then we define
Vilf(@)] = lim Vi[f(t)]

t—sat

if the lim,__,,+ V) [f(t)] exists. Moreover, we call f is (y,a)-nabla differentiable on Ty (a € Ty)
provided V) [f (t)] exists for all t € Ty. The function V) : Ty — R is then called (vy, a)-nabla
derivative of f on T.

Next, we present the (7, a)-nabla derivatives of products, sums, and quotients as
follows.

Theorem 9. Assume f,g: T — Rare (y,a)-nabla differentiable at t € Ty, t > a. Then:
(i)  Thesum f + g: T — Riis (vy,a)-nabla differentiable at t with

Va(rf +sg)(t) = rVif(t) +sVag(t).
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(i) Forallk € R, thenkf : T — R is (v, a)-nabla differentiable at t with
Va(kf) () = kVIf(H).
(iii) The product fg: T — R is (v, a)-nabla differentiable at t with
Va(fg) = [Vif()lg(t) + fF(H)[Vag(t)]- (12)
(iv) Ifg(t)gP(t) # O, then f /g is (vy,a)-nabla differentiable at t with

A\ VA8 — F(0)[VIs(0)]
V“<g>(”‘ FOrA0 ‘

Lemma 1 (Integration by parts). Suppose that d, b € T where b > d. If y, ¢ are conformable
(v, a)- nabla fractional differentiable and v € (0, 1], then:

b b b
| nwviewvie= [snze] - [ [vinmleovie (13)

Lemma 2 (Chainrule). Let g € CZZ(']I‘) and assume that f : R — R s continuously differentiable
function. Then (f o g) : T — R is (vy, a)-nabla differentiable and satisfies

VI o)) = { [ (50— mwl0g¥ () an } Vg ) )

Lemma 3. Let v € (0,1]. Assume ¢ : T — R is continuous and (vy,a)-nabla differentiable of
order iy at t € T, where t > a and 17 : R — R is continuously differentiable. Then there is c in the
real interval [p(t), t] such that

Va(no8)(t) =1'(2(c) V(). (15)

Definition 11 (y-nabla-integral from a). Assume that0 < vy < 1,a,t1,tp € T,a <t; <t
and f € Ciy(T), then we the function f is called (vy,a)-nabla integrable on [t1, t5]. if:

/f NVt

- /f( Gy _1(c71(t),a)Vt, (16)

fy

Vi Tf (1)

exists and is finite.

Theorem 10. Suppose t € T and a € Ty with p(t) > aand f € Cy(T), then
t -~
[ JOVEE = VOG0, 0). 7

We need the relations between different types of calculus on time scales T and contin-
uous calculus, discrete calculus and quantum calculus as follows. Please note that: For the
case T = R, we obtain

/f V7t_/f a)71dt, (18)
If T =hZ,h > 0, we obtain

[ f0vi= ¥ w0 -a) . 19

te(a,t]
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For T = g™, we have

[ f0vit= ¥ 0 -pfo e 0 -a) 0

te(at]

Theorem 11. Let vy € (0,1] and a € T. Then, for any ld-continuous function f : T — R, there
exists a function F : T — R such that

VAJE(t) = f(t) forall t € Ty.

The function F is called an (v, a)- nabla antiderivative of f, and we have
tp
/ f(O)Vit=F(ta) =F(h), t,tae€T, h<h. (21)
t

Theorem 12. Lety € (0,1].Ifa, t1 tr, t3 € T,a < t; < tp < t3, o € Rand f, g € C4(T), then
@ [ +8(B]VIE= ffZ HVIt+ [ 8( V'Yt
(ii) ffz af (HVIt=a [2 f(t) VDL,

(i) ffz HVIt=— [ f(t )v%

(iv) ffS () Vas = ffz HVIt+ [2 f(5)VIE
(v) f (H) Vit =0.

(vi) If|f( )| < g(t) on [ty, tp], then

t3
f(#)Vat
5]

t3
< [Tstvit
5]

Lemma 4. Let v € (0,1]. Assume 1: T — R is continuous and (vy, a)-nabla differentiable of
order v at t € T, where t > aand  : R — R is continuously differentiable. Then there is c in the
real interval [p(t), t] such that

Va (o)) =1'(7(e) Va (1)) (22)
Next, we introduce the Fenchel-Legendre transform [12-14].

Definition 12. Suppose ¢ : Ri — RU {400} is a function:  # +ooie., Dom(¢p) = {@ €
RY, |¢p(@) < oo} # @. Then the Fenchel-Legendre transform is defined as:

"R — RU {400}, z — ¢*(2) = sup{< Z,@ > — (@), ® € Dom(y)} (23)
The scalar product is denoted by < .,. > on R, and p — ¢* is said to be the conjugate operation.

Lemma 5 ( [12]). Suppose a function ¢ and suppose p* Fenchel-Legendre transform of ¢, we
obtain

S

<W,Z > P(@)+9Pp*(2), (24)

forall @ € Dom(y), and Z € Dom(¢*).
Definition 13. We said ) is submultiplicative [0, o) if

Q(@2) < Q@)Q(Z), ¥ @,% > 0. (25)
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Lemma 6 ([15]). Let ¢ : T — R is left-dense continuous function. Then the equality that allows
interchanging the order of nabla integration given by

/t </t ﬁ(”)v’”)vs - /tw < /pz;) WWS)) Vi = /:[w—pw)w(n)w (26)

holds forall s, w, ty € T.

Lemma 7 ([16]). Let w and z € R be such that w+z > 1 and 0 < y, then

2

1 1\ 7
(w+z);<<|w|25+|z|2ﬁ>w forall = <B<a 27)

1
2
Over several decades Hilbert-type inequalities have been attracted many researchers
and several refinements and extensions have been done to the previous results, we refer
the reader to the works [15-26].
The celebrated Hardy—Hilbert’s integral inequality [27] is

/ooo /ooo dey = sutl; [ /000 fF <x)dx} % { /0oo gq(y)dy] %, (28)

t
sin £

wherep > 1,9 = % and the constant is best possible. As special case, if p = g = 2,

the inequality (29) is reduced to the classical Hilbert integral inequality

/0°° /ooo Wd’cdy = t[/oco fz(X)dx] % [/Ooo gz(y)dy} %, (29)

where the coefficient ¢ is best possible.
In [28], Pachappte established a discrete Hilbert-type inequality and its integral version
as in the following two theorems:

Theorem 13. Let {a,,}, {bn} be two nonnegative sequences of real numbers defined for
m=1,..., kandn =1,..., rwithay = by = 0, and let {pm}, {qn}, be two positive se-
quences of real numbers defined form =1,..., kandn =1, ..., r where k, r are natural numbers.
Define Py, = Y0t 1 ps and Qn = i q¢. Let ® and ¥ be two real-valued nonnegative, convex,
and submultiplicative functions defined on [0, co). Then

i iq)(”m)ly(b”)SM(k,r)(i(k—erl)(pmcI)(vpamY)%) (30)

m=1n=1 m+n m=1

" ;a_ﬁn(qﬂ(jin)z)é),

-3 (52 (5 (8

and Vay, = ay, — ay—1, Vby = by — byy_1.

where

Theorem 14. Let f € C![[0,x],R*], g € C'[[0,y], R*] with f(0) = g(0) = 0 and let p(&),
q() be two positive functions defined for & € [0,x) and T € [0,y). Let P(s) = [; p(¢)d¢ and
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fo T)dt fors € [0,x) and t € [0,y) where x, y are positive real numbers. Let ®, and ¥
be as in Theorem 13. Then

where

1 1
(e ¢<P<s>>>2 )( y(w«g(t»)z )
Ly =5 ( | as) (| dt) .
=3 (f o) ) (U (e
In [29], Handley et al. gave general versions of inequalities (30) and (31) in the
following two theorems:

Theorem 15. Let {a;,, } (i = 1,2,...,n) be n sequences of nonnegative real numbers defined
formj = 1,..., ki with ayg = azp...a,0 = 0, and let {p;,, } be n sequences of positive
real numbers defined for m; = 1,...,k;, where k; are natural numbers. Set P, = Zs, Pis;-
Let ®; (i = 1,2,...,n) be n real-valued nonnegative convex and submultiplicatwe functions
defined on (0,00). Let a; € (0,1), and set &) = 1 —w;, (i = 1,2,...,n), &« = ¥, ;, and
af =Y af,=n—a Then

n ki . ‘%‘. %)
Z Z T ®il@im) ek H( 3 (k mi+1)<r)i,m,-<1>i<m) )

ol .
my=1 my=1 n i=1 \mj=1 Pim;
i=1 ’sz

where ,
1 q’i(Piml)> f”)“"
M(k,... k) = ; — ) )

( 1 Vl) (0(/)0( P ( Z ( Pi,mi

ml:l

Theorem 16. Let f; € CY([0,k;],Ry])i =1,...,n, with £i(0) = 0, let p;(&;) be n positive
functions defined for §; € [0,x;] (i =1,...,n). Set Pi(s fo pi(&;i)dg; for s; € [0, x;], where
x; are positive real numbers. Let ®;, w;, ocl, zx, and o' be as in Theorem 15. Then

/X1... x”wds ds
[ A 1e-- n

IX/

<Zzn_1 ajsi
Sl { G ACEI (AT (L) )",

where

L(x1,...,%,) = (Ml)a, ﬁ (/(;xi (W) ”‘1§dsi>af.

i=1

Hamiaz et al. [22] discussed the inequalities:
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Theorem 17. Let g, p > 1, a > B > % and (gj)j > 0 (6;); > 0 be sequences of real numbers.

Define 0; = 2221 5, ¢j = Zi:l Cr. Then

2p 2
k r gip(ij

L LTy S

@)
— %

=
=
S—
7N
ygle

(

Il
_

X
R
1=

T
I\

and

kv 9f¢f’
L) —
S (w1 + )1

P oq
0 ¢!

<Yy

|

™I

k

SCS(P,q,k,r)(Z

i=1

=1

unless (3;) or (&;) is null, where

Ci(p.q) = (pq)* and C3(p,q,k,r) = pgvkr.

(k—i+ 1)(5i9f1)2)

(r—j+ 1)(6@?1)2)

)a ==V O R )
(k—i+ 1)(5i9f1)2> ’

<(Ler-i+ v 2

In this important article, by implying (24), we study some new dynamic inequalities
of Hardy-Hilbert type using nabla-integral on time scales. We further show some relevant
inequalities as special cases: discrete inequalities and integral inequalities. These inequal-
ities maybe be used to obtain more generalized results of several obtained inequalities

before by replace ¢, ¢* by specific substitution.

2. Main Results

In the following, we willlet p > 1,4 > 1 and % + % =1
We start with a foundational results before introducing the main inequalities.

Lemma 8. Suppose the time scales T with t, ty € T such that t > tg. Let Y : T — R be left-dense

continuous function withY > 0 and ¢ > 1. Then

to fo

([ vowm) <e [xo [vown) vie

(32)

Proof. We fix the point t € T, t > 5. Assume ¢ is left-dense, by making a modification of

the chain rule, we obtain

[(/t:Y(l)Vﬁ)é

to

Letting t be a left-scattered point. Define 0 < Ay, A; € Ras

0
M :/p Y1)V,

fo

and

v E(/tY(z)V;ﬁy—lY(t).

(33)

(34)

(35)
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where we used (17). Using the differentiability of the real-valued function f : R — R,
where [ = /\f and applying the mean value theorem, we obtain

(M + Az)é — A =00, < (A1 + Az)é_l/\z, for somereal T € [A, A1+ Azl (36)
From (1), (11), (34), (35) and (36), we obtain

[(‘/JYW)Z Y [(_/;Y(mly

v ~
Gl_,y(t, Ll)

< (M A+ 1) NG (ta) (37)

where we used (6) in the last step. Thus, (37) holds in either case. From (37), taking A\
integral for both sides, we obtain the required inequality (32). This completes the proof. [

Lemma 9 (Generalized (vy, a)-nabla Holder fractional inequality on timescales). Letd, b € T
whereb > d . Ify € (0,1 and 5, : T — R, then

1/q

[ wozowies ([ wores) " ( [eomn) e

where p,q > 1and 1/p +1/q = 1. This inequality is reversed if 0 < p < landif p <0, or
q <0.

Proof. Setting

e WOl g 5= col
(f2 15(s)|PVIs)7 (f71&(s)|7V7s)

and applying the Young inequality AB < AP/p + B7/q, where A, B are nonnegative, p > 1
and 1/p+1/q = 1 we see that

b b
| AwB®vI < [Car@/p+ B /qv i

_/[ JIO1—— b|c<t>|q ]vgt
fdwsw s) (fd|c )[1V1s)

|l (t)[P v
1/p +1/q | —5——"———Vgt
/ f [7(s)|PVis / f |§ |‘4v 5)
=1/p+1/q=1

which is the desired inequality (38). On the other hand, without loss of generality, we
assume that p < 0.Set P = —p/gand Q =1/4. Then1/P +1/Q = 1. From (38) we have

that wr,
/|F |V7t<</ IE(t) Pw) (/d |G(t)|Qvgt>

1/Q
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Letting F(t) = n~9(t) and G(t) = n9(t)¢7(t) in the last inequality, we obtain the inverse
inequality of (38). The proof is complete. [

Lemma 10 (Generalized (v, a)-nabla Jensen’s fractional inequality on timescales). Let J,
eTandc,deR. Assume that { € Ci4([0, &1, [c,d]) and r € Ci4([8, ], R) are nonnegative

with f§ (£)Vat > 0. If ® € Cy((c,d),R) is a convex function, then

(ﬁ i [E (e Vit o)
[Er(t) V” O

It is easy to see that inequality (39) are turned around if ® is concave.

Proof. Because the convexity of ®. For1 € (c,d) there exists w;, € R such that

w(x —1) <P(x) —®(1), forall x € (cd). (40)
Suppose
f5 (H)Vat
f(s VWt '

From (40) and item (vi) in Theorem 12, we obtain

15 at

=.[3m¢@u»Vﬁ(AiﬁnﬁQ®@
= [@Em) - ew v
> /5 “(C(s) — (VI (41)

- wl(/o_gr(t)g(t)vgtz/fr(t)Vﬁ)

- m(éiaxmvﬁ—éiawaﬁ>
= 0.

This gives the required inequality (39). The reversed inequality obtained directly if
we put ® = —P and apply inequality (39), since @ is convex. [

Theorem 18. Suppose the time scales T with ¢, € > 1 and s, t, ty, w, z € T. Assume 5(7) > 0
and &(T) > 0 are r-d continuous [ty, w] and [ty, ]T respectively and define

0(s) = /Sa(f)vgr, and §(t) == /tg(r)vzr,

to to
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then for s € [to, w|r and t € [ty, z]T, we have that

: q(e—r—1) q(t—y—1)
to Jig

2qu

(196 = ) 41y - 1)
<atenp( [ w-pe) e ) V) @)
<( [ - pmeoe )y Vi)

and

/w / 0 (s)p T (1) UTsv
20 a a

to Jto 1 1\ 7
(w(s )| 4 [g(t— to>|2ﬁ)

<ctern( [ w=pe) (ef-wsws))qusf 3)

<([-p) (W(t)@(t))quff

where Cl(él,e,'y,q) = ((e—=7v+1)(l—y+1))7 and Co(Le,v,p) = (e—7+1) (£ -7+
D(w—to)7(z—to)".

Proof. Using the inequality (32), we obtain

0 s) < (e~ v 1) [ 3o () Vi, (a4)

t

) < (= +1) [ Elng’ T ) Vin. 5)

to
We use Lemma 9. Then from (44), we obtain
; 1
1 q
1) < (e =+ 1~ to)F ([ @0ne () 'Van) (46)
0
Applying Lemma 9. Thus, from (45), we obtain

1

(/t: (6(77)47’”(77))%;7)‘7, ()

=

¢TI < (0= +1)(t— to)

From (46) and (47), we obtain

)

[

0T )P < (e =y + (= + 1) (s — 1) (¢~ to)

X (/to (5(17)96‘”(17))qV317) (48)

1
q

X (/t: (C(ﬂ)ﬂ”(ﬂ))"vh) :

<=
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From inequality (48), we have

011D (5)p1 =7V (1) < ((e — v+ 1) (£ —y +1))1(s — fo)% (t— tO)%

x ( /t: (5(17)96‘7(71))qva717) (49)
<( [ @onera)'vin).

Using Lemma 5 in (48) and (49) gives

6° T (s)p" (1) < (e—y+1)(£ - ’Y“< (5=to) 9" t_t°)>p

1

( / 7657 ( qv;f;7>q (50)

([ e ryren)’

q

0711 ()17 D(1) < (€ —y + 1) (£ — 7 + 1)) (¢<s o)+t m)”

( /t neE qun) 61)

Using Lemma 7 in (50) and (51) gives

X(/t: (606~ 7(n))qv%) (52)

x (/t: (367 (n)) v '7> (53)
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sy

Dividing both sides of (52) and (53) by (|1[)(s - t0)|ﬁ + |p*(t — t0)|i)
2qa

1\ 7y
[p*(t —to)| 2P‘> respectively, we obtain that

and (Ip(s — 1)1 +

ge—r+1 (S)¢£—7+1 (t)

(w(s—to)ﬁ + |¢*<t—to>|ﬁ) ”

1

<(e—y+1)(l—7+1) ( /t: (5(17)96’”(77))'7V217> '

<( [ ewe o) 9

9(e=1=1) ()11 (1)
2qa
1 4

(IlPS—to w+|¢*(t—to>|ﬁ)
<

(e—y4+1)(l—vy+1))1 7)0° (5 V”fy)

o

(55)

(/e
X ( / (&(n qvgq)

to
From (54) using Lemma 9 we obtain

/w /Z 9577+1(s)¢€77+1(t) —VIsVit
to to 1 AN
(llP(s —to)|% + [y (t — f0)|2“)

1

(/f (/r (‘5(’7)96’”(17))f’V377) V2s> q

==
==

<(e—y+D(l—y+1)(w—ty)?(z—to)

([ ([ one-reyrem)vze)’
<=+ D=7+ Dl 10)F - ) /:<w—p(s))(é(s)ee—ws))qus)‘1’
x ( /toz(z—p(t))(caw”<t>>‘7vzt);,
From (55), we obtain
/t /t A Ol A ) sVt
o (|¢<s—to>|2ﬁ+|¢*<t—to>|%)”
<(e=rrne—a+0) [ ([ @one ) Vi) vis
< (f etne o) i) Vi
< (== + 0 ( [ (w=pls) 6610 75"V
<( [ e 0ot )i,

This completes the proof. O
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w? w?
Remark 2. In (43), as special case, if we take P(w) = - we have ¢*(w) = - see [13], so
we get
w oz e—y+1 l—y+1
[ [
to Jto 1 1N\ P
(1965 = )1 + 1y~ )1 )
w z e—y+1 {—y+1
=[] A Ol A O v R v (56)
to Jto 1 1\ 7
(-t + -1
2a 1

catienp)( [ w— oo (6 700509) i)

< [ e—ptn (o wew) Vi) '

Consequently, for « = B = 1, inequality (56) produces

w oz 96*’)’4’1 {—y+1 t
0 0

<s +t— 2t0> !
< (;)5@(6@%@( /t:'<w—p<s>>(9€—7<s>5<s>)qus)3
< [ epn (o) Vi) '

Putting p = q = 2, we obtain

z ge— 7+1 (PE 'y+1( )
v 'Yt
/to /t f+S — 2ty VasVa

1
2
<

e+ 1) (- to) [ (o)) (676100 ) Vi )

(=) [ ntn (¢ 1wew) vn1)’

Remark 3. In Remark 2, if we take y = 1, we obtain [15] [Theorem 3.3].

I\J\P—‘

Theorem 19. Suppose &(n), 0(s), ¢(t) and 5(t), are defined as in Theorem 18, thus

/tw /tz 07(s)¢p7(t) - VsVt
(|¢<s—to>|3ﬁ+|¢*<t—to>rfﬁ) ”

< (["w=penoevis) ([ o)
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and

Zw [z B(S)(P(t) Qvgsvgt
: °(|¢<s—to>|fﬂ+|¢*<t—to>|zlﬁ)”

< (w0~ to)? (z— 1) ( /t:%wp(s))&q(s)vzs);( /:<zp<t>>¢q(t>vzt)".

Proof. In (42) and (43) taking € = ¢ = 1. This gives our claim. [

In Theorem 18, if we chose T = R, then the next results:

Corollary2 If6(s) > 0, &(t) > 0. Define 6(s) := [56(n)(y —a)?ldy and ¢(t) =
fo 7 —a)Y~dy, then
e— (-
/ / §(e=1=1) (5)p (=71~ 1)(2q)a (s — ) (t — a)]"Adsd

(CERZCEN
<cuttemn( [ =08 16 s -0 i)
X (/Oz(z — 1) (EB) (1)t~ a)Vldt).

// g1+ (5) ¢l wl(t)M[(S_a)(t_a)]ﬂdsdt
(CCEECEIN

1
q

< GCs(4,€,7,p) ( /Ow(w —s) <9€7(s)5(s)>q(s - a)”lds>
<( [0 (¢f—7<t>¢<t>)q<t - ) %

C3(L,e,7,p) = (e — 7+ 1)(€ — 7 +1)(w2)7.

where

In Theorem 18, if we chose T = Z, and the next result:

Corollary 3. Let (&j)o<j<n, (6i)o<i<m be sequences of nonnegative real numbers where N, M €
N. Define

0(i) = Xi:f5(5)(p"’_1(8)—a)7 , Z ¢(a)(p" (@) —a)" L.

5=0
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Then
L 4 gt D) TG ) — ) ) — )
o (vt DI+ 11 )
N
e <Zl 1)) (07 () —a)““)
M
x ( L (M~ G+ DG ()67 () - a)ﬂ)
L
L 4L 0T TG 7 10— e ) — )
s (Ipt+ DI + G+ i)
N !
Cale 4,p) ( LN — (6 )00 7)) - awl)
. ]
x ( (M - (+ D)@ (07 () — a)ﬂ)
j=1
where

Cale, £,p) = (€~ +1)(£ — 7 + 1) (NM)?.

Corollary 4. With the hypotheses of Theorem 18, we have:

q(e—r— 1) q(l—y-1)
[ [ e,
tgy Jtg 1

<|¢(S — o) + |t — t0)|2ﬂ> ’
Ci(le7,9) {lP ( /:(w —p(s)) (5(5)96—7(5)'1%73)
sy ([e-omeen o) |

and

/t'w /t'z 96—7+1(S)¢K—'y+1(t) Zlv’aysv;l)/t
(zp(s—to)ﬁﬂ T |¢*<t—t0>|fﬂ) '

< G(Le, 7,;9){1,0(/:(10 —p(s)) <9€—v(s)5(s)>ﬂvgs>
([ a=p) (¢f-7<t>@<t>)qut) }

Proof. Using the Fenchel-Young inequality (24) in (42) and (43). This proves the claim. O

Theorem 20. Assuming the time scale T with s, t, tg, w, z € T, 0(s) and ¢(t) are defined as in
Theorem 18. Suppose 9(T) > 0and {(1) > 0 are right-dense continuous functions on [to, w|t and
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[to, z]T respectively. Suppose that @ > 0and ¥ > 0 are convex, and submultiplicative on [0, c0).
Furthermore, assume that

F(s) i= /to 8(1)VIt, and G(t) = / L)V, (57)

fo

then for s € [ty, w] and t € [ty, z|T, we have that

/w /z P(0(s)) ¥ (¢(t)) _ VsVt
oo (|1/J(s—t0)|2lﬁ+|1/’*(t—f0)|21ﬁ> '

<mn(p)( [“w-p) (00025 qus)z’ (58)

)
(o (e Em)qut)s

= ([ {2

Proof. From the properties of & and using (10), we obtain

F(s) [ 8(r) 20 V]
o(0(s)) = q>< f O E T)

where

fo 4(1) V’Y
<<I>(()<tf T)( ) (59)
io
09 (57 74
Using (9) in (59), we see that
1 s q 1
a0()) < Zp s -1t ([ (om0 ) wie) )
Additionally, from the convexity and submultiplicative property of ¥, we obtain using (10)
and (9):
YG(M), i OINEERY
Yo < T - ([ (cone|E5)) vin)” 6)

From (60) and (61), we have

>,

S(0()¥(9(1)) < (s_t())%(t_to)%( p@) [0( 0P (TD ))

[
(L Gl sm)) &
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Using (24) on (s — to)l P(t—tg)? ’ gives:

s < (vs-wvv-w) (FEf ronl 5] o)

(% E;(i)”(/ (e EEW%D o <63>

Applying Lemma 7 on the right-hand side of (63), we see that

B(6(5))¥ (p(1)) < (lw(s o)|% + (9" (¢ — to) | )

(T (L (s3] 7)) o
(G i) w)')

From (64), we have

(o))
(e o]}

From (65), we obtain

w [z D(0(s))¥ (¢(t))

Sy Py

L1 (el v
INOR

<SG () (|
I U0 R

§ (|1ps to\ﬂﬂlp (t—to)] )
{7 R ([ S ] vioe)
LLCERY v} (L1 (o [fig]) wiven)
From (67), using Lemma 6, we obtain
[ POEFOW) o,
(1966 = o)1 + (e = 1) )

< ([ w-oto (o0 82] ) v25)

«( /t(f(z—p(t))(at)w[ggm)qutf’.

From (66), using (9), we have




Mathematics 2021, 9, 2964 23 of 31

where

This completes the proof. [

2
Remark 4. In Theorem 20, as special case, if we take p(w) = w?, P*(w) = w7 and by following
the same procedure employed in Remark 2, then we obtain [15] [Theorem 3.5].

In Theorem 20, taking T = R and v = 1 we have the result:

Corollary 5. Assume that §(s) > 0, &(t) > 0, 9(t) > 0and {(17) > 0, we define

t

o) = [ stnan, ¢l = [ sin, B6) = [ o@ar, ana G(1):= [ conan,

0

Then

// (¢(t)) o dsdt gMz(p)</w(w—s)<l9(s)d><5§z)))>qu>;
( @+ o) 0
(frn(z8)))
o= (0 ()

In Theorem 20, taking T = Z, and v = 1 gives the result:

where

Corollary 6. Let ($j)o<j<N, (6i)o<i<m, (87)o<j<n, (Ci)o<i<m be sequences of nonnegative real
numbers where N, M € N. Define

where

- {5 () L G}

Remark 5. In Corollary 6, if p = q = 2 we obtain the result due to Hamiaz and Abuelela [22]
[Theorem 5].
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Corollary 7. Under the hypotheses of Theorem 20 the following inequality hold:

Il LIUO)E{CIC) I
U (- -l

cwnl{ ie-en(r0oi5)) )
(e fon(E) ]

Proof. Using (24) in (58). This proves our claim. O

Lemma 11. With hypotheses of Theorem 20, we obtain:

/ / ( VIsVIt

— o) + ¥ (t — to)

< ad [ ot (290 [ 2] a5} { [ty (e [20]Y o)

~{ (e S0 :
s ={ [} (e ) e osaef { ] (e ) rw2e}
Proof. From (60) and (61) and using Fenchel-Young inequality with p = g = 2 we have
P(6(s))*¥ (9(t))?

< (v v o-w) (TG (0o 53] 527))
(Tt U oe[E5]) o)) ®
From (69), using (9) with p = g = 2, we obtain
worE L ®(0(s)*¥ (9(1)?
/t /t (w( —to) +¢*(t—to) )w e
)

where

< (TS, (oo 53] wae)wie

S, (s 2] v

[ ) (roolig]) )
[ TSt ([ (sre [58]) vm) v
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Applying Lemma 6 on (70), we obtain

"W ))2 P
VsVt
to to (

(s —tg) +lP*(t—t0)>

{7 (S e} { [ om0 [43]) oz}
: -0 (¥ |5 v

(F
LI e { e )
—M4{'/t:”<w—p(s))(ﬂ(s)@[‘sig})4vzs} { /t:<z—p<t>>(@(t)\f[ggm)%zt};.

o= {7 (T e} L (e e

This proves our claim.

where

Theorem 21. Let 6, ¢, G, F, ¢, 9, Y and ® be as in Theorem 20. Furthermore, assume that for t, s,
to,w,z€ T

00s) = g5y [ AODVET, and 6(t)i= o5 [ EEVIn, oy

then for s € [to, w|r and t € [ty, z]T, we have that

/ / (¢p(t))F(s)G(t) av;’sv:{t
o (lp(s—to)ﬁﬁ+|¢*<t—to>|l’5>p

<) ([0 pts) (ﬂ(s)é(zs(s)))qus)z’ 72)

where

D(6(s)) = @(F(ls) /t: 0(T)5(r)vgr>. 73)

(6(s)) < <;(t§>( [ (ﬂ(r)@[&(r)})qur) | 74)

From (74), we obtain

®(0(s))F(s) < (s — to) 75)

==
7N
=~
wn
7 N
[+
—~
,\‘
SN—
e
<,
~
=
"
-
<
22
r~]
~~



Mathematics 2021, 9, 2964 26 of 31

Similarly, we obtain

1

([ (twwicon) vn)". -

==

F(p(1)G(t) < (t—to)

From (75) and (76), we observe that

=

O(8(s))¥ (9(1))G(HF(s) < (s — o) (£ — to)

([ (ewwien)'sie) ([ (consieon)'sa). o

1 1
Applying Lemma 5 on the term (s — t() 7 (t — to) 7, gives:

@)Y POICORS < (vt +yt—10) ([ (seisto) Vit

o [ (sonvizon) 'van)" o)

From 7 and (78), we obtain

2
4

®(6(5)) ¥ (9(1))G(E(s) < (|¢<s o) 4 [yt — f0)|21ﬁ)

([ (sotacen) 'vie) ([ (sonvicn)'vin) . oo

20
P

1 1
Dividing both sides of (79) by <|IIJ(S — )| 2 + |p*(t — to)] 2/3> , we obtain

PODYOOICOFS) o ([ (g(e)afoin) "ore)’
(Ips =¥ + 1y —)1¥) L )7

1

t q q
<( [ (conzicont) v1n). e
Taking double nabla-integral for (80), yields:
OGO COLO M
O (-l F g - )

1

<(["([ (scon) vir) ;vzs) ([ (] (conview) vin) 'vir).on
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Using Lemma 9 in (81), yield:

rr WCWFS) oo,
o (¢<s o))+ g (t to>|2ﬁ)

< (w—to)7 (- toy( /t( [ (z?(T)CD[ (z ”)qur)vgs);
X</t< ( o ) )w> 52)
= Ms(p) ( . < t0< (D)D[s T])qv%> as)}]

([ ([ (etmvicon) vin)var) ]

From Lemma 6 and (82), we obtain:

rr DICLEI
o (|¢<s w4y - o))

=) ([0 p(s) (ﬂ<s>¢[5<s>])qus)5

<([e-p) (@(t)ﬂé(t)])qut) i’

This completes the proof.

2 2
Remark 6. In Theorem 21, as special case, if we take p(w) = %, P*(w) = %, and by following

the same procedure employed in Remark 2, then we obtain [15] [Theorem 3.7].
Taking T = R and = 1 in Theorem 21, we have:

Corollary 8. Assume {(t) >0, &(t) > 0,9(s) >0, (s) > 0. Define

0(s) = F(ls)/o O(T)5(1)dT and p(t) = Gt)/ot@(r)é(r)d'r,

F(s) = /0 8(x)dt and G(t) = /OtC(T)dT.

where
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Taking T = Z and y = 1 in Theorem 21, gives:

Corollary 9. Let (j)o<j<N, (6i)o<i<m, (8))o<j<n, (Gi)o<i<m be sequences of nonnegative real
numbers where N, M € N. Define

! Z ) and - i
6 0= 50

s=0 a=0

s=0 a=0
Then
N M i ))F(i)G(j N N
3§ DTS <y Fs— i (o0(w0) ) )

=1 (|¢<z+1>|2ﬁ 4 |¢*<J+1>|%)

where )
My (p) = (NM)?.

Remark 7. In Corollary 9, if p = q = 2 we obtain the result due to Hamiaz and Abuelela [22]

[Theorem 7].

Corollary 10. With the hypotheses of Theorem 21, we obtain:

I PHQUDEDICH oy o,
o (lp(s—to)ﬁﬁ+|¢*<t—to>|2ﬂ)

< st {p( [ oo (o610 (56)) ) Vis)
vy ([[e= o) (ctre (ew) ) vir) }3’

Proof. We apply the Fenchel-Young inequality (24) in (72). This completes the proof. O

3. Some Applications
We can apply our inequalities to obtain different formulas of inequalities by suggesting

$*(z) and ¥ (w) by some functions:
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In (43), as special case, if we take (w) = - we have p*(w) = - see [13], so we get
w oz 96—7+1 €—7+lt
/ / (S)(P ( ) - stvzt
fo /to 1 1\ P
(1965 = )1 + 1= )1 )
w z 96—’Y+1 {—y+1 t
- [ ©FT0grevye (83)
to Jto %

<(S —to))
< <;) ﬁCz(ﬁ, €7P) ( /tow(w —p(s)) <9€7(S)5(S))qvgs> 1

<( =) (4>“<t>c<t>)qut) i’

Consequently, for « = § = 1, inequality (83) produces

/tw /tz 9677+1(S)4)£77+1(t)gvgsvgt
" (-

<(3) e ([ = (e 701009) vis) I

<( [ e=otn (#1020 Vi) '

On the other hand, if we take (i) = %,r > 1, then ¢*(j) = % where 1 + 1 =1and
i,j Ry, then (43) gives

+U—mﬁ)p

w oz e—y+1 l—y+1
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ty Jto 1 1N\ P
(1965 = )1 + 1+ - )1 )
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:/ / o () () VsVt
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o)) o
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Clearly, when = ﬁ, the inequality (85) becomes

w oz e—y+1 {—y+1
/ / 0 (S)(P (t) - vgsvg’t
to to v
(

((ats = 0"+ 0= r0p)

< (fk)m”zczw,e,m( [wo—p (r000) 'v2) o

0

<( [[e=p) (¢ 020) Vi) %

If B = « = 1. From (85), we obtain

/w / R O AA U N R
o <(a(s—t0)r)% + (r(t_tO)a)%>p

< (jk)‘l’czw,e,w)( /t:”<w—p<s>>(ef7<s>5<s>)qus)‘l’

<( o) (¢“<t>a<t>)qut)5.

In this manuscript, by employing the V-conformable calculus, several V-conformable
Hardy-Hilbert-type inequalities on time scales are introduced. The results proved here,
extend several dynamic inequalities known in the literature, and it also can yield to some
original continuous, discrete and quantum inequalities. For the sake of completeness, we
applied the main results to some nonuniform time scales. To illustrate the benefits of our
results we introduced many special cases of time scales suchas T = Z and T = R.

4. Conclusions
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