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Abstract: We study the Hankel determinant generated by a singularly perturbed Jacobi weight
w(x, s) := (1− x)α(1 + x)βe−

s
1−x , x ∈ [−1, 1], α > 0, β > 0 s ≥ 0. If s = 0, it is reduced to

the classical Jacobi weight. For s > 0, the factor e−
s

1−x induces an infinitely strong zero at x = 1.
For the finite n case, we obtain four auxiliary quantities Rn(s), rn(s), R̃n(s), and r̃n(s) by using the
ladder operator approach. We show that the recurrence coefficients are expressed in terms of the four
auxiliary quantities with the aid of the compatibility conditions. Furthermore, we derive a shifted
Jimbo–Miwa–Okamoto σ-function of a particular Painlevé V for the logarithmic derivative of the
Hankel determinant Dn(s). By variable substitution and some complicated calculations, we show
that the quantity Rn(s) satisfies the four Painlevé equations. For the large n case, we show that, under
a double scaling, where n tends to ∞ and s tends to 0+, such that τ := n2s is finite, the scaled Hankel
determinant can be expressed by a particular PI I I ′ .

Keywords: random matrix theory; Hankel determinant; singularly perturbed Jacobi weight; ladder
operators; Painlevé V

1. Introduction

Random matrices were introduced in nuclear physics by Wigner in the 1950s to
describe the statistics of the energy levels of quantum systems. The theory of random
matrices makes the hypothesis that the local statistical behavior of the energy levels is
identical to that of the eigenvalues of a random matrix.

In random matrix theory (RMT), it is well known that the joint probability density of
the eigenvalues {xj}n

j=1 of n× n Hermitian matrices in the unitary ensemble is [1,2]:

p(x1, x2, . . . , xn)dx1dx2 · · · dxn =
1

Dn[w]

1
n! ∏

1≤j<k≤n
(xj − xk)

2
n

∏
l=1

w(xl)dxl ,

where w(x) is a weight or probability density supported on the interval I ⊆ R, and we
suppose the moments of all orders,

µj :=
∫

I
xjw(x)dx, j = 0, 1, 2, . . .

exist. In addition, Dn[w] is the normalization constant or the partition function,

Dn[w] =
1
n!

∫
In ∏

1≤j<k≤n
(xj − xk)

2
n

∏
l=1

w(xl)dxl .

As a matter of fact, Dn[w] can be expressed as the determinant of the Hankel or
moment matrix [3] (2.2.11):

Dn[w] = det
(

µj+k

)n−1

j,k=0
.
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Hankel determinants have been studied extensively over the past few years in part due
to connections with RMT [4–13]. This is because Hankel determinants compute the most
fundamental objects in RMT, such as the partition function of a random matrix ensemble,
the probability distribution function of the largest eigenvalue of Hermitian matrices, and
the moment-generating function of linear statistics associated with the ensemble.

The motivation of this paper comes from the study of different single or double
compression models in recent years. In an early paper, Chen and Its [14] studied the
Laguerre weight xαe−x perturbing a multiplicative factor e−s/x, which induces an infinitely
strong zero at the origin. Then, Chen and Dai considered the Jacobi weight xα(1− x)β

perturbing a multiplicative factor e−s/x in the paper [15]. Later, Min and Chen studied
two kinds of even weights (1− x2)αe−s/x2

in [16] and (1− x2)αe−s/(1−x2) in [17]. Zhu and
Chen [18] considered a generalized weight function:

w(z) = (1− z2)αe−t/(z2−k2), z, k ∈ [−1, 1], α, t > 0.

The relationshipbetween semiclassical orthogonal polynomials and the (continuous)
Painlevé equations was demonstrated by Magnus [19], who showed that the coefficients in
the three-term recurrence relation for the Freud weight [20]:

ω(x; t) = exp
(
−1

4
x4 − tx2

)
, x ∈ R,

with t ∈ R a parameter, can be expressed in terms of solutions of PIV . Recently, Wang and
Fan [21] studied the large n asymptotics of the monic orthogonal polynomials with respect
to another singularly perturbed Pollaczek–Jacobi-type weight:

w(x) = xα(1− x)βe−
t

x(x−1) , x ∈ [0, 1], α, β > 0, , t ≥ 0.

In this paper, we consider the Hankel determinant generated by a singularly perturbed
Jacobi weight, namely,

Dn(s, α, β) := det
(∫ 1

−1
xj+kw(x, s)dx

)n−1

j,k=0
,

where:

w(x, s) := (1− x)α(1 + x)βe−
s

1−x , x ∈ [−1, 1], α > 0, β > 0, s ≥ 0. (1)

We call this the single compression model because the weight vanishes infinitely fast
at x = 1.

The study of this Hankel determinant is motivated in part by the Wigner time-delay
distribution in chaotic cavities [22]. In recent years, the asymptotic analysis of orthogonal
polynomials and Hankel determinants for the singularly perturbed weights has attracted
much interest; see, e.g., [10,12,13,21,23,24].

In addition, for the unperturbed Jacobi weight, i.e., s = 0, we have the explicit formula
of Dn(0) [2] (17.6.2):

Dn(0) =
2n(n+α+β)

n!

n

∏
j=1

Γ(j + 1)Γ(j + α)Γ(j + β)

Γ(j + n + α + β)

= 2n(n+α+β) G(n + 1)G(n + 1 + α + β)G(n + α + 1)G(n + β + 1)
G(2n + α + β + 1)G(α + 1)G(β + 1)

, (2)

where G(·) is the Barnes G-function, which satisfies the relation [25]:

G(z + 1) = Γ(z)G(z), <(z) > 0, G(1) := 1.
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See also [26] for more properties of this function.
It is well known that Dn(s) can be expressed as the product of the square of the L2

norms of the monic orthogonal polynomials [27] (2.1.6), namely:

Dn(s) =
n−1

∏
j=0

hj(s), (3)

where:

hj(s)δjk =
∫ 1

−1
Pj(x, s)Pk(x, s)w(x, s)dx, j, k = 0, 1, 2, . . . (4)

and Pj(x, s), j = 0, 1, 2, . . . , are the monic polynomials of degree j orthogonal with respect
to the weight function w(x, s).

In Section 2, with the aid of supplementary conditions, we obtain a system of difference
equations by certain auxiliary quantities (Rn, rn, R̃n, r̃n) and the recurrence coefficients
(αn, βn). In Section 3.1, we make use of the results of Section 2 to express αn and βn in
terms of the auxiliary quantities and show that these reduce to recurrence coefficients of
the classical Jacobi weight when s = 0. A pair of Toda equations is derived in Section 3.2
by the s dependence of the recurrence coefficients and the auxiliary quantities. In Section 4,
we express r̃n, rn and Rn in terms of:

Hn(s) := s
d
ds

ln Dn(s)

and H′n(s). We show that:

H̃n(t) := Hn(s)|s=2t − n(n + α + β)

satisfies the Jimbo–Miwa–Okamoto σ-form of a Painlevé V equation. In Section 5, we
derive a Painlevé V form by Sn(t) := 2Rn(s)|s=2t/(2n + α + β + 1). In Section 6, we use
the double-scaling analysis and obtain some new results. Finally, Section 7 ends this paper
with a brief conclusion.

2. Preliminaries

The main method of this paper is the ladder operator approach associated with the
orthogonal polynomials. This approach has been widely applied to solve the problems on
Hankel determinants generated by various weight functions; see [10,14,15,28,29] for refer-
ence. Therefore, we introduce some elementary facts about the orthogonal polynomials.

Let Pn(x) be the monic polynomials of degree n in x and orthogonal with respect to
the weight function w(x, s) defined in (1), that is:∫ 1

−1
Pm(x)Pn(x)w(x, s)dx = hnδm,n. (5)

Here, the polynomials Pn(x) and the constant hn all depend on s, but we suppress the
dependence for brevity. An immediate consequence of the orthogonality condition is the
recurrence relation [3]:

xPn(x) = Pn+1(x) + αnPn(x) + βnPn−1(x), n = 0, 1, . . . (6)

with the initial conditions P0(z) := 1 and β0P−1(z) := 0. The most commonly used orthog-
onal polynomials are orthogonal for a measure with support in a real interval. The classical
orthogonal polynomials include Jacobi polynomials, Laguerre polynomials, Hermite poly-
nomials, and their special cases, Gegenbauer polynomials, Chebyshev polynomials, and
Legendre polynomials. Note that Pn(z) has the following form [30]:

Pn(z) = zn + p1(n)zn−1 + . . . (7)
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Substituting (7) into (6), we see that:

αn = p1(n)− p1(n + 1). (8)

Taking a telescopic sum of the above equation and noting that p1(0) := 0, we have:

−
n−1

∑
j=0

αj = p1(n). (9)

The Hankel determinant generated by our weight is:

Dn(s) : = det(µj+k(s))n−1
j,k=0

=
n−1

∏
j=0

hj, (10)

where:

µk(s) : =
∫ 1

−1
xk(1− x)α(1 + x)βe−

s
1−x dx.

For the case k = 0, we have:

µ0(s) = 2α+β+1e−
s
2 Γ(1 + β)U(1 + β,−α,

s
2
)

and U(a, b, z) is the Kummer function of the second; see [26,31].
The Hankel determinant will turn out to play an important role in our determination

of αn and βn for the weight given by (1). Furthermore, through several auxiliary variables,
we obtain expressions for the αn and βn terms of Hn(s) given in (1.2) and its derivatives
with respect to s. Equations (5)–(10) can be found in Szegő’s treatise [3] on orthogonal
polynomials.

In this section, we introduce a pair of ladder operators and the compatibility conditions
first. The information below can be found in Chen and Its [14].

Suppose that w(x) is a continuous even weight function defined on [−1, 1], and
w(−1) = w(1) = 0. The monic orthogonal polynomials with respect to w(x) satisfy the
lowering operator equation:(

d
dz

+ Bn(z)
)

Pn(z) = βn An(z)Pn−1(z) (11)

and the raising operator equation:(
d
dz
− Bn(z)− v′(z)

)
Pn−1(z) = −An−1(z)Pn(z), (12)

where v(z) := − ln w(z), and:

An(z) :=
1
hn

∫ 1

−1

v′(z)− v′(y)
z− y

P2
n(y)w(y)dy, (13)

Bn(z) :=
1

hn−1

∫ 1

−1

v′(z)− v′(y)
z− y

Pn(y)Pn−1(y)w(y)dy. (14)

The functions An(z) and Bn(z) are not independent, but must satisfy the following
supplementary conditions valid for z ∈ C∪ {∞}:

Bn+1(z) + Bn(z) = (z− αn)An(z)− v′(z), (15)
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1 + (z− αn)(Bn+1(z)− Bn(z)) = βn+1 An+1(z)− βn An−1(z), (16)

B2
n(z) + v′(z)Bn(z) +

n−1

∑
j=0

Aj(z) = βn An(z)An−1(z). (17)

In our problem, the weight and associated quantities are:

w(x, s) = (1− x)α(1 + x)βe−
s

1−x , (18)

v(z) = − ln w(x, s) =
s

1− z
− α ln(1− z)− β ln(1 + z), v′(z) =

α

1− z
− β

1 + z
+

s
(1− z)2 , (19)

v′(z)− v′(y)
z− y

=
1

1− z

(
α

1− y
+

s
(1− y)2

)
+

β

(1 + z)(1 + y)
+

s
(1− z)2(1− y)

. (20)

Substituting the above formula into the definition of An(z) and Bn(z) in (13) and
(14), we have the following proposition. In the following discussions, we suppress the s
dependence for brevity.

Proposition 1. For our problem, we have:

An(z) =
Rn

1− z
+

Rn

1 + z
+

R̃n

(1− z)2 , (21)

Bn(z) =
rn + n
1− z

+
rn

1 + z
+

r̃n

(1− z)2 , (22)

where:

R̃n(s) :=
s

hn

∫ 1

−1

P2
n(y)w(y)

1− y
dy, (23)

Rn(s) :=
β

hn

∫ 1

−1

P2
n(y)w(y)

1 + y
dy, (24)

r̃n(s) :=
s

hn−1

∫ 1

−1

Pn(y)Pn−1(y)w(y)
1− y

dy, (25)

rn(s) :=
β

hn−1

∫ 1

−1

Pn(y)Pn−1(y)w(y)
1 + y

dy, (26)

Proof. According to the definition of An(z) in (13), we obtain:

An(z) =
1

1− z
1
hn

∫ 1

−1
P2

n(y)w(y)
(

α

1− y
+

s
(1− y)2

)
dy +

1
1 + z

β

hn

∫ 1

−1
P2

n(y)w(y)
dy

1 + y

+
s

(1− z)2
1
hn

∫ 1

−1
P2

n(y)w(y)
dy

1− y
. (27)

Applying integration by parts, we have:∫ 1

−1
P2

n(y)w(y)
α

1− y
dy = β

∫ 1

−1
P2

n(y)w(y)
dy

1 + y
−
∫ 1

−1
P2

n(y)w(y)
s

(1− y)2 dy (28)

Combining (27) and (28) gives us (21).
Similarly, we obtain (22) from (14). One just needs to take into account the following

equality:
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∫ 1

−1
Pn(y)Pn−1(y)w(y)

α

1− y
dy

= nhn−1 +
∫ 1

−1
Pn(y)Pn−1(y)w(y)

β

1 + y
dy−

∫ 1

−1
Pn(y)Pn−1(y)w(y)

s
(1− y)2 dy (29)

This completes the proof.

Now, we have four more auxiliary quantities Rn, R̃n, rn, r̃n, in addition to the two
unknowns αn and βn. However, from (15)–(17), we obtain relations among these quantities.

Proposition 2. From (15), we obtain the following equations:

r̃n+1 + r̃n = (1− αn)R̃n − s, (30)

R̃n = 2Rn − α− β− 2n− 1, (31)

rn+1 + rn = β− (1 + αn)Rn, (32)

where the constants Rn, R̃n, rn, and r̃n are defined in (23)–(26), respectively.

Proof. Substituting (21) and (22) into (15), we obtain:

Bn+1(z) + Bn(z) =
rn+1 + rn + 2n + 1

1− z
+

rn+1 + rn

1 + z
+

r̃n+1 + r̃n

(1− z)2 (33)

and:

(z− αn)An(z)− v′(z) = (z− αn)

[
Rn

1− z
+

Rn

1 + z
+

R̃n

(1− z)2

]
−
[

α

1− z
− β

1 + z
+

s
(1− z)2

]

= −Rn +
(1− αn)Rn − α− R̃n

1− z
+

(z− αn)Rn + β

1 + z
+

(1− αn)R̃n − s
(1− z)2 . (34)

Comparing the coefficients in the above two formulas, it follows that:

r̃n+1 + r̃n = (1− αn)R̃n − s, (35)

rn+1 + rn + 2n + 1 = −α + (1− αn)Rn − R̃n, (36)

rn+1 + rn = β− (1 + αn)Rn. (37)

Combining the above three formulas immediately proves our proposition.

Proposition 3. From (17), we obtain the following equations:

(r̃n)
2 + sr̃n = βnR̃nR̃n−1, (38)

(2r̃n + s)(rn + n) + αr̃n = βn(RnR̃n−1 + Rn−1R̃n), (39)

r2
n − βrn = βnRnRn−1 (40)

and:

2
n−1

∑
j=0

R̃j = (2n + α + β)(r̃n − 2rn) + n(s− 2α− 2n) (41)

where the constants Rn, R̃n, rn, and r̃n are defined in (23)–(26), respectively.
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Proof. From (21) and (22), we know that:

B2
n(z) + v′(z)Bn(z) +

n−1

∑
j=0

Aj(z)

=
r̃2

n + sr̃n

(1− z)4 +
(2r̃n + s)(rn + n) + αr̃n

(1− z)3 +
(rn + n)(rn + n + α)

(1− z)2 (42)

+
r2

n − βrn

(1 + z)2 +
2r̃nrn − βr̃n + srn

(1 + z)(1− z)2 +
(rn + n)(2rn − β) + αrn

(1− z)(1 + z)

+
n−1

∑
j=0

[
Rj

1− z
+

Rj

1 + z
+

R̃j

(1− z)2

]
.

Using (21) again, we obtain:

βn An(z)An−1(z) =
βnR̃nR̃n−1

(1− z)4 + βnRnRn−1

[
1

(1− z)2 +
1

(1 + z)2 +
2

(1− z)(1 + z)

]

+ βn(RnR̃n−1 + R̃nRn−1)

[
1

(1− z)3 +
1

(1 + z)(1− z)2

]
. (43)

Note that (42) equals (43) due to (17). Then, let us compare their coefficients. At
O(1 − z)−4, O(1 − z)−3, and O(1 + z)−2, equating the coefficients, we have (38)–(40),
respectively. At O(1− z)−2, we obtain:

2(rn + n)(rn + n + α) + 2r̃nrn − βr̃n + srn + 2
n−1

∑
j=0

R̃j

= βn(RnR̃n−1 + R̃nRn−1) + 2βnRnRn−1. (44)

Substituting (39) and (40) into (44) gives us (41).

From (16), using calculations similar to those in the above proposition, we obtain one
more equation as follows:

2(rn+1 − rn)− (r̃n+1 − r̃n) + 1− αn = 0. (45)

To continue, we rewrite (45) as:

αn = 2(rn+1 − rn)− (r̃n+1 − r̃n) + 1. (46)

Performing a telescopic sum and recalling (9), we find the very handy relation:

p1(n) = r̃n − 2rn − n, (47)

where we used the initial conditions r0(t) = r̃0(t) := 0. As we shall see later, (47) will play
a crucial role in the derivation of the Painlevé equation.

3. Ladder Operator Approach
3.1. The Recurrence Coefficients

In this section, we express the recurrence coefficients αn and βn in terms of the auxiliary
quantities Rn, rn, and r̃n.
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Lemma 1. The diagonal recurrence coefficients αn are expressed in terms of Rn, rn, and r̃n as
follows:

(2n + α + β + 2)αn = 2(r̃n − 2rn)− 4Rn + α + 3β + 2n + s + 2. (48)

Proof. We eliminate R̃n from (30) with the aid of (31) and find:

r̃n + r̃n+1 = (1− αn)(2Rn − α− β− 2n− 1)− s. (49)

Subtracting the above formula from (32), we obtain:

r̃n + r̃n+1 − 2(rn+1 + rn) = (1− αn)(−α− β− 2n− 1)− s− 2β + 4Rn. (50)

Recalling (45), we see that the left-hand side of the above formula is 2(r̃n − 2rn) + 1−
αn. Then, (48) immediately follows.

Remark 1. For n = 0, we find from the definition of α0(s) and R0(s) that:

α0(s) = 1−
2U(1 + β,−α− 1, s

2 )

U(1 + β,−α, s
2 )

, (51)

R0(s) =
U(β,−α, s

2 )

2U(1 + β,−α, s
2 )

, (52)

where U is the second solution of Kummer’s equation; see [26]. We verify the validity of (48) at
n = 0 by substituting the above two formulas.

The next lemma gives an expression for βn.

Lemma 2. The off-diagonal recurrence coefficients βn are expressed in terms of rn and r̃n as follows:

[(2n + α + β)2 − 1]βn = (r̃n − 2rn)
2 + (s− 2α− 4n)r̃n − 2(s + 2β)rn − 2ns. (53)

Proof. We eliminate R̃n from (38) with the aid of (31) and replace βnRnRn−1 by r2
n − βrn

with (39) to find:

(r̃n)
2 + sr̃n = βn(2Rn − (α + β + 2n + 1))(2Rn−1 − (α + β + 2n− 1))

= 4βnRnRn−1 − 2βn[(α + β + 2n + 1)Rn−1 + (α + β + 2n− 1)Rn] + [(2n + α + β)2 − 1]βn.

The same substitutions as that made in (40) produce:

(rn + n)(2r̃n + s) + αr̃n = βn[Rn(2Rn−1 − (α + β + 2n− 1)) + Rn−1(2Rn − (α + β + 2n + 1))]

= 4βnRnRn−1 − βn[(α + β + 2n + 1)Rn−1 + (α + β + 2n− 1)Rn]. (54)

Subtracting the above two formulas gives us (53).

Remark 2. We consider the case when s = 0. In this situation, R̃n(0) = r̃n(0) = 0. Therefore,
from (31) and (41), we find:

Rn(0) =
α + β + 2n + 1

2
(55)

and:

rn(0) =
−n(n + α)

2n + α + β
, (56)
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respectively. Finally, from (48) and (53), we obtain:

αn(0) =
β2 − α2

(2n + α + β + 2)(2n + α + β)
, (57)

βn(0) =
4n(n + α)(n + β)(n + α + β)

(α + β + 2n)2[(2n + α + β)2 − 1]
. (58)

They are in agreement with the classical theory in [32].

3.2. The s Dependence

Note that our weight function depends on s. As a consequence, the coefficients of our
polynomials, the recurrence coefficients, and the auxiliary quantities defined in (23)–(26)
all depend on s. In this section, we study the evolution of auxiliary quantities in s. First of
all, we state a lemma that concerns the derivative of p1(n) with respect to s.

Lemma 3. We have:
s

d
ds

p1(n) = r̃n. (59)

Proof. By the orthogonal property (5), we know that:∫ 1

−1
Pn(x)Pn−1(x)w(x, s)dx = 0.

Differentiating the above formula with respect to s gives:∫ 1

−1

d
ds

Pn(x)Pn−1(x)w(x, s)dx−
∫ 1

−1
Pn(x)Pn−1(x)

d
ds

w(x, s)dx = 0.

Using (1), (5), and (7), we obtain:

hn−1
d
ds

p1(n)−
∫ 1

−1
Pn(x)Pn−1(x)w(x, s)

1
1− x

dx = 0.

Taking into account (25), we obtain (59) immediately.

From (47) and the above lemma, it is easily seen that:

s
d
ds

p1(n) = r̃n = s
d
ds

r̃n − 2s
d
ds

rn (60)

or:
s

d
ds

r̃n = r̃n + 2s
d
ds

rn. (61)

We introduce a quantity related to the logarithmic derivative of the Hankel determi-
nant,

Hn(s) := s
d
ds

ln Dn(s). (62)

Next, we have the following property concerning the Hankel determinant Dn.

Lemma 4. We have:

Hn(s) = s
d
ds

ln Dn(s) = −
n−1

∑
j=0

R̃j, (63)

where R̃j is defined in (23).
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Proof. Note that the constant hn defined in (5) depends on the parameter s. Then, we have
from (1) and (5):

h′n(s) = −
∫ 1

−1
P2

n(x)w(x, s)
dx

1− x
. (64)

Using (23), we obtain from the above formula:

h′n = − R̃nhn

s
, (65)

which gives us:

s
d
ds

ln hn = −R̃n. (66)

Then, our lemma follows from the above formula and (10).

From the above lemmas, we also derive differential relations for the recurrence coeffi-
cients αn and βn. These are the nonstandard Toda equations.

Lemma 5. We have:
s

d
ds

αn = r̃n − r̃n+1, (T1)

s
d
ds

βn = (R̃n−1 − R̃n)βn, (T2)

where R̃n and r̃n are defined in (23) and (25), respectively.

Proof. (T1) follows from (8) and (59). (T2) follows from (65) and the fact that βn =
hn/hn−1.

4. The Jimbo–Miwa–Okamoto σ-form of the Painlevé V

In this section, we study the logarithmic derivative of the Hankel determinant. Usually,
this quantity satisfies a second-order differential equation, which is related to the Jimbo–
Miwa–Okamoto σ-form of a particular Painlevé equation. For this purpose, we express
r̃n, rn, and Rn in terms of Hn and its derivative with respect to s and obtain a functional
equation involving Hn, H′n, and H′′n . Firstly, we express rn and r̃n in terms of Hn and H′n in
the next lemma.

Lemma 6.

r̃n =
−s(2H′n + n)

2n + α + β
, (67)

rn =
Hn − sH′n − n(n + α)

2n + α + β
. (68)

Proof. From (41) and (63), we obtain:

−2Hn = ns− 2(α + n)n + (2n + α + β)(r̃n − 2rn)

= ns− 2(α + n)n + (2n + α + β)(n + p1(n)). (69)

Taking the derivative of the above formula with respect to s and using (59), we have:

− 2H′n = n + (2n + α + β)
r̃n

s
. (70)

Equation (67) then follows from the above one. Equation (68) follows from eliminating
r̃n from (69) and (70).
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Remark 3. The logarithmic derivative of the Hankel determinant Hn(s) plays an important role.
The auxiliary quantities r̃n and rn can be expressed in terms of Hn and its derivative.

Then, we try to obtain a similar lemma for Rn. To achieve this, we first derive the
relation among Rn, rn, and r̃n.

Proposition 4.

α + β + 2n + 1
Rn

(r2
n − βrn) + (α + β + 2n− 1)βnRn = 4(r2

n − βrn)− αr̃n − (rn + n)(2r̃n + s) (71)

and:

∆(r2
n − βrn)

Rn
− ∆βnRn = −4(r2

n − βrn) + αr̃n + (rn + n)(2r̃n + s)− 2s(α + β + 2n)
drn

ds
, (72)

where ∆ := (2n + α + β)2 − 1.

Proof. Substituting (39) into (54) gives us (71). Then, we look back to (T2) by using (31)
and (39):

s
d
ds

βn = (R̃n−1 − R̃n)βn

= (2Rn−1 − 2Rn + 2)βn

= 2βn − 2Rnβn + 2
r2

n − βrn

Rn
. (73)

Applying s d
ds to (53) gives us:

(2n + α + β + 1)(2n + α + β− 1)s
d
ds

βn

= (2r̃n + s)(r̃n − 2rn)− 2sn + (s− 2α− 4n)r̃n − 4s(α + β + 2n)
drn

ds
, (74)

where we made use of (60) to arrive at the last step. Substituting (73) into the above formula
and eliminating βn with (53) gives (72).

From the above proposition, we express Rn and 1/Rn in terms of rn, r̃n, and r′n(s).

Proposition 5.

Rn =
(2n + α + β + 1)[4(r2

n − βrn)− αr̃n − (rn + n)(2r̃n + s) + 2sr′n(s)]
2[(r̃n − 2rn)2 + (s− 2α− 4n)r̃n − 2(s + 2β)rn − 2sn]

, (75)

1
Rn

=
4(r2

n − βrn)− αr̃n − (rn + n)(2r̃n + s)− 2sr′n(s)
2(α + β + 2n + 1)(r2

n − βrn)
. (76)

Proof. These are found by solving for Rn and 1/Rn from (71) and (72).

Finally, we arrive at the following theorem.

Theorem 1. The logarithmic derivative of the Hankel determinant with respect to s,

Hn(s) := s
d
ds

ln Dn(s),
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satisfies a shifted Jimbo–Miwa–Okamoto σ-form of the Painlevé equation:

4(sH′′n )
2 = −16s(H′n)

3 + (H′n)
2[16Hn + (s + 2α)2 + 8βs]

+2H′n[(−s− 2α− 4β)Hn + (s + 2α)n(n + α + β)] + [Hn − n(n + α + β)]2, (77)

with the boundary conditions:

Hn(0) = 0, H′n(0) =
−n(n + α + β)

2α
.

Proof. Multiplying (75) and (76) gives us:

4s2(r′n)
2 = s2r2

n + rn[2ns2 + 2s(α + 2β + 4n)r̃n

+4(α + β + 2n)r̃2
n] + [(α + 2n)r̃n + ns]2. (78)

Substituting (67) and (68) into (78) gives us (77).

Remark 4. It turns out that the quantity Hn(s) satisfies a shifted Jimbo–Miwa–Okamoto σ-form
of the Painlevé V for a special choice for parameters. If:

H̃n(t) := Hn(2t)− n(n + α + β), (79)

then (77) becomes:

(tH̃′′n )
2 = −4t(H̃′n)

3 + (H̃′n)
2
[
4H̃n + (α + 2β + t)2 + 4n(n + α + β)− 4β(α + β)

]
− 2H̃′n

[
(α + 2β + t)H̃n + 2nβ(n + α + β)

]
+ H̃2

n,

which is the Jimbo–Miwa–Okamoto σ-form of the Painlevé V, with parameters ν0 = 0, ν1 =
−(n + a + b), ν2 = n, ν3 = −b, following the convention in [33] (C.45).

5. Painlevé V

In this section, we obtain a second-order ordinary differential equation for Rn(s),
which is expected for PV since we saw that Hn(s) satisfies the Jimbo–Miwa–Okamoto
σ-form of the Painlevé V. For this purpose, we state the next lemma, a Riccati equation
satisfied by Rn(s).

Lemma 7.
− 4sR′n(s) = 4Rn(r̃n − 2rn) + (2n + 1 + α + β)(4rn + Rn − 2β) + 2Rn(−4Rn + 2β + s). (80)

Proof. First, we apply s d
ds to (48) and make use of (T1) to replace s d

ds αn by r̃n − r̃n+1. In the
next step, we replace r̃n+1 by (1− αn)R̃n − s− r̃n using (30). Finally, noting (48) and (31),
we arrive at (80).

From (80), we see that:

r̃n =
−4sR′n(s)− (2n + 1 + α + β)(4rn + Rn − 2β)

4Rn
+

4rn + 4Rn − 2β− s
2

. (81)

Substituting the above formula into (75) and (76), we find a pair of linear equations in
rn(s) and r′n(s). Solving this system, we have:

rn(s) = F(Rn, R̃n), (82)

r′n(s) = G(Rn, R̃n). (83)
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Because the expressions are unwieldy, we decided to take a different approach to
obtain the Painlevé equation. In the paper of Chen and Dai [15], they studied the Pollaczek–
Jacobi-type weight, i.e.,

ŵ(x, t) = xα(1− x)βe−
t
x , x ∈ [0, 1], α, β ≥ 0, t ≥ 0.

The orthogonality with the Pollaczek–Jacobi-type weight is:∫ 1

0
P̂j(x, α, β)P̂k(x, α, β)xα(1− x)βe−

t
x dx = ĥj(t, α, β)δjk,

where P̂j(x, α, β), j = 0, 1, 2, . . ., are the monic polynomials of degree j orthogonal with
respect to the weight ŵ(x, t). Obviously, P̂j(x, α, β) should also depend on t, while we do
not write it down for simplicity.

Based on the variable substitution method for the integral, we obtained the following
result.

Lemma 8. We have:
hn(s)|s=2t = 22n+α+β+1ĥn(t), (84)

and:
Rn(s)|s=2t =

1
2

R̂n(t), (85)

where R̂n(t) is the quantity Rn(t) in the paper of Chen and Dai [15].

Proof. Replacing x by 1−y
2 , we obtain:

ĥn(t) =
∫ 1

0
P̂2

n(x)ŵ(x, t)dx

=
∫ −1

1
P̂2

n(
1− y

2
)(

1− y
2

)α(
1 + y

2
)βe−

2t
1−y
−dy

2
(86)

=
1

22n+α+β+1

∫ 1

−1
P2

n(y)w(y, 2t)dy

=
hn(2t)

22n+α+β+1 .

Similarly, we obtain the relation for Rn(s) and R̂n(t).

Remark 5. By the variable substitution method for the integral, we obtain the relations of the
auxiliary quantities between this paper and the paper of Chen and Dai [15] as follows:

R̃n(s)|s=2t = R̂∗n(t), rn(s)|s=2t = −r̂n(t), r̃n(s)|s=2t = −2r̂∗n(t),

αn(s)|s=2t = 1− 2α̂n(t), βn(s)|s=2t = 4β̂n(t). (87)

By Theorem (7.2) in the paper of Chen and Dai [15], we have the following result :

Theorem 2. Let:

Sn(t) :=
2Rn(2t)

2n + α + β + 1
. (88)
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Then, Sn(t) satisfies the following differential equation:

S′′n =
3Sn − 1

2Sn(Sn − 1)
(S′n)

2 − S′n
t
+

(Sn − 1)2

t2

[
(2n + 1 + α + β)2

2
Sn −

β2

2Sn

]

+
αSn

t
− Sn(Sn + 1)

2(Sn − 1)
, (89)

where is PV((2n + 1 + α + β)2/2,−β2/2, α,−1/2) with the initial conditions:

Sn(0) = 1, S′n(0) =
1
α

.

Proof. Equation (89) follows from the relation for Rn(s) and R̂n(t).

Corollary 6. Let:

yn(s) :=
2Rn(s)

2n + α + β + 1
. (90)

Then, yn(s) satisfies the following differential equation:

y′′n =
3yn − 1

2yn(yn − 1)
(y′n)

2 − y′n
s
+

(yn − 1)2

s2

[
(2n + 1 + α + β)2

2
yn −

β2

2yn

]

+
αyn

2s
− yn(yn + 1)

8(yn − 1)
, (91)

with the initial conditions:
yn(0) = 1, y′n(0) =

1
2α

.

Remark 6. We made use of the ladder operator approach with the associated compatibility condi-
tions (15), (16), and (17), since it is straightforward to express the recurrence coefficients in terms of
the auxiliary variables. This allows us to investigate the s evolution of such quantities and discover
the Painvelé V of our problem. The Riemann–Hilbert approach of Deift et al. [34] is particularly
suited for the asymptotic analysis. However, the appearance of an irregular singularity at the right
endpoint requires further study.

6. Double-Scaling Analysis

In this section, our interest lies in a double-scaling analysis, where s→ 0+ and n→ ∞,
such that τ = n2s is finite. Recalling (41) and (63), we have:

Hn(s) = s
d
ds

ln
Dn(s)
Dn(0)

= (2n + α + β)(rn − r̃n/2) + n(α + n− s/2). (92)

We are concerned with the behavior of the Hankel determinant, as n, the dimension
of the Hankel matrix, tends to infinity. For this purpose, a double-scaling scheme is
introduced, namely sending n → ∞, s → 0+ and such that τ := n2s remains fixed. Here,
the main idea comes from the paper [35].

Carrying out the double scaling above and combining with Theorem 1, we find that
the infinite-dimensional Hankel determinant satisfies another σ-form of the corresponding
Painlevé equation.

Theorem 3. Let:
τ := n2s,
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with s→ 0+ and n→ ∞, such that τ ∈ (0,+∞). If:

H(τ) := lim
n→∞

Hn(
τ

n2 ), (93)

thenH(τ) satisfies,

(τH′′)2 + 4(H′)2(τH′ −H)−
(

αH′ + 1
2

)2
= 0, (94)

with the initial conditionsH(0) = 0, H′(0) = − 1
2α .

Proof. Plugging τ = n2s into (77), we see that the limit of Hn(s) satisfies a σ-form Painlevé
Equation (94).

Similarly, carrying out the double scaling above and combining with Corollary 6, the
scaled quantity satisfies a Painlevé III’ in the next theorem.

Theorem 4. Let:

yn(s) := 1 +
gn(s)

n2 , τ := n2s, (95)

with s→ 0+ and n→ ∞, such that τ ∈ (0,+∞). If:

g(τ) := lim
n→∞

gn(
τ

n2 ), (96)

then g(τ) satisfies,

g′′(τ) =
g′2(τ)
g(τ)

− g′(τ)
τ

+
2g2(τ)

τ2 +
α

2τ
− 1

4g(τ)
, (97)

with the initial data g(0) = 0, g′(0) = 1
2α .

Proof. Substituting the definition (95) into (91), we see that g(τ) satisfies
PI I I′(8, 2α, 0,−1).

7. Conclusions

In this work, we studied the weight, w(x, s) := (1− x)α(1+ x)βe−
s

1−x , α, β > 0, x ∈
[−1, 1], s ≥ 0. We call this the single compression model because the weight vanishes
infinitely fast at x = 1. For the finite n case, we derived a second-order nonlinear differential
equation for the logarithmic derivative of the Hankel determinant. This quantity can be
expressed in terms of the Jimbo–Miwa–Okamoto σ-function of a particular Painlevé V.
Furthermore, we showed that the quantity Rn(s) satisfies the four Painlevé equations.
For the large n case, we used double-scaling analysis and obtained similar results to the
paper [35].

The main idea of this paper was to study the relationship between the Painlevé
equations and the correlation coefficients, and then, we analyzed the asymptotic property
of the auxiliary quantity by the double-scaling method, and finally, we obtained the
asymptotic expression of the Hankel determinant.

In the future, we want to use the Riemann–Hilbert method to obtain the asymptotic
expression of the orthogonal polynomials directly; thus, we can obtain the asymptotic
property of the recursion coefficients of the associated orthogonal polynomials and the
asymptotic expression of the Hankel determinant.
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