
mathematics

Article

A Global Optimization Algorithm for Solving Linearly
Constrained Quadratic Fractional Problems

Zhijun Xu and Jing Zhou *

����������
�������

Citation: Xu, Z.; Zhou, J. A Global

Optimization Algorithm for Solving

Linearly Constrained Quadratic

Fractional Problems. Mathematics

2021, 9, 2981. https://doi.org/

10.3390/math9222981

Academic Editor: Armin Fügenschuh

Received: 18 September 2021

Accepted: 17 November 2021

Published: 22 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Science, Zhejiang University of Technology, Hangzhou 310023, China; zjxuoptics@zjut.edu.cn
* Correspondence: zhoujing@zjut.edu.cn

Abstract: This paper first proposes a new and enhanced second order cone programming relaxation
using the simultaneous matrix diagonalization technique for the linearly constrained quadratic
fractional programming problem. The problem has wide applications in statics, economics and
signal processing. Thus, fast and effective algorithm is required. The enhanced second order cone
programming relaxation improves the relaxation effect and computational efficiency compared to the
classical second order cone programming relaxation. Moreover, although the bound quality of the
enhanced second order cone programming relaxation is worse than that of the copositive relaxation,
the computational efficiency is significantly enhanced. Then we present a global algorithm based on
the branch and bound framework. Extensive numerical experiments show that the enhanced second
order cone programming relaxation-based branch and bound algorithm globally solves the problem
in less computing time than the copositive relaxation approach.

Keywords: second order cone programming relaxation; copositive relaxation; branch-and-bound
algorithm; global optimization

1. Introduction

The quadratic fractional programming problem refers to minx∈X
f1(x)
f2(x) with f1(x) and

f2(x) being quadratic functions and the feasible region X 6= ∅. It has many applications
in electric engineering [1], finance, production planning [2], and communications over
wireless channels [3] etc. Many strategies have been developed to solve this important issue.
One classical approach is the Dinkelbach method proposed by Dinkelbach [4]. For example,
Salahi et al. [5] studied the problem of minimizing the ratio of two indefinite quadratic
functions subject to a strictly convex quadratic constraint. Zhang et al. [6] proposed a Celis-
Dennis-Tapia based approach to quadratic fractional programming problems with two
quadratic constraints. Gotoh et al. [3,7] solved the general quadratic fractional problems
by combing Dinkelbach iterative algorithm with the branch and bound algorithm together.
Moreover, the metaheuristics-based approaches successfully combining machine learning
and swarm intelligence were able to solve the problem globally [8,9]. In recent years, the
semidefinite programming (SDP) relaxation and the copositive relaxation have become
popular to solve the quadratic fractional programming problems. Some special case of
the quadratic fractional programming problem can be reformulated into an exact SDP
relaxation and solved in polynomial time. Beck et al. [10] showed that minimizing the ratio
of indefinite quadratic functions over an ellipsoid admitted an exact SDP reformulation
under some technical conditions. Xia [11] improved their results by removing the technical
conditions. Nguyen et al. [12] analysed quadratic fractional problems over a two-sided
quadratic constraint with three cases and illustrated that each of them admited an exact
SDP relaxation. Moreover, Preisig [13] used the idea of copositivity to deal with the
standard quadratic fractional functions. Amaral et al. [14] proposed a copositive relaxation
for nonconvex min-max fractional quadratic problems under quadratic constraints and
showed that the lower bound provided by the copositive relaxation could speed up a
well-known solver in obtaining the optimal value.

Mathematics 2021, 9, 2981. https://doi.org/10.3390/math9222981 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math9222981
https://doi.org/10.3390/math9222981
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9222981
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9222981?type=check_update&version=2

Mathematics 2021, 9, 2981 2 of 12

In this paper, we consider the quadratic fractional programming with linear constraints:

min f (x) =
xTQx + 2qTx + c
‖x‖2 + 1

,

s.t. Ax = a, x ≥ 0. (1)

The above problem was proposed by Amaral et al. [15]. Interesting applications
of (1) include the standard quadratic fractional problem and the symmetric eigenvalue
complementarity problem. Here, Q ∈ Rn×n is a symmetric matrix, q ∈ Rn, a ∈ Rm,
c ∈ R and A ∈ Rm×n. Without loss of generality, we assume that A is full row rank.
When Q is semidefinite, it becomes the total least squares, and is thus widely used in a
variety of disciplines such as statics, economics and signal processing [16]. In this paper,
F = {x ∈ Rn : Ax = a, x ≥ 0} is supposed to be nonempty and compact, i.e., F 6= ∅
and ker A

⋂
Rn
+ = {0}. The nonconvexity of the objective function leads to the challenge

in solving this problem. Amaral et al. [15] proposed a copositive (CP) relaxation for the
problem. Although they showed that the CP relaxation admitted a better lower bound
including small relative gaps with the optimal value, the computational complexity was
high as shown in their numerical results [15]. In particular, the CPU spent more than 50 s
to solve the CP relaxation when the dimension of variables was 79. Thus, designing a
convex relaxation that can be efficiently used even for huge-size problem while maintain-
ing the strength of the convex relaxation is critical. In this paper, we design an enhanced
second order cone programming (SOCP) relaxation for (1) instead. We first reformulate
the primal problem into a quadratic programming problem with a quadratic equality and
linear constraints. Furthermore, we present an enhanced SOCP relaxation exploiting the
simultaneous matrix diagonalization tool. We compare the enhanced SOCP relaxation
with the classical SOCP relaxation, and extensive numerical experiments verify that the en-
hanced SOCP relaxation shows superiority in both the relaxation effect and computational
complexity. In particular, the superiority is magnified when the number of the negative
eigenvectors of Q increases. Then we design a branch and bound algorithm based on the
enhanced SOCP relaxation to find the optimal solution. Numerical experiments show that
though the lower bound provided by the enhanced SOCP relaxation is worse than that
of the CP relaxation, the computational complexity is much lower. Thus, the enhanced
SOCP relaxation-based branch and bound algorithm spends much less time to obtain the
optimal solution than that of the CP relaxation when the dimension of the variables is more
than 100.

The following notations are adopted throughout the paper. Given a real symmetric
matrix X, X � 0 means X is positive semidefinite. I denotes an identity matrix. For
n by n real matrices A = (Aij) and B = (Bij), A • B =trace(AT B) = ∑n

i,j=1 AijBij. bac
represents that a ∈ R is rounded down to the nearest integer. Given a vector b ∈ Rn,
diag(b) corresponds to an n× n diagonal matrix with its diagonal elements equal to b.

The paper is organized as follows. In Section 2, we recast the problem into a quadratic
programming problem with a quadratic equality and linear constraints and then present an
enhanced SOCP relaxation. Section 3 describes a branch and bound algorithm. Section 4
provides numerical experiments to verify that the enhanced SOCP relaxation-based branch-
and-bound method is effective to solve the problem. Conclusions are given in Section 5.

2. A Reformulation of (1) and an Enhanced SOCP Relaxation

Some constrained quadratic fractional problems are equivalent to quadratically con-
strained quadratic programming problems [13,15]. Following this idea, in this section we
first equivalently reformulate (1) into a quadratically constrained quadratic programming
problem and then design an enhanced SOCP relaxation.

For convenience, let Ā =
[
−a A

]
, Q̄ =

[
c qT

q Q

]
, P̄ =

[
1 0T

0 I

]
, then (1) equals to the

following homogeneous quadratic fractional program with linear constraints:

Mathematics 2021, 9, 2981 3 of 12

min
zTQ̄z
zT P̄z

,

s.t. z ≥ 0, z1 = 1, Āz = 0. (2)

If we define y = z√
zT P̄z

, then (2) is recast into:

min yTQ̄y,

s.t. y ≥ 0, Āy = 0, (3)

yT P̄y = 1.

Lemma 1. (2) is equivalent to (3).

Proof. If z is a feasible solution of (2), then let y = z√
zT P̄z

. It is easy to verify that y is

a feasible solution of (3) and yTQ̄y = zT Q̄z
zT P̄z . Hence, the optimal value of (3) is no more

than that of (2). Conversely, if y is a feasible solution of (3), then yT P̄y = 1 implies
that y 6= 0. Let y = [y1; y2] with y1 ∈ R and y2 ∈ Rn. If y1 = 0, then Ay2 = 0 and
y2 ≥ 0. Hence, y2 ∈ ker A

⋂
Rn
+ = {0}, which contradicts with the conclusion that y 6= 0.

Therefore, y1 > 0. Let z = y
y1

, then it is easy to verify that z is a feasible solution of (2) and
zT Q̄z
zT P̄z = yTQ̄y. Hence, the optimal value of (3) is no less than that of (2). Consequently, (2)
is equivalent to (3).

Lemma 1 leads directly to the following proposition.

Proposition 1. (1) is equivalent to (3).

Therefore, in order to solve (1), we would like to solve (3) instead. Since there is an
equality constraint in (3), we first reduce the variable dimension from n + 1 to n−m + 1
by employing a similar method as in [15]. Let S = {s1, . . . , sn−m+1} ∈ Rn×(n−m+1) be
an orthonormal basis of ker Ā, thus, y can be written as y = Sw with w ∈ Rn−m+1 on
condition that y satisfying Āy = 0. Let Q̂ = STQ̄S and P̂ = STS = I, then (3) turns into:

min wTQ̂w,

s.t. Sw ≥ 0, (4)

wTw = 1.

(4) is a nonconvex quadratic program with one spherical constraint and linear con-
straints. In general, it cannot be solved in polynomial time. Amaral et al. [15] proposed a
CP relaxation for (1):

min Q̂ •W,

s.t. I •W = 1, (5)

SWST ≥ 0,

W � 0.

They showed that the CP relaxation could provide a good lower bound and numerical
experiments also verified that the CP relaxation resulted in small relative gaps with the
optimal value. However, the computational complexity is high. Thus, it is not effective to
solve the problem when the dimension of variables becomes larger. In contrast, the classical
SOCP relaxation has much lower computational complexity, but its relaxation effect is
worse [17]. To balance the relaxation effect and computational complexity, we design an
enhanced SOCP relaxation which could both improve the lower bound and reduce the
computation time compared to the classical SOCP relaxation.

Next, we first briefly introduce the classical SOCP relaxation. We decompose
Q̂ = ∑n−m+1

i=1 σiηiη
T
i by eigenvalue decomposition, where σi are eigenvalues and ηi are

Mathematics 2021, 9, 2981 4 of 12

corresponding eigenvectors, for i = 1, . . . , n−m + 1. Let s denote the number of negative
eigenvalues of Q̂. The lower bound and upper bound of ηT

i w are solved by
fi = min{

Sw≥0, wTw≤1
} ηT

i w and gi = max{
Sw≥0, wTw≤1

} ηT
i w for i = 1, . . . , s, respectively.

Moreover, the lower bound and upper bound of wi are solved by bi = min{
Sw≥0, wTw≤1

} wi

and di = max{
Sw≥0, wTw≤1

} wi for i = 1, . . . , n− m + 1, respectively. Then the classical

SOCP relaxation becomes [17]:

min
s

∑
i=1

σiτi +
n−m+1

∑
i=s+1

σi(η
T
i w)2,

s.t. Sw ≥ 0,
n−m+1

∑
i=1

γi = 1, (6)

w2
i ≤ γi, γi ≤ (bi + di)wi − bidi, i = 1, . . . , n−m + 1,

(ηT
i w)2 ≤ τi, τi ≤ (fi + gi)η

T
i w− figi, i = 1, . . . , s.

In what follows, we design a new SOCP relaxation by employing the simultaneous
matrix diagonalization technique. The simultaneous matrix diagonalization-based con-
vex relaxation was first proposed to solve the one quadratically constrained quadratic
program on condition that the quadratic forms are simultaneously diagonalizable by
Ben-Tal et al. [18]. Then Zhou et al. used the simultaneous matrix diagonalization tech-
nique to solve various problems including the convex quadratic program with linear
complementarity constraints [19], the generalized trust-region problem [20], and the con-
vex quadratically constrained nonconvex quadratic programming problem [21]. All of
the above research implies that convex relaxations employing the simultaneous matrix
diagonalization to solve some special quadratically constrained quadratic programming
problems could result in a better lower bound or reduce the computational complexity.

It is obvious that I and Q̂ can be simultaneously diagonalizable, i.e., there exists a
nonsingular matrix V such that VT IV and VTQ̂V are both diagonal matrices. In fact,
let Q̂ = VΣVT by using eigenvalue decomposition where Σ = diag(σ1, . . . , σn−m+1) and
V = (η1, . . . , ηn−m+1), then VTV = I and VTQ̂V = Σ. Let w = Vξ, then (4) becomes:

min ξTΣξ,

s.t. SVξ ≥ 0, (7)

ξTξ = 1.

The lower bound and upper bound of ξi are solved by li = min{
ξ|SVξ≥0, ξTξ≤1

} ξi

and ui = max{
ξ|SVξ≥0, ξTξ≤1

} ξi for i = 1, . . . , n−m + 1, respectively. We derive a new

SOCP relaxation by relaxing ξ2
i = ti into ξ2

i ≤ ti for i = 1, . . . , n−m + 1:

min
n−m+1

∑
i=1

σiti,

s.t. SVξ ≥ 0,
n−m+1

∑
i=1

ti = 1, (8)

ξ2
i ≤ ti,

ti ≤ (li + ui)ξi − liui, i = 1, . . . , n−m + 1.

Mathematics 2021, 9, 2981 5 of 12

We observe that (6) has s more convex quadratic constraints and s more linear con-
straints than those of (8); hence, the computational complexity of (6) is higher. Moreover,
the auxiliary variables γi and τi are only bounded above by linear constraints in (6), in
contrast, the auxiliary variable ti is not only bounded above by the linear constraints,
but also appears in the objective function. Thus, minimizing the objective function also
prevents the auxiliary variables ti from going to infinity when σi > 0.

To verify that (8) indeed enhance the relaxation effect of the classical SOCP relaxation (6),
we use some randomly generated instances to test the two relaxations. Five instances are
generated for each given problem size. The average lower bounds and average computing
time in seconds are computed. The concrete generation process of random examples
are described in Section 4. In Figure 1, we let n = 10, 50, 100, 150, 200, m = bn/4c and
r = bn/2c, where r denotes the number of negative eigenvalues of the objective function
matrix Q. To compare the two relaxations varying from r, we set n = 200, m = 50 and
r = 50, 100, 150, 200 and the results are listed in Figure 2.

0 50 100 150 200
−2.5

−2

−1.5

−1

L
o

w
e

r
b

o
u

n
d

s

The dimension of variables

SOCP relaxation

Enhanced SOCP relaxation

0 50 100 150 200
0

10

20

30

40

50

60

70

C
P

U
 t

im
e

 i
n

 s
e

c
o

n
d

s

The dimension of variables

Enhanced SOCP relaxation

SOCP relaxation

Figure 1. Comparisons of lower bounds and computing time between (6) and (8) with varying
dimensions of variables.

50 100 150 200
−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

L
o

w
e

r
b

o
u

n
d

s

The number of negative eigenvalues of Q

Enhanced SOCP relaxation

SOCP relaxation

50 100 150 200
40

50

60

70

80

90

C
P

U
 t

im
e

 i
n

 s
e

c
o

n
d

s

The number of negative eigenvalues of Q

Enhanced SOCP relaxation

SOCP relaxation

Figure 2. Comparisons of lower bounds and computing time between (6) and (8) with varying
numbers of negative eigenvalues of Q.

Figure 1 shows that (8) obtains a better lower bound in less computing time than that
of (6). Moreover, the advantage of computing time is highlighted when the dimension
increases.

Figure 2 shows that the relaxation effect and computing time of (8) change very little
with the varying number of negative eigenvalues of Q. In contrast, the relaxation effect
of (6) becomes worse and the computing time increases when the number of negative
eigenvalues of Q becomes larger. Hence, we conclude that the advantages of both the
relaxation effect and computing time of (8) are highlighted as the number of negative
eigenvalues of Q increases.

Mathematics 2021, 9, 2981 6 of 12

3. An Enhanced SOCP Relaxation Based Branch-and-Bound Algorithm

The branch and bound algorithm is widely used for globally solving constrained
fractional programming problems [22], thus, we present an enhanced SOCP relaxation-
based branch-and-bound scheme detailed in Algorithm 1 for (7) in this section. There are
four steps in the design framework:

(1) Initialization. Set the initial lower bound li = min{
ξ|SVξ≥0, ξTξ≤1

} ξi and ui =

max{
ξ|SVξ≥0, ξTξ≤1

} ξi for i = 1, . . . , n−m + 1. Solve (8) with [l0, u0] to obtain its optimal

value lb0 and optimal solution (ξ0, t0).
(2) The node selection strategy. The algorithm employs the classical “best-first” selection

strategy, i.e., the one with the lowest bound among the live subproblems is selected.
(3) The variable selection strategy and branching rule. Let (ξk, tk) be the solution of (8)

at the current node k over the box [lk, uk]. Choose j∗ = arg maxj∈{1,...,n−m+1}(tk
j − (ξk

j)
2).

Then the box [lk, uk] is split into two sub-boxes [la, ua] and [lb, ub] with la
j = lk

j , ua
j = uk

j

for j 6= j∗ and ua
j∗ =

lk
j∗+uk

j∗
2 , ub

j = uk
j , lb

j = lk
j for j 6= j∗ and lb

j∗ = ua
j∗ . Thus, two new

subproblems are generated over the two new sub-boxes [la, ua] and [lb, ub], respectively.
(4) Lower bound and upper bound. As described by the branching rule, every enumer-

ation node is over a box [l, u]. The lower bound lb and (ξ, t) for each node is provided
by solving (8) with corresponding [l, u]. Moreover, if ξ > 0, then ξ̄ = ξ√

(ξ)Tξ
is a feasible

solution of (7) and U = (ξ̄)TΣξ̄ is an upper bound.
The following theorem proves the convergence of Algorithm 1.

Theorem 1. If {ξk, tk, lbk, lk, uk} selected from D in Line 10 of Algorithm 1 satisfies lbk =
min{lbj|lbj ∈ D} and i∗ = arg maxi∈{1,...,n−m+1}(tk

i − (ξk
i)

2), then for any ε > 0, there exists
a δ > 0 such that Algorithm 1 terminates in Line 13 on condition that (uk

i∗ − lk
i∗) ≤ δ.

Proof. Since ξk
i ∈ [lk

i , uk
i] and tk

i ≤ (lk
i + uk

i)ξ
k
i − lk

i uk
i ,

tk
i − (ξk

i)
2 ≤ tk

i∗ − (ξk
i∗)

2 ≤
(uk

i∗ − lk
i∗)

2

4
≤ δ2

4

and

1− (ξk)Tξk =
n−m+1

∑
i=1

tk
i −

n−m+1

∑
i=1

(ξk
i)

2 ≤ (n−m + 1)(tk
i∗ − (ξk

i∗)
2) ≤ (n−m + 1)δ2

4
.

Set δ = min
{√

2ε
σ̂(n−m+1) ,

√
2

n−m+1

}
, then (n−m+1)δ2

4 ≤ 1
2 . Hence, (ξk)Tξk ≥ 1

2 . Let

ξ̄k = ξk√
(ξk)Tξk

, then ξ̄k is a feasible solution of (7). Let σ̂ = maxi |σi|. For any ε > 0, we have

n−m+1

∑
i=1

σi(ξ̄
k
i)

2 −
n−m+1

∑
i=1

σitk
i

≤|
n−m+1

∑
i=1

σi(ξ̄
k
i)

2 −
n−m+1

∑
i=1

σi(ξ
k
i)

2|+ |
n−m+1

∑
i=1

σi(ξ
k
i)

2 −
n−m+1

∑
i=1

σitk
i |

≤σ̂
(

1− (ξk)Tξk
)
+ σ̂

(n−m+1

∑
i=1

tk
i −

n−m+1

∑
i=1

(ξk
i)

2
)

≤σ̂
((n−m + 1)δ2

4
+

(n−m + 1)δ2

4

)
≤σ̂

(n−m + 1)δ2

2
≤ ε

Mathematics 2021, 9, 2981 7 of 12

Therefore, Algorithm 1 terminates in Line 13.

Algorithm 1 A Branch-and-Bound Algorithm for Solving (1).

Require: An instance of (1) and a given error tolerance ε > 0. Set Optimization k = 1 and U∗ = +∞.
1: Solve (8) with [l0, u0] for its optimal value lb0 and optimal solution (ξ0, t0).
2: if (ξ0)Tξ0 > 0, then
3: ξ∗ = ξ0√

(ξ0)T ξ0
and U∗ = (ξ∗)TΣξ∗.

4: end if
5: Construct a set D and insert {ξ0, t0, lb0, l0, u0} into it.
6: loop
7: if D = ∅, then
8: return (ξ∗, U∗) and terminate.
9: end if

10: Choose a node from D, denoted as {ξk, tk, lbk, lk, uk} such that lbk = min{lbi|lbi ∈ D} and
remove it from D.

11: if U∗ − lbk ≤ ε, then
12: return (ξ∗, U∗) and terminate.
13: end if
14: Choose j∗ = arg maxj∈{1,...,n−m+1}(t

k
j − (ξk

j)
2).

15: Construct the box [la, ua] by setting la
j = lk

j , ua
j = uk

j , for j 6= j∗ and ua
j∗ =

lk
j∗+uk

j∗
2 and construct

the box [lb, ub] by setting ub
j = uk

j , lb
j = lk

j for j 6= j∗ and lb
j∗ = ua

j∗ .
16: Set k← k + 1.
17: if (8) over [la, ua] is feasible, then
18: Solve (8) over [la, ua] for its optimal objective function value lba and optimal solution

(ξa, ta).
19: if (ξa)Tξa > 0, then
20: ξ̄a = ξa√

(ξa)T ξa
and Ua = (ξ̄a)TΣξ̄a.

21: end if
22: if Ua < U∗, then
23: U∗ = Ua and ξ∗ = ξ̄a.
24: end if
25: if U∗ − lba > ε, then
26: insert {ξa, ta, lba, la, ua} into D.
27: end if
28: end if
29: if (8) over [lb, ub] is feasible, then
30: Solve (8) over [lb, ub] for its optimal objective function value lbb and optimal solution

(ξb, tb).
31: if (ξb)Tξb > 0, then
32: ξ̄b = ξb√

(ξb)T ξb
and Ub = (ξ̄b)TΣξ̄b.

33: end if
34: if Ub < U∗, then
35: U∗ = Ub and ξ∗ = ξ̄b.
36: end if
37: if U∗ − lbb > ε, then
38: insert {ξb, tb, lbb, lb, ub} into D.
39: end if
40: end if
41: end loop

4. Numerical Experiments

In this section, we report the encouraging numerical experience for randomly gener-
ated instances using Algorithm 1, and compare the numerical results with the lower bound
provided by the CP relaxation.

All the algorithms are implemented in MATLAB R2013b (MathWorks Inc, Natick, MA,
USA) on a Windows 7 PC with 2.50 GHZ Inter Dual Core CPU processors. (8) is computed
by the Cplex solver (IBM Inc, Almonck, New York, USA) and the CP relaxation is solved by

Mathematics 2021, 9, 2981 8 of 12

Sedumi [23] with the interface code cvx. The error tolerance is set to be ε = 1× 10−4. We
generated the instances as follows [15]: Z = RTRT , T = diag(T1, . . . , Tn), Ti ∈ −U[0, 1] for

i = 1, . . . , r and Ti ∈ U[0, 1] for i = r+ 1, . . . , n, R = W1W2W3, Wj = I−
2wjwT

j
‖wj‖2 for j = 1, 2, 3,

where wjk ∈ U[−1, 1] is the k-th element of wj; qi ∈ U[−1, 1], for i = 1, . . . , n; a m × n
matrix A with A(1, :) ∈ U[0, 5], whereas A(i, :) ∈ U[−5, 5] for i = 2, . . . , m; a randomly
generated x ∈ {x ∈ Rn

+ : eTx = 1}, then let a = Ax. Five instances are generated for
each given problem size. The following three tables report the experimental results. Some
symbols are denoted as follows:

◦ LB_SOCP—Value of the initial lower bound obtained by the SOCP relaxation (8).
◦ Opv—Optimal value provided by Algorithm 1 within the given error tolerance.
◦ Nodes—Explored nodes of Algorithm 1 to obtain opv.
◦ Time1—CPU time in seconds of Algorithm 1 to obtain the opv.
◦ LB_CP—Value of the lower bound obtained by the CP relaxation (5).
◦ Time2—CPU time in seconds to obtain LB_CP.
◦ “-” —Denotes that the algorithm fails to solve the instance within 10,000 s.

Tables 1–3 show that though the copositive relaxation could offer a better lower bound
or even an optimal value for (1), the computational complexity is higher. In particular,
when n−m + 1 approximates 100, all the randomly generated instances cannot be solved
by (5) within 10,000 s. In contrast, (8) could provide a reasonable lower bound with a
reasonable computing time. though the lower bound is worse than that of the CP relaxation,
the computing time using Algorithm 1 is far less than that of solving (5) for different m and
r. In particular, when n becomes larger, the advantage is highlighted.

To give an intuitive overview of the results in Tables 1–3, we additionally list the
following metric comparisons of computing time between the proposed algorithm and the
CP relaxation in Figures 3 and 4.

Table 1. Performance Comparisons of the enhanced SOCP relaxation and the CP relaxation with
m = b n

2 c and r = b n
2 c.

(n, m, r)
SOCP_BB CP_BB

LB_SOCP Opv Nodes Time1 LB_CP Time2

(10, 5, 5) −0.4693 −0.4293 13 0.6629 −0.4293 0.1494
(10, 5, 5) −0.8524 −0.8456 7 0.4113 −0.8456 0.1662
(10, 5, 5) −1.2073 −1.2021 6 0.3530 −1.2021 0.1501
(10, 5, 5) −0.9140 −0.9072 6 0.3618 −0.9072 0.1524
(10, 5, 5) −0.7263 −0.6881 9 0.5096 −0.6881 0.1816

(50, 25, 25) −0.7163 −0.6067 143 17.3670 −0.6067 4.5898
(50, 25, 25) −0.7214 −0.5607 98 14.3159 −0.5607 3.6403
(50, 25, 25) −0.7798 −0.6902 18 3.1592 −0.6902 3.7478
(50, 25, 25) −1.0089 −0.9433 25 4.8718 −0.9433 5.0656
(50, 25, 25) −1.2317 −1.2083 5 1.7368 −1.2083 5.4888

(100, 50, 50) −1.0565 −0.9001 13 7.9829 −0.9001 250.9022
(100, 50, 50) −0.9554 −0.7997 30 14.5958 −0.7997 194.6950
(100, 50, 50) −1.0330 −0.8659 42 18.6046 −0.8659 170.7346
(100, 50, 50) −1.1277 −0.9654 92 31.8563 −0.9654 203.0717
(100, 50, 50) −0.8737 −0.6899 134 40.4807 −0.6899 214.5695
(150, 75, 75) −1.0552 −0.7857 120 75.8879 −0.7857 2.7118 × 103

(150, 75, 75) −1.1371 −0.9424 14 18.4429 −0.9424 2.9627 × 103

(150, 75, 75) −1.1903 −1.0224 9 17.4320 −1.0224 2.0537 × 103

(150, 75, 75) −1.0528 −0.8065 94 60.9915 −0.8065 2.4712 × 103

(150, 75, 75) −1.2053 −0.9654 38 32.4540 −0.9654 2.3078 × 103

(200, 100, 100) −1.2726 −0.9486 179 187.0444 - -
(200, 100, 100) −1.2393 −0.9090 91 109.7111 - -
(200, 100, 100) −1.1200 −0.8023 499 487.9172 - -
(200, 100, 100) −1.3677 −1.0641 65 80.6285 - -
(200, 100, 100) −1.1613 −0.8508 185 192.5417 - -

Mathematics 2021, 9, 2981 9 of 12

Table 2. Performance Comparisons of the enhanced SOCP relaxation and the CP relaxation with
m = b n

4 c and r = b n
2 c.

(n, m, r)
SOCP_BB CP

LB_SOCP Opv Nodes Time1 LB_CP Time2

(10, 2, 5) −0.9896 −0.9603 5 0.6060 −0.9603 1.5734
(10, 2, 5) −0.8272 −0.7923 5 0.4432 −0.7923 0.1278
(10, 2, 5) −0.8851 −0.8439 5 0.4632 −0.8439 0.1386
(10, 2, 5) −1.3820 −1.3796 2 0.3577 −1.3796 0.1269
(10, 2, 5) −1.0857 −1.0510 5 0.5859 −1.0510 0.1302

(50, 12, 25) −1.7140 −1.6777 5 3.1569 −1.6777 17.7567
(50, 12, 25) −1.7958 −1.7291 6 2.9847 −1.7291 14.3435
(50, 12, 25) −1.4860 −1.3408 6 2.8456 −1.3408 17.1463
(50, 12, 25) −1.8775 −1.7996 6 2.8528 −1.7996 15.5760
(50, 12, 25) −1.6074 −1.5496 5 2.7021 −1.5496 16.3399

(100, 25, 50) −1.5728 −1.3367 26 19.3778 −1.3367 0.9316 × 103

(100, 25, 50) −1.8812 −1.7798 8 11.3498 −1.7798 1.0162 × 103

(100, 25, 50) −1.7331 −1.5541 8 11.3676 −1.5541 1.0123 × 103

(100, 25, 50) −2.3014 −2.2407 7 12.3799 −2.2407 1.0646 × 103

(100, 25, 50) −1.7297 −1.5881 8 11.4687 −1.5881 0.8403 × 103

(150, 37, 75) −2.2469 −2.1016 8 32.4534 - -
(150, 37, 75) −2.0106 −1.7806 8 32.4796 - -
(150, 37, 75) −2.0413 −1.8458 7 32.4477 - -
(150, 37, 75) −1.8265 −1.5324 41 67.4079 - -
(150, 37, 75) −1.7998 −1.5960 8 36.5955 - -

(200, 50, 100) −1.9059 −1.5500 127 282.0235 - -
(200, 50, 100) −2.0762 −1.7748 8 57.7022 - -
(200, 50, 100) −1.9991 −1.6971 8 55.1303 - -
(200, 50, 100) −1.7675 −1.2039 81 202.9095 - -
(200, 50, 100) −2.0341 −1.7518 9 63.0475 - -

Table 3. Performance Comparisons of the enhanced SOCP relaxation and the CP relaxation with
m = b n

2 c and r = b n
4 c.

(n, m, r)
SOCP_BB CP

LB_SOCP Opv Nodes Time1 LB_CP Time2

(10, 5, 2) −0.5666 −0.5666 1 0.4499 −0.5666 1.2285
(10, 5, 2) −0.3186 −0.2993 11 0.6461 −0.2993 0.1261
(10, 5, 2) −0.6271 −0.6271 1 0.2275 −0.6271 0.1175
(10, 5, 2) −0.4529 −0.4509 5 0.3733 −0.4509 0.1193
(10, 5, 2) −1.3076 −1.3076 1 0.1667 −1.3076 0.1448

(50, 25, 12) −0.9542 −0.9241 5 1.7985 −0.9241 4.0500
(50, 25, 12) −0.7892 −0.7576 10 2.3463 −0.7576 3.4063
(50, 25, 12) −1.1374 −1.0829 10 2.3780 −1.0829 4.0707
(50, 25, 12) −0.9922 −0.9727 5 1.8784 −0.9727 4.0418
(50, 25, 12) −1.2224 −1.2045 5 1.8484 −1.2045 3.3520

(100, 50, 25) −0.8275 −0.7157 37 15.6906 −0.7157 189.7557
(100, 50, 25) −0.9672 −0.8460 7 7.6640 −0.8460 210.9579
(100, 50, 25) −0.8787 −0.7226 19 9.3551 −0.7226 182.1559
(100, 50, 25) −0.6688 −0.4729 86 27.5411 −0.4729 203.2400
(100, 50, 25) −1.1576 −1.0850 5 5.4911 −1.0850 182.8251
(150, 75, 37) −0.9557 −0.7539 21 22.3072 −0.7539 2.2003 × 103

(150, 75, 37) −1.0578 −0.8889 9 15.3286 −0.8889 2.6835 × 103

(150, 75, 37) −1.0882 −0.8889 15 19.1659 −0.8889 2.1471 × 103

(150, 75, 37) −0.9347 −0.7677 17 20.8678 −0.7677 3.4121 × 103

(150, 75, 37) −0.9359 −0.7475 24 22.9717 −0.7475 2.1899 × 103

(200, 100, 50) −0.9704 −0.7321 45 67.2220 - -
(200, 100, 50) −1.3138 −1.1077 5 26.8615 - -
(200, 100, 50) −0.9420 −0.6978 158 180.3040 - -
(200, 100, 50) −0.9998 −0.7981 40 62.2748 - -
(200, 100, 50) −0.9535 −0.6954 264 298.8807 - -

Mathematics 2021, 9, 2981 10 of 12

(10,5,5) (10,2,5) (10,5,2)
0

0.1

0.2

0.3

0.4

0.5

M
e
a
n
_
T

im
e

(n,m,r)

Time1

Time2

(50,25,25) (50,12,25) (50,25,12)
0

2

4

6

8

10

12

14

16

M
e
a
n
_
T

im
e

(n,m,r)

Time1

Time2

(100,50,50) (100,25,50) (100,50,25)
0

100

200

300

400

500

600

700

800

900

1000

M
e
a
n
_
T

im
e

(n,m,r)

Time1

Time2

(150,75,75) (150,37,75) (150,75,37)
0

2000

4000

6000

8000

10000

12000

M
e
a
n
_
T

im
e

(n,m,r)

Time1

Time2

Figure 3. Mean value of computing times with different (n,m,r) sets.

(10,5,5) (10,2,5) (10,5,2)
0

0.1

0.2

0.3

0.4

0.5

0.6

S
td

_
T

im
e

(n,m,r)

Time1

Time2

(50,25,25) (50,12,25) (50,25,12)
0

1

2

3

4

5

6

7

8

9

S
td

_
T

im
e

(n,m,r)

Time1

Time2

(100,50,50) (100,25,50) (100,50,25)
0

10

20

30

40

50

60

70

80

90

S
td

_
T

im
e

(n,m,r)

Time1

Time2

(150,75,75) (150,37,75) (150,75,37)
0

50

100

150

200

250

300

350

400

450

500

550

S
td

_
T

im
e

(n,m,r)

Time1

Time2

Figure 4. Standard deviation of computing times with different (n,m,r) sets.

Mathematics 2021, 9, 2981 11 of 12

Figures 3 and 4 illustrates that the proposed algorithm provides a better mean value
and standard deviation when the dimension n is greater than 100, and the superiority is
enlarged when n increases.

Figure 5 shows the convergence speed of the proposed algorithm. The lower bound
updates faster in the first 5 to 10 iterations till it reaches a relatively steady value.

0 5 10 15
−0.47

−0.46

−0.45

−0.44

−0.43

−0.42
L
o
w

e
r

b
o
u
n
d

Iteration

(10,5,5)

0 20 40 60 80 100
−0.75

−0.7

−0.65

−0.6

−0.55

L
o
w

e
r

b
o
u
n
d

Iteration

(50,25,25)

0 10 20 30 40 50
−1.05

−1

−0.95

−0.9

−0.85

L
o
w

e
r

b
o
u
n
d

Iteration

(100,50,50)

0 20 40 60 80 100
−1.1

−1.05

−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

L
o
w

e
r

b
o
u
n
d

Iteration

(150,75,75)

Figure 5. Convergence speed graphs.

5. Conclusions

We showed that the enhanced SOCP relaxation employing the simultaneous matrix
diagonalization technique could result in a better lower bound and reduce the computa-
tional complexity compared to the classical SOCP relaxation. Although the lower bound of
the enhanced SOCP relaxation is not as good as the copositive relaxation, it benefits from
less computational complexity. Numerical experiments imply that the enhanced SOCP
relaxation is more suitably applied in the branch and bound algorithm to obtain the optimal
solution. For future research, we may focus on designing simultaneous diagonalization-
based SOCP relaxation for quadratically constrained quadratic fractional problems.

Author Contributions: Conceptualization, Z.X. and J.Z.; methodology, Z.X. and J.Z.; software, Z.X.;
validation, J.Z.; writing—original draft preparation, J.Z.; writing—review and editing, Z.X.; funding
acquisition, Z.X. and J.Z. All authors have read and agreed to the published version of the manuscript.

Funding: Xu’s research has been supported by the National Natural Science Foundation of China
(Grants #11704336), Zhou’s research has been supported by the National Natural Science Foundation
of China (Grant #11701512).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2021, 9, 2981 12 of 12

References
1. Lai, H.C.; Huang, T.Y. Optimality conditions for nondifferentiable minimax fractional programming with complex variables. J.

Math. Anal. Appl. 2009, 359, 229–239. [CrossRef]
2. Stancu-Minasian, I.M. Fractional Programming: Theory, Methods and Applications, 1st ed.; Kluwer Academic Publishers: Dordrecht,

The Netherlands, 1997; pp. 6–33.
3. Cai, H.; Wang, Y.; Yi, T. An approach for minimizing a quadratically constrained fractional quadratic problem with application to

the communications over wireless channels. Optim. Method Softw. 2014, 29, 310–320. [CrossRef]
4. Dinkelbach, W. On nonlinear fractional programming. Manag. Sci. 1967, 13, 492–498. [CrossRef]
5. Salahi, M.; Fallahi, S. On the quadratic fractional optimization with a strictly convex quadratic constraint. Kybernetika 2015, 51,

293–308. [CrossRef]
6. Zhang, A.; Hayashi, S. Celis-Dennis-Tapia based approach to quadratic fractional programming problems with two quadratic

constraints. Numer. Algebra Control Optim. 2011, 1, 83–98. [CrossRef]
7. Gotoh, J.Y.; Konno, H. Maximization of the ratio of two convex quadratic functions over a polytope. Comput. Optim. Appl. 2001,

20, 43–60. [CrossRef]
8. Bezdan, T.; Stoean, C.; Namany, A.A.; Bacanin, N.; Rashid, A.T.; Zivkovic, M.; Venkatachalam, K. Hybrid Fruit-Fly Optimization

Algorithm with K-Means for Text Document Clustering. Mathematics 2021, 9, 1929. [CrossRef]
9. Dong, G.; Liu, C.; Liu, D.; Mao, X. Adaptive multi-level search for global optimization: An integrated swarm intelligence-

metamodelling technique. Appl. Sci. 2021, 11, 2277. [CrossRef]
10. Beck, A.; Teboulle, M. A convex optimization approach for minimizing the ratio of indefinite quadratic functions over an ellipsoid.

Math. Program. Ser. A 2009, 118, 13–35. [CrossRef]
11. Xia, Y. Using SeDuMi 1.02, On minimizing the ratio of quadratic functions over an ellipsoid. Optimization 2015, 64, 1097–1106.

[CrossRef]
12. Nguyen, V.B.; Sheu, R.L.; Xia, Y. An SDP approach for quadratic fractional problems with a two-sided quadratic constraint. Optim.

Methods Softw. 2016, 31, 701–719. [CrossRef]
13. Preisig, J.C. Copositivity and the minimization of quadratic functions with nonnegativity and quadratic equality constraints.

SIAM J. Control Optim. 1996, 34, 1135–1150. [CrossRef]
14. Amaral, P.; Bomze, I.M.; Júdice, J. Nonconvex min-max fractional quadratic problems under quadratic constraints: Copositive

relaxations. J. Glob. Optim. 2019, 75, 227–245. [CrossRef]
15. Amaral, P.; Bomze, I.M.; Júdice, J. Copositivity and constrained fractional quadratic problems. Math. Program. 2014, 146, 325–350.

[CrossRef]
16. Sadeghi, A.; Saraj, M.; Amiri, N.M. Solving a fractional program with second order cone constraint. Iran. J. Math. Sci. Inform.

2019, 14, 33–42.
17. Kim, S.; Kojima, M. Second order cone programming relaxation of nonconvex quadratic optimization problems. Optim. Methods

Softw. 2001, 15, 201–224. [CrossRef]
18. Ben-Tal, A.; Den Hertog, D. Hidden conic quadratic representation of some nonconvex quadratic optimization problems. Math.

Program. 2014, 143, 1–29. [CrossRef]
19. Zhou, J.; Xu, Z. A simultaneous diagonalization based SOCP relaxation for convex quadratic programs with linear complemen-

tarity constraints. Optim. Lett. 2017, 13, 1615–1630. [CrossRef]
20. Zhou, J.; Lu, C.; Tian, Y.; Tang, X. A SOCP relaxation based branch-and-bound method for generalized trust-region subproblem. J.

Ind. Manag. Optim. 2021, 17, 151–168. [CrossRef]
21. Zhou, J.; Chen, S.; Yu, S.; Tian, Y. A simultaneous diagonalization based quadratic convex reformulation for nonconvex

quadratically constrained quadratic program. Optimization 2020, in press. [CrossRef]
22. Liu, X.; Gao, Y.; Zhang, B.; Tian, F. A new global optimization algorithm for a class of linear fractional programming. Mathematics

2019, 7, 867. [CrossRef]
23. Sturm, J.F. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 1999, 11,

625–653. [CrossRef]

http://dx.doi.org/10.1016/j.jmaa.2009.05.049
http://dx.doi.org/10.1080/10556788.2012.711330
http://dx.doi.org/10.1287/mnsc.13.7.492
http://dx.doi.org/10.14736/kyb-2015-2-0293
http://dx.doi.org/10.3934/naco.2011.1.83
http://dx.doi.org/10.1023/A:1011219422283
http://dx.doi.org/10.3390/math9161929
http://dx.doi.org/10.3390/app11052277
http://dx.doi.org/10.1007/s10107-007-0181-x
http://dx.doi.org/10.1080/02331934.2013.840623
http://dx.doi.org/10.1080/10556788.2015.1029575
http://dx.doi.org/10.1137/S0363012993251894
http://dx.doi.org/10.1007/s10898-019-00780-3
http://dx.doi.org/10.1007/s10107-013-0690-8
http://dx.doi.org/10.1080/10556780108805819
http://dx.doi.org/10.1007/s10107-013-0710-8
http://dx.doi.org/10.1007/s11590-018-1337-8
http://dx.doi.org/10.3934/jimo.2019104
http://dx.doi.org/10.1080/02331934.2020.1865347
http://dx.doi.org/10.3390/math7090867
http://dx.doi.org/10.1080/10556789908805766

	Introduction
	A Reformulation of (1) and an Enhanced SOCP Relaxation
	An Enhanced SOCP Relaxation Based Branch-and-Bound Algorithm
	Numerical Experiments
	Conclusions
	References

