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Abstract: In this paper, we establish the boundedness of the Calderón operator on local Morrey
spaces with variable exponents. We obtain our result by extending the extrapolation theory of
Rubio de Francia to the local Morrey spaces with variable exponents. The exponent functions of
the local Morrey spaces with the exponent functions are only required to satisfy the log-Hölder
continuity assumption at the origin and infinity only. As special cases of the main result, we have
Hardy’s inequalities, the Hilbert inequalities and the boundedness of the Riemann–Liouville and
Weyl averaging operators on local Morrey spaces with variable exponents.
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1. Introduction

The main theme of this paper is the boundedness of the Calderón operator on local
Morrey spaces with variable exponents.

The Calderón operator is one of the important operators in harmonic analysis and
theory of function spaces. The Calderón operator is related with the Hardy’ inequality, the
Stieltjes transformation, the Riemann–Liouville and Weyl averaging operators. It also gives
an estimate for the maximal Hilbert transform ([1], Chapter 3, Theorem 4.7). Moreover,
the boundedness of the Calderón operator is also related with the convergence of Fourier
series on rearrangement-invariant Banach function spaces ([1], Chapter 3, Theorem 6.10).

The boundedness of the Calderón operator on Lebesgue spaces is a well known
result [2]. Recently, the boundedness property has been extended to the weighted Lebesgue
spaces [3] and the weighted Lebesgue spaces with variable exponents [4]. In this paper,
we further extend the boundedness of the Calderón operator to local Morrey spaces with
variable exponents.

The local Morrey spaces with variable exponents are extensions of the classical Morrey
spaces introduced and studied by Morrey [5] and the Lebesgue spaces with variable
exponents [6,7]. The mapping properties of singular integral operators, the fractional
integral operators, the geometric maximal operators and the spherical maximal functions
were obtained in [8–14].

In this paper, we obtain our main results by extending the techniques from the ex-
trapolation theory introduced by Rubio de Francia [15–17] to local Morrey spaces with
variable exponents. An extrapolation theory for local Morrey spaces with variable expo-
nents was obtained in [14], while the extrapolation theory given in [14] is based on the
Hardy–Littlewood maximal function. In this paper, we use another maximal function
from [3] which is defined via the basis {(0, r) : r > 0}. Similar to the results in [4], by using
this maximal function, the exponent functions for the local Morrey spaces with variable
exponents is not required to be globally log-Hölder continuous function. The exponent
function is just required to be log-Hölder continuous at origin and infinity.

This paper is organized as follows. The definition and the boundedness of the Calderón
operator on weighted Lebesgue spaces were presented in Section 2. The definitions of local
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Morrey spaces with variable exponents and local block spaces with variable exponents are
given in Section 3. The local block spaces with variable exponents are pre-duals of local
Morrey spaces with variable exponents, and the boundedness of the maximal function
associated with the the basis {(0, r) : r > 0} on the local block spaces with variable
exponents is obtained in Section 3. This boundedness result is one of the crucial results
for the boundedness of the Calderón operator obtained in Section 4. As applications of
our main results, we obtain the Hardy’ inequalities, the boundedness of the Stieltjes
transformation, the Riemann–Liouville and Weyl averaging operators on local Morrey
spaces with variable exponents.

2. Definitions and Preliminaries

LetM be the class of Lebesgue measurable functions on (0, ∞).
For any non-negative function f on (0, ∞), the Calderón operator is defined as

S f (x) =
1
x

∫ x

0
f (y)dy +

∫ ∞

x

f (y)
y

dy, x ∈ (0, ∞).

For any non-negative function f on (0, ∞), the Hardy operator is defined as

H f (x) =
1
x

∫ x

0
f (y)dy, x ∈ (0, ∞).

We see that the adjoint operator ofH is given by

H∗ f (x) =
∫ ∞

x

f (y)
y

dy, x ∈ (0, ∞).

The boundedness ofH andH∗ on Lebesgue spaces is called the Hardy’s inequalities.
We see that S = H+H∗. Thus, the boundedness of the Calderón operator on Lebesgue
spaces follow from the Hardy’s inequalities. The reader is referred to [2,18,19] for the
studies of Hardy’s inequalities.

Let α ≥ 0; the Stieltjes transformation, the Riemann–Liouville and Weyl averaging
operators are defined as

H f (x) =
∫ ∞

0

f (y)
x + y

dy

Iα f (x) =
α + 1
xα+1

∫ x

0
(x− y)α f (y)dy,

Jα f (x) = (α + 1)
∫ ∞

x

(y− x)α

yα+1 f (y)dy.

For any non-negative function f , we have H f (x) ≤ S f (x), Iα f (x) ≤ S f (x) and
Jα f (x) ≤ S f (x). The reader is referred to [20–22] for the studies of the Stieltjes transforma-
tion and its application on the Hilbert’s double series.

We recall the following maximal operator and the Muckenhoupt type classes of weight
functions for S. They were introduced in [3]. For any locally integrable function f , define

N f (x) = sup
b>x

1
b

∫ b

0
| f (y)|dy, x > 0.

The operator N is the maximal operator on (0, ∞) with the basis {(0, r) : r > 0}.
Notice that for any non-negative function f , we have N f ≤ S f .

We recall the following class of weighted functions from ([3], (1.2)).
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Definition 1. Let p ∈ (1, ∞). We say that a Lebesgue measurable function ω : (0, ∞)→ [0, ∞)
belongs to Ap,0 if

sup
b>0

(
1
b

∫ b

0
ω(x)dx

)(
1
b

∫ b

0
ω(x)1−p′dx

)p−1

< ∞

where p′ is the conjugate of p.
The class A1,0 consists of all Lebesgue measurable function ω : (0, ∞)→ [0, ∞) satisfying

Nω(x) ≤ Cω(x), x ∈ (0, ∞)

and [w]A1,0 denotes the smallest constant for which the above inequality holds.

In view of ([3], Theorem 1.1), we have the following weighted norm inequalities for
N.

Theorem 1. Let p ∈ (1, ∞). We have a constant C > 0 such that∫ ∞

0
|N f (x)|pω(x)dx ≤ C

∫ ∞

0
| f (x)|pω(x)dx

if and only if ω ∈ Ap,0.

When p ∈ (1, ∞), the class Ap,0 coincides with the class Cp introduced in [23]; see ([3],
Theorem 1.2). In addition, as a special case of ([3], Theorem 1.2), we have the weighted
norm inequalities for the Calderón operator.

Theorem 2. Let p ∈ (1, ∞). We have a constant C > 0 such that∫ ∞

0
|S f (x)|pω(x)dx ≤ C

∫ ∞

0
| f (x)|pω(x)dx (1)

if and only if ω ∈ Ap,0.

3. Local Morrey Spaces with Variable Exponents

In this section, we recall the definition of local Morrey space with variable exponent
and study a pre-dual of this space, namely, the local block space with variable exponent. As
a crucial supporting result for our main result, we obtain the boundedness of the maximal
function N on local block spaces with variable exponents at the end of this section.

We recall the definition of Lebesgue spaces with variable exponents.

Definition 2. Let p(·) : (0, ∞) → [1, ∞) be a Lebesgue measurable function. The Lebesgue
space with variable exponent Lp(·) consists of all Lebesgue measurable functions f : (0, ∞)→ C
satisfying

‖ f ‖Lp(·) = inf
{

λ > 0 : ρp(·)( f /λ) ≤ 1
}
< ∞

where
ρp(·)( f ) =

∫ ∞

0
| f (x)|p(x)dx.

We call p(x) the exponent function of Lp(·).

Let p′(x) be the conjugate function of p(x). That is, they satisfy 1
p(x) +

1
p′(x) = 1,

x ∈ (0, ∞). Let p− = ess infx∈(0,∞) p(x) and p+ = ess supx∈(0,∞) p(x).
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Definition 3. A continuous function g on (0, ∞) is log-Hölder continuous at the origin if there
exist clog > 0 and g0 such that

|g(x)− g0| ≤
clog

− log(x)
, ∀x ∈ (0, 1/2). (2)

A continuous function is log-Hölder continuous at infinity if there exist g∞ ∈ R and c∞ > 0
so that

|g(x)− g∞| ≤
c∞

log(e + |x|) , ∀x ∈ (0, ∞). (3)

We write g ∈ Clog if g is log-Hölder continuous at origin and log-Hölder continuous at infinity.

The above classes of log-Hölder continuous functions are used in [24–26] for the
studies of Herz spaces with variable exponents.

We have the boundedness of the maximal operator N on Lp(·) whenever p(·) ∈ Clog

with 1 < p− ≤ p+ < ∞.

Theorem 3. Let p(·) ∈ Clog. If 1 < p− ≤ p+ < ∞, then there exists a constant C > 0 such that

‖N f ‖Lp(·) ≤ C‖ f ‖Lp(·) .

For the proof of the above theorem, the reader is referred to ([4], Theorem 1.6 and
Section 3).

We now give the definitions of local Morrey spaces with variable exponents from [14].

Definition 4. Let p(·) : (0, ∞) → (1, ∞) and u : (0, ∞) → (0, ∞) be Lebesgue measurable
functions. The local Morrey space with variable exponent LMp(·)

u consists of all f ∈ M satisfying

‖ f ‖
LMp(·)

u
= sup

r>0

1
u(r)
‖χ(0,r) f ‖Lp(·) < ∞.

When p(·) = p, 1 ≤ p < ∞, the local Morrey space with variable exponent becomes
the local Morrey space LMp

u . For the studies of local Morrey spaces, the reader is referred
to [9–13]. For the mapping properties of the Carleson operator, the local sharp maximal
functions, the geometrical maximal functions and the rough maximal functions on LMp(·)

u ,
see [14,27].

The local Morrey spaces with variable exponents are ball Banach function spaces
defined and studied in [28,29]; see the discussion after ([27], Theorem 2.3).

We recall a class of weight functions for the studies of the local Morrey spaces with
variable exponents defined in ([14], Definition 2.5).

Definition 5. Let q0 ∈ (0, ∞), p(·) : (0, ∞) → [1, ∞]. We say that a Lebesgue measurable
function, u(r) : (0, ∞)→ (0, ∞), belongs to LWq0

p(·) if there exists a constant C > 0 such that for
any r > 0, u fulfills

C ≤ u(r), ∀r ≥ 1, (4)

‖χ(0,r)‖Lp(·) ≤ Cu(r), ∀r < 1, (5)
∞

∑
j=0

‖χ(0,r)‖Lp(·)/q0

‖χ(0,2j+1r)‖Lp(·)/q0

(u(2j+1r))q0 < C(u(r))q0 (6)

for all r > 0.
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When q0 = 1, we write LWp(·) = LW1
p(·). Let 0 ≤ θ < 1 and uθ(r) = ‖χB(0,r)‖θ

Lp(·) .
The discussion at the end of ([30], Section 2) shows that uθ ∈ LWp(·). Particularly, u ≡ 1 is
a member of LWp(·).

Next, we recall a pre-dual of the local Morrey space with variable exponent from ([14],
Definition 3.1).

Definition 6. Let p(·) : (0, ∞) → (0, ∞) and u(r) : (0, ∞) → (0, ∞) be Lebesgue measurable
functions. A b ∈ M is a local (u, Lp(·))-block if it is supported in (0, r), r > 0 and

‖b‖Lp(·) ≤
1

u(r)
. (7)

We write b ∈ lbu,Lp(·) if b is a local (u, Lp(·))-block.
Define LBu,p(·) by

LBu,p(·) =

{ ∞

∑
k=1

λkbk :
∞

∑
k=1
|λk| < ∞ and bk is a local (u, Lp(·))-block

}
. (8)

The space LBu,p(·) is endowed with the norm

‖ f ‖LBu,p(·) = inf
{ ∞

∑
k=1
|λk| such that f =

∞

∑
k=1

λkbk a.e.
}

. (9)

We call LBu,p(·) the local block space with variable exponent.

In view of ([14], Theorem 3.3), LBu,p(·) is a Banach space and LBu,p(·) ⊂ L1
loc. In addi-

tion, whenever f , g ∈ M satisfying | f | ≤ |g| and g ∈ LBu,p(·), we have f ∈ LBu,p(·) ([14],
Proposition 3.2).

We present the following results for the block spaces with variable exponent from ([14],
Section 3). Notice that the results in [14] are for local Morrey spaces with variable exponents
on Rn, while with some simple modifications, the results and the proofs in [14] can be
extended to local Morrey spaces with variable exponents on (0, ∞).

Theorem 4. Let p(·) : (0, ∞) → (1, ∞) and u : (0, ∞) → (0, ∞) be Lebesgue measurable
functions. We have

LB∗u,p(·) = LMp′(·)
u

where LB∗u,p(·) denotes the dual space of LBu,p(·).

The reader is referred to ([14], Theorem 3.1) for the proof of the above results. Further-

more, the proof of ([14], Theorem 3.1) gives the Hölder inequalities for f ∈ LMp′(·)
u and

g ∈ LBu,p(·) ∫ ∞

0
| f (x)g(x)|dx ≤ C‖g‖LBu,p(·)‖ f ‖

LMp′(·)
u

(10)

for some C > 0.
Moreover, in the proof of ([14], Theorem 3.1), we also have the norm conjugate formula

C0‖ f ‖
LMp(·)

u
≤ sup

h∈lbu,p(·)

∫ ∞

0
| f (x)h(x)|dx ≤ C1‖ f ‖

LMp(·)
u

(11)

for some C0, C1 > 0.

Proposition 1. Let p(·) : (0, ∞) → (1, ∞), u : (0, ∞) → (0, ∞) be Lebesgue measurable
functions and f ∈ LBu,p(·). If g ∈ M satisfying |g| ≤ | f |, then g ∈ LBu,p(·).
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The proof of the preceding proposition is given in ([14], Proposition 3.2.). We establish
a supporting lemma in the following paragraphs.

Lemma 1. Let p(·) ∈ Clog with 1 < p− ≤ p+ < ∞. We have constants C0, C1 > 0 such that
for any r > 0, we have

C0r ≤ ‖χ(0,r)‖Lp′(·)‖χ(0,r)‖Lp(·) ≤ C1r. (12)

Proof. The first inequality in (12) follows from the Hölder inequality for Lebesgue spaces
with variable exponents.

For any r > 0 and locally integrable function f , define

Pr f (y) =
(

1
r

∫ r

0
f (x)dx

)
χ(0,r)(y).

The definition of N guarantees that |Pr f | ≤ N f . Therefore, we have ‖Pr‖Lp(·)→Lp(·) ≤
‖N‖Lp(·)→Lp(·) . According to ([7], Corollary 3.2.14), we have

‖χ(0,r)‖Lp′(·)‖χ(0,r)‖Lp(·) = sup
{∣∣∣∣∫ r

0
g(x)dx

∣∣∣∣‖χ(0,r)‖Lp(·) : ‖g‖Lp(·) ≤ 1
}

.

Theorem 3 yields a constant C1 > 0 such that for any r > 0, we have

‖χ(0,r)‖Lp′(·)‖χ(0,r)‖Lp(·) ≤ sup
{

r‖Prg‖Lp(·) : ‖g‖Lp(·) ≤ 1
}

≤ sup
{

r‖Ng‖Lp(·) : ‖g‖Lp(·) ≤ 1
}
≤ C1r.

Therefore, the second inequality in (12) holds.

We are now ready to obtain the boundedness of the maximal function N on LBu,p(·).

Theorem 5. Let p(·) : (0, ∞) → (1, ∞) and u : (0, ∞) → (0, ∞) be Lebesgue measurable
functions. If p(·) ∈ Clog with 1 < p− ≤ p+ < ∞ and u ∈ LWp′(·), then the maximal operator
N is bounded on LBu,p(·).

Proof. In view of ([14], Theorem 3.3), we have LBu,p(·) ⊂ L1
loc; therefore, the maximal

operator N is well defined on LBu,p(·).
Let b ∈ lbu,Lp(·) with support (0, r), r > 0. For any k ∈ N, write Bk = (0, 2kr). Define

nk = χBk+1\Bk
Nb, k ∈ N\{0} and n0 = χ(0,2r)Nb. We have supp nk ⊆ Bk+1\Bk and

Nb = ∑∞
k=0 nk.

As p(·) ∈ Clog with 1 < p− ≤ p+ < ∞, Theorem 3 guarantees that

‖n0‖Lp(·) ≤ C‖Nb‖Lp(·) ≤
C

u(r)
≤ C

u(2r)

for some constant C > 0 independent r. The last inequality holds since (6) asserts that
‖χB(0,r)‖Lp(·)

‖χB(0,2r)‖Lp(·)
u(2r) ≤ Cu(r) and ([4], Lemma 2.3) yields ‖χB(0,2r)‖Lp(·) ≤ C‖χB(0,r)‖Lp(·)

for some C > 0 independent of r > 0. As a result of the above inequalities, n0 is a
constant-multiple of a local (u, Lp(·))-block.

The Hölder inequality for Lp(·) yields

nk = χBk+1\Bk
Nb ≤

χBk+1\Bk

2kr

∫ r

0
|b(x)|dx

≤ CχBk+1\Bk

1
2kr
‖b‖Lp(·)‖χ(0,r)‖Lp′(·)

for some C > 0 independent of k.
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Consequently, (12) gives

‖nk‖Lp(·) ≤
‖χBk+1\Bk

‖Lp(·)

2kr
‖b‖Lp(·)‖χB(0,r)‖Lp′(·)

≤ C
‖χ(0,r)‖Lp′(·)

‖χBk+1‖Lp′(·)

u(2k+1r)
u(r)

1
u(2k+1r)

.

Write nk = σkdk, where

σk =
‖χ(0,r)‖Lp′(·)

‖χBk+1‖Lp′(·)

u(2k+1r)
u(r)

.

We find that dk is a constant-multiple of a local (u, Lp(·))-block, and this constant does
not depend on k. As u ∈ LWp′(·), we have

∞

∑
j=0

‖χ(0,r)‖Lp′(·)

‖χ(0,2j+1r)‖Lp′(·)
u(2j+1r) ≤ Cu(r).

We have ∑∞
k=0 σk < C for some C > 0. Hence, Nb ∈ LBu,p(·). Moreover, there exists a

constant C0 > 0 so that for any local (u, Lp(·))-block b,

‖Nb‖LBu,p(·) < C0.

Let f ∈ LBu,p(·). The definition of LBu,p(·) yields a family of local (u, Lp(·))-blocks
{ck}∞

k=1 and a sequence Λ = {λk}∞
k=1 ∈ l1 such that f = ∑∞

k=1 λkck with ‖Λ‖l1 ≤
2‖ f ‖LBu,p(·) . Since N is sublinear, we find that∥∥∥∥ ∞

∑
k=1

λk Nck

∥∥∥∥
LBu,p(·)

≤
∞

∑
k=1
|λk|‖Nck‖LBu,p(·)

≤ C0

∞

∑
k=1
|λk| ≤ 2C0‖ f ‖LBu,p(·) .

As N f ≤ ∑∞
k=1 |λk|Nck, Proposition 1 guarantees that N f ∈ LBu,p(·) and ‖N f ‖LBu,p(·)

≤ C‖ f ‖LBu,p(·) for some C > 0.

4. Calderón Operator

The boundedness of the Calderón operator on local Morrey spaces with variable
exponents is established in this section. As applications of our main result, we obtain
the Hardy’s inequalities and the Hilbert inequalities on local Morrey spaces with variable
exponents.

We use the techniques from the extrapolation theory. We first recall an operator from
the Rubio de Francia algorithm. Let p0 ∈ (0, ∞) and p(·) ∈ Clog with p0 < p− ≤ p+ < ∞.
The operatorR is defined by

Rh =
∞

∑
k=0

Nkh
2k‖Nk‖LBup0 ,(p(·)/p0)

′→LBup0 ,(p(·)/p0)
′
, h ∈ L1

loc,

where Nk is the k iterations of the operator N and N0h = |h|. The following are the
boundedness of N andR on the local block spaces with variable exponents.
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Proposition 2. Let p0 ∈ (0, ∞) and p(·) ∈ Clog with p0 < p− ≤ p+ < ∞. If u ∈ LWp0
p(·),

then the operatorR is well defined on LBup0 ,(p(·)/p0)′ and there is a constant C > 0 such that for
any h ∈ LBup0 ,(p(·)/p0)′ ,

|h(x)| ≤ Rh(x) (13)

‖Rh‖LBup0 ,(p(·)/p0)
′ ≤ 2‖h‖LBup0 ,(p(·)/p0)

′ (14)

[Rh]A1,0 ≤ C‖N‖LBup0 ,(p(·)/p0)
′→LBup0 ,(p(·)/p0)

′ . (15)

Proof. As u ∈ LWp0
p(·) implies up0 ∈ LWp(·)/p0

, Theorem 5 guarantees that the maximal
operator N is bounded on LBup0 ,(p(·)/p0)′ . Consequently, the operator R is well defined
in LBup0 ,(p(·)/p0)′ , and the definition of R yields (13) and (14). In addition, since N is a
sublinear operator, for any h ∈ LBup0 ,(p(·)/p0)′ , we obtain

NRh ≤
∞

∑
k=0

Nk+1h
2k‖Nk‖LBup0 ,(p(·)/p0)

′→LBup0 ,(p(·)/p0)
′

≤ 2‖N‖LBup0 ,(p(·)/p0)
′→LBup0 ,(p(·)/p0)

′Rh.

According to Definition 1,Rh ∈ A1,0, and hence, (15) holds.

Theorem 6. Let p(·) ∈ Clog with 1 < p− ≤ p+ < ∞. If there exists a p0 ∈ (0, p−) such that
u ∈ LWp0

p(·), then the Calderón operator S is bounded on LMp(·)
u .

Proof. Let f ∈ LMp(·)
u . For any h ∈ LBup0 ,(p(·)/p0)′ , (10) and (14) yield∫ ∞

0
| f (x)|p0Rh(x)dx ≤ C‖| f |p0‖

LM
p(·)/p0
up0

‖Rh‖LBup0 ,(p(·)/p0)
′

≤ ‖ f ‖
LMp(·)

u
‖h‖LBup0 ,(p(·)/p0)

′ .

Thus, we have
LMp(·)

u ↪→
⋂

h∈LBup0 ,(p(·)/p0)
′

Lp0(Rh). (16)

Theorem 4 guarantees

‖S f ‖p0

LMp(·)
u

= ‖|S f |p0‖
LM

p(·)/p0
up0

≤ C sup
{∫ ∞

0
|S f (x)|p0 |h(x)|dx : ‖h‖LBup0 ,(p(·)/p0)

′ ≤ 1
}

(17)

for some C > 0.
In view of (15),Rh ∈ A1,0. Furthermore, the embedding (16) guarantees that (1) holds

for all f ∈ LMp(·)
u . Consequently, by applying ω = Rh on (1) and using (13), we find that∫ ∞

0
|S f (x)|p0 h(x)dx ≤

∫ ∞

0
|S f (x)|p0Rh(x)dx

≤ C
∫ ∞

0
| f (x)|p0Rh(x)dx.
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Consequently, (10) and (14) give∫ ∞

0
|S f (x)|p0 h(x)dx ≤ C‖| f |p0‖

LM
p(·)/p0
up0

‖Rh‖LBup0 ,(p(·)/p0)
′

≤ C‖ f ‖
LMp(·)

u
‖h‖LBup0 ,(p(·)/p0)

′ ≤ C‖ f ‖p0

LMp(·)
u

. (18)

By taking supremum over all h ∈ LBup0 ,(p(·)/p0)′ with ‖h‖LBup0 ,(p(·)/p0)
′ ≤ 1, Theorem 4,

(17) and (18) yield the boundedness of the Calderón operator S on LMp(·)
u .

We also use the technique from the extrapolation theory to study the mapping proper-
ties of the local sharp maximal functions, the geometrical maximal functions and the rough
maximal functions on local Morrey spaces with variable exponents in [14]. The results
in [14] rely on the boundedness of the Hardy–Littlewood maximal operator. Therefore, the
results obtained in [14] are valid for local Morrey spaces with variable exponents with the
exponent functions being globally log-Hölder continuous. Our results use the maximal
function N. Therefore, in view of Theorems 1 and 3, we just require p(·) to be log-Hölder
continuous at origin and infinity for the boundedness of the Calderón operator on LMp(·)

u .
We give a concrete example for the weight function u that satisfies the conditions in

Theorem 6. Let p(·) ∈ Clog with 1 < p− ≤ p+ < ∞. Let 0 ≤ θ < 1 and uθ(r) = ‖χB(0,r)‖θ
Lp(·) .

The discussion at the end of ([30], Section 2) shows that uθ ∈ LWp(·). For any p0 ∈ (1, p−),
we have

uθ(r)p0 = ‖χB(0,r)‖
p0θ

Lp(·) = ‖χB(0,r)‖θ
Lp(·)/p0

.

The discussion at the end of ([30], Section 2) asserts that uθ(r)p0 ∈ LWp(·)/p0
. There-

fore, the conditions in Theorem 6 are fulfilled, and the Calderón operator S is bounded
on LMp(·)

uθ
.

As |H f | ≤ H| f | ≤ S| f | and |H∗ f | ≤ H∗| f | ≤ S| f |, Theorem 6 yields the Hardy’s
inequalities on LMp(·)

u .

Theorem 7. Let p(·) ∈ Clog with 1 < p− ≤ p+ < ∞. If there exists a p0 ∈ (0, p−) such that
u ∈ LWp0

p(·), then there exists a constant C > 0 such that for any f ∈ LMp(·)
u

‖H f ‖
LMp(·)

u
≤ C‖ f ‖

LMp(·)
u

,

‖H∗ f ‖
LMp(·)

u
≤ C‖ f ‖

LMp(·)
u

.

In particular, when p(·) = p, 1 < p < ∞ is a constant function, we have the Hardy’s
inequality on the local Morrey space LMp

u . In addition, when u ≡ 1, the above results
become the Hardy’s inequalities on Lebesgue spaces with variable exponents, which
recover the results in [31].

The reader is referred to [2,18,19] for the history and applications of the Hardy’ in-
equalities. For the Hardy’s inequalities on the Hardy type spaces, the Lebesgue spaces
with variable exponents and the Herz–Morrey spaces, the reader may consult [31–37].

Theorem 6 also yields the boundedness of the Stieltjes transformation, the Riemann–
Liouville and Weyl averaging operators on LMp(·)

u .
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Theorem 8. Let p(·) ∈ Clog with 1 < p− ≤ p+ < ∞. If there exists a p0 ∈ (0, p−) such that
u ∈ LWp0

p(·), then there exists a constant C > 0 such that for any f ∈ LMp(·)
u

‖H f ‖
LMp(·)

u
≤ C‖ f ‖

LMp(·)
u

,

‖Iα f ‖
LMp(·)

u
≤ C‖ f ‖

LMp(·)
u

,

‖Jα f ‖
LMp(·)

u
≤ C‖ f ‖

LMp(·)
u

.

The boundedness of the Stieltjes transformation on Lebesgue space is called as the
Hilbert inequality. Therefore, as special cases of the preceding theorem, we also have
the Hilbert inequality and the boundedness of the Riemann–Liouville and Weyl averag-
ing operators on the local Morrey spaces LMp

u and the Lebesgue spaces with variable
exponents Lp(·).

5. Discussion

We establish the boundedness of the Calderón operator on local Morrey spaces with
variable exponents by extending the extrapolation theory. The exponent functions used in
the local Morrey spaces with variable exponents are required to be log-Hölder continuous
at the origin and infinity only. We need to refine the extrapolation theory for the maximal
operator N and the class of weight functions Ap,0. In addition, in order to get rid of the
approximation argument, we need to establish the embedding (16).

As applications of the main result, we have Hardy’s inequalities, the Hilbert inequali-
ties and the boundedness of the Riemann–Liouville and Weyl averaging operators on local
Morrey spaces with variable exponents.

Moreover, we see that whenever we can establish the weighted norm inequalities with
the class of weight function Ap,0 for an operator T, even if T is nonlinear, we can apply
our extrapolation theory to obtain the boundedness of T on the local Morrey spaces with
variable exponents where the exponent function is log-Hölder continuous at 0 and infinity.

6. Conclusions

We extend the extrapolation theory to the local Morrey spaces with variable exponents
with the exponent functions being log-Hölder continuous at the origin and infinity only.
With this refined extrapolation theory, we obtain Hardy’s inequalities and the Hilbert
inequalities on the local Morrey spaces with variable exponents. Furthermore, the bound-
edness of the Calderón operator, the Riemann–Liouville operators and the Weyl averaging
operators has been extended to the local Morrey spaces with variable exponents.

In particular, we have the Hardy’s inequalities, the Hilbert inequalities on local Morrey
spaces and the boundedness of the Calderón operator, the Riemann–Liouville averaging
operators and the Weyl averaging operators on local Morrey spaces.

In conclusion, the results obtained in this paper generalize the existing results on the
studies of local Morrey spaces with variable exponent, the Hardy’s inequalities, the Hilbert
inequalities on local Morrey spaces and the boundedness of the Calderón operator, the
Riemann–Liouville averaging operators and the Weyl averaging operators.
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