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Abstract: In the present paper, we propose to study generalized weighted backward shifts BB over
non-Archimedean c0(N) spaces; here, B = (bij) is an upper triangular matrix with supi,j |bij| < ∞.
We investigate the sypercyclic and hypercyclic properties of BB . Furthermore, certain properties of
the operator I + BB are studied as well. To establish the hypercyclic property of I + BB we have
essentially used the non-Archimedeanity of the norm which leads to the difference between the
real case.
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1. Introduction

It is well-known [1,2] that linear dynamics began in the 1980s with the thesis of Kitai [3]
and the paper of Gethner and Shapiro [4]. The main problem of this theory is to investigate
the dynamical properties of a (bounded) linear operator T acting on some (complete) linear
space [5]. We notice that linear dynamics was first initiated by the study of the density of
orbits, which lead to the notions of hypercyclicity, supercyclicity, and their variants. We
point out that the hypercyclicity of linear operators, as one of the most-studied properties
in linear dynamics, has become an active area of research [1,2]. One of the interests of
linear dynamics is started by examining certain examples of operators which have certain
properties [6,7]. Among these examples, the most-studied class is certainly that of weighted
shifts [8]. In [9–15], the hypercyclicity and supercyclicity of weighted bilateral (unilateral)
shifts were characterized. In [16–19], the existence of hypercyclic subspaces and other
properties of hypercyclic operators was explored. Recently, in [20], it was shown that every
bilateral weighted shift on (formula-presented) has a factorization T = AB, where A and B
are hypercyclic bilateral weighted shifts.

In the last few decades, a lot of books have been published that are devoted to the non-
Archimedean functional analysis (see, for example, [21,22]). Therefore, recently in [23], a
non-Archimedean shift operator was investigated. Later on, in [24], the invariant subspace
problem was studied for the class of non-Archimedean compact operators. Furthermore,
in [25], we developed the theory of dynamics of linear operators defined on topological
vector space over non-Archimedean valued fields. Sufficient and necessary conditions of
hypercyclicity (resp. supercyclicity) of linear operators on separable F-spaces have been
found. Moreover, we considered shifts on c0(Z) and c0(N), respectively, and characterized
their hypercyclicity and supercyclicity. Besides, we have considered the operator λI + µB,
where I is the identity and B is the bilateral (unilateral) shift. It turns out that such an
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operator is not supercyclic on c0(Z). However, it can be hypercyclic and supercyclic
on c0(N), depending on values of ł and µ. It is natural to replace B with weighted shifts.
Therefore, in the present paper, we consider generalized weighted backward shift operators
BB on c0(N). Such types of operators are generated by upper triangular matrices, and hence,
all earlier investigated weighted backward shift operators can be treated as particular cases
of the new ones. Furthermore, the supercyclicity and hypercyclicity of BB are investigated.
Moreover, the hypercyclicity and supercyclicity of I + BB on c0(N) are studied. In the
real setting, the hyperbolicity of such types of operators associated with weighted shifts
on `2(N) (and other spaces) has been investigated in [8,26]. It was proved that I + Bb is
hypercyclic if the weights are positive. We stress that, in the non-Archimedean setting, all
`p-spaces coincide with c0. Therefore, in the current paper, we are going to establish the
hypercyclicity of I + BB on c0(N). Our results are totally different from the real case, since
to obtain the main results of this paper, we have essentially used the non-Archimedeanity
of the norm of c0(N) (see Example 1 in the last section). It is stressed that shift operators, in
a non-Archimedean setting, have certain applications in p-adic dynamical systems [27,28].
On this point, we mention that p-adic dynamical systems have certain applications in
mathematical physics [29–33].

2. Definitions and Preliminary Results

All fields appearing in this paper are commutative. A valuation on a field K is a map
| · | : K→ [0,+∞) such that:

(i) |λ| = 0 if, and only if λ = 0,
(ii) |λµ| = |λ| · |λ| (multiplicativity),
(iii) |λ + µ| ≤ |λ|+ |µ| (triangle inequality), for all λ, µ ∈ K. The pair (K, | · |) is called a

valued field. We often write K instead of (K, | · |).

Definition 1. Let K = (K, | · |) be a valued field. The valuation | · | is called non-Archimedean,
and K is called a non-Archimedean valued field if | · | satisfies the strong triangle inequality: (iii′)
|λ + µ| ≤ max{|λ|, |µ|}, for all λ, µ ∈ K.

From the strong triangle inequality, we get the following useful property of non-
Archimedean value: If |λ| 6= |µ|, then |λ± µ| = max{|λ|, |µ|}.

We frequently use this property, and call it the non-Archimedean norm’s property. A
non-Archimedean valued field K is a metric space, and it is called ultrametric space.

Let a ∈ K and r > 0. The set

B(a, r) := {x ∈ K : |x− a| ≤ r}

is called the closed ball with a radius r about a. (Indeed, B(a, r) is closed in the induced
topology). Similarly,

B(a, r−) := {x ∈ K : |x− a| < r}

is called the open ball with radius r about a.
We set |K| := {|λ| : λ ∈ K} and K× := K \ {0}, the multiplicative group of K.

Additionally, |K×| := {|λ| : λ ∈ K×} is a multiplicative group of positive real numbers,
the value group of K. There are two possibilities:

Lemma 1 ([22]). Let K be a non-Archimedean valued field. Then the value group of K is either
dense or discrete; in the latter case, there is a real number 0 < r < 1 such that |K×| = {rs : s ∈ Z}.

For example, the value group of Qp (field of p-adic numbers) is discrete and the value
group of Cp (field of p-adic complex numbers) is dense [34].

Definition 2. Let K be a non-Archimedean valued field and E be a K-vector space. A norm on E
is a map ‖ · ‖: E→ [0,+∞) such that:
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(i) ‖ x ‖= 0 if, and only if x = 0,
(ii) ‖ λx ‖= |λ| ‖ x ‖,
(iii) ‖ x + y ‖≤ max{‖ x ‖, ‖ y ‖},
for all x, y ∈ E, λ ∈ K.

We call (E, ‖ · ‖) a K-normed space or a normed space over K. We frequently write E
instead of (E, ‖ · ‖). E is called a K-Banach space or a Banach space over K if it is complete
with respect to the induced ultrametric (x, y)→‖ x− y ‖.

Example 1. Let K be a non-Archimedean valued field. Then

`∞(N) := {x = (xn)n∈N : xn ∈ K, sup
n
|xn| < ∞}

with pointwise addition and scalar multiplication, and the norm

‖ x ‖∞:= sup
n
|xn|

is a K-Banach space.

Remark 1. From now on, we often drop the prefix "K" and write vector space, normed space, or
Banach space instead of K-vector space, K-normed space, or K-Banach space, respectively.

Let X and Y be topological vector spaces over a non-Archimedean valued field K. By
L(X, Y), we denote the set of all continuous linear operators from X to Y. If X = Y, then
L(X, Y) is denoted by L(X). In what follows, we use the following terminology: T is a
linear continuous operator on X, which means that T ∈ L(X). The T-orbit of a vector x ∈ X,
for some operator T ∈ L(X) is the set

O(x, T) := {Tn(x); n ∈ Z+}.

An operator T ∈ L(X) is called hypercyclic if there exists some vector x ∈ X such that its
T-orbit is dense in X. The corresponding vector x is called T-hypercyclic, and the set of all
T-hypercyclic vectors is denoted by HC(T). Similarly, T is called supercyclic if there exists a
vector x ∈ X such that whose projective orbit

K ·O(x, T) := {λTn(x); n ∈ Z+, λ ∈ K}

is dense in X. The set of all T-supercyclic vectors is denoted by SC(T). Finally, we recall
that T is called cyclic if there exists x ∈ X such that

K[T]x := spanO(x, T) = {P(T)x; P polynomial}

is dense in X. The set of all T-cyclic vectors is denoted by CC(T).

Remark 2. We stress that the notion of hypercyclicity makes sense only if space X is separable.
Note that one has

HC(T) ⊂ SC(T) ⊂ CC(T).

Definition 3 ([35]). Let X be a topological vector space and let T ∈ L(X). It is said that T satisfies
the Hypercyclicity Criterion if there exist an increasing sequence of integers (nk), two dense
sets D1,D2 ⊂ X, and a sequence of maps Snk : D2 → X such that:

(1) Tnk (x)→ 0 for any x ∈ D1;
(2) Snk (y)→ 0 for any y ∈ D2;
(3) Tnk Snk (y)→ y for any y ∈ D2.
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Note that in the above definition, the maps Snk are not assumed to be continuous or
linear. We will sometimes say that T satisfies the Hypercyclicity Criterion with respect to
the sequence (nk). When it is possible to take nk = k and D1 = D2, it is usually said that T
satisfies Kitai’s Criterion [3].

Theorem 1 ([25]). Let T ∈ L(X), where X is a separable K-Banach space. Assume that T satisfies
the Hypercyclicity Criterion. Then the operator T is hypercyclic.

Definition 4 ([12]). Let X be a Banach space and let T ∈ L(X). We say that T satisfies the
Supercyclic Criterion if there exist an increasing sequence of integers (nk), two dense sets
D1,D2 ⊂ X, and a sequence of maps Snk : D2 → X such that:

(1) ‖ Tnk (x) ‖ · ‖ Snk (y) ‖→ 0 for any x ∈ D1 and any y ∈ D2;
(2) Tnk Snk (y)→ y for any y ∈ D2.

Theorem 2 ([25]). Let T ∈ L(X), where X is a separable Banach space. Assume that T satisfies
the Supercyclic Criterion. Then T is supercyclic.

Let us recall some basic definitions of dynamical systems which play a crucial role in
our investigations. Assume that T0 : X0 → X0 and T : X → X are two continuous maps
acting on topological spaces X0 and X. The map T is said to be a quasi-factor of T0 if there
exists a continuous map with dense range J : X0 → X such that TJ = JT0. When this can be
achieved with a homeomorphism J : X0 → X, we say that T0 and T are topological conjugate.
Finally, when T0 ∈ L(X0) and T ∈ L(X) and the factoring map (resp. the homeomorphism)
J can be taken as linear, we say that T is a linear quasi-factor of T0 (resp. that T0 and T are
linearly conjugate).

Lemma 2 ([25]). Let T0 ∈ L(X0) and T ∈ L(X). Assume that there exists a continuous map
with dense range J : X0 → X such that TJ = JT0. Then the following statements are satisfied:

(1) hypercyclicity of T0 implies hypercyclicity of T;
(2) Let J be a homeomorphism and T0 satisfies the Hypercyclicity Criterion; then, T satisfies the

Hypercyclicity Criterion;
(3) Let J be a linear homeomorphism; then, T is hypercyclic if T0 is hypercyclic.

3. Some Basic Properties of Cyclic and Supercyclic Operators

In the present section, we are going to study some basic properties of cyclic/supercyclic
operators.

Proposition 1. Let X be a separable Banach space over a non-Archimedean valued field K and
T ∈ L(X). Then the following statements hold:

(i) T is cyclic if, and only if (for short "iff") λT is cyclic for every λ ∈ K×;
(ii) T is supercyclic if λT is supercyclic for every λ ∈ K×.

Proof. (i) “If part” is clear. Therefore, we prove the “only if” part.
Let T be cyclic. Take x ∈ CC(T). Then for any y ∈ X and for every ε > 0, there exists

a finite collection of K-numbers {a0, a1, . . . , an} such that

‖a0x + a1T(x) + · · ·+ anTn(x)− y ‖< ε.

For any λ ∈ K×, we define a new finite collection of K-numbers as follows: bk =
ak
λk , where

k = 0, n. Then,
‖b0x + b0(λT)(x) + · · ·+ bn(λT)n(x)− y‖ < ε.

This means x ∈ CC(λT). The arbitrariness of λ implies the required assertion.
Using the same argument, one can prove (ii).
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Remark 3. We notice that the hypercyclicity of T does not imply the hypercyclicity of λT, in
general. Indeed, in [25] we considered an operator αI + βB and proved that it is hypercyclic if
max{|α|, 1} < |β|. One can see that if |λ| ≤ 1

|β| , then λ(αI + βB) cannot be hypercyclic.

In the present paper, we consider linear operators on c0(N), and here,

c0(N) := {(xn)n∈N : xn ∈ K, |xn| → 0 as n→ +∞}

with a norm
‖ x ‖:= sup

n
{|xn|}.

It is clear that c0(N) is a Banach space. In what follows, we always assume that c0(N) is a
separable space. Note that the separability of c0(N) is equivalent to the separability of K.
Let K be a countable dense subset of K. Then the countable set

c00(N) := {λ1e1 + λ2e2 + · · ·+ λnen : λk ∈ K, k ∈ N}

is dense in c0(N), where en is a unit vector such that only the n-th coordinate equals to one
and others are zero.

The following lemma plays a crucial role in our further investigations.

Lemma 3. Let T be a cyclic operator on c0(N). If x ∈ c0(N) satisfies the following condition

(Tn(x))i = xi,
(Tn(x))j = xj,

for some i 6= j, ∀n ∈ N, (1)

then x /∈ CC(T).

Proof. The cyclicity of T implies that CC(T) 6= ∅. Assume that x ∈ c0(N) satisfies (1). For
the sake of convenience, we may assume that |xi| ≥ |xj|. If xj = 0, then for any n ≥ 1 we
have (Tn(x))j = 0. Hence, for any polynomial P, one has (P(T)(x))j = 0, which yields
P(T)x /∈ B(ej, 1−). Consequently, the arbitrariness of P implies x /∈ CC(T).

Now let us consider the case xj 6= 0. Take arbitrary α, β ∈ K× such that |α| > |xi| and
|β| < |xj|. Define a set of polynomials as follows:

Px,T =

{
P : |(P(T)x)j − β| < |β|

2

}
.

One can see that x ∈ CC(T) if, and only if {P(T)x : P ∈ Px,T} is a dense subset of c0(N).
We notice that Px,T = ∅ implies x /∈ CC(T). Thus, we assume that Px,T 6= ∅ and pick an
arbitrary P ∈ Px,T . Suppose that P has the following form, P(T) = a0T0 + a1T + · · ·+ anTn.
Then ∣∣a0xj + a1(T(x))j + · · ·+ an(Tn(x))j − β

∣∣ < |β|
2

. (2)

Keeping in mind the second inequality of (1) and using the non-Archimedean norm’s
property from (2), we obtain

|a0 + a1 + · · ·+ an| =
|β|
|xj|

< 1. (3)

Now, we check the norm of (P(T)x)i − α. From the first inequality of (1) together with (3),
one finds

|a0xi + a1(T(x))i + · · ·+ an(Tn(x))i| = |(a0 + a1 + · · ·+ an)xi| < |xi|. (4)
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Since |α| > |xi| and using the strong triangle inequality, we obtain

|(P(T)x)i − α| = |α| > |β|
2

.

This means

‖ P(T)x− αei − βej ‖>
|β|
2

. (5)

Now, if P does not belong to Px,T , then (5) holds as well. Hence, by the arbitrariness
of P, we arrive at x /∈ CC(T).

Lemma 4. Let T be a supercyclic operator on c0. Assume that for a given x ∈ c0, there exists an
integer N ≥ 0 such that

|(Tn(x))i| = |(Tm(x))i|,∣∣(Tn(x))j
∣∣ = ∣∣(Tm(x))j

∣∣, for some i 6= j, ∀n, m ≥ N, (6)

then x /∈ SC(T).

Proof. Assume that for x ∈ c0, the equalities (6) hold. Then, there are integers Ni, Nj ∈
{0, 1, . . . , N} such that

∣∣(TNi (x))i
∣∣ ≥ |(Tn(x))i| and

∣∣∣(TNj(x))j

∣∣∣ ≥ ∣∣(Tn(x))j
∣∣ for all n ≥ 0.

Without loss of generality, we may assume that
∣∣(TNi (x))i

∣∣ ≥ ∣∣∣(TNj(x))j

∣∣∣. The lemma’s

claim is obvious if
∣∣∣(TNj(x))j

∣∣∣ = 0. Indeed, if
∣∣∣(TNj(x))j

∣∣∣ = 0, then ‖ Tn(x)− ej ‖≥ 1 for
all n ≥ 0, which means x /∈ SC(T).

Thus, we consider a case
∣∣∣(TNj(x))j

∣∣∣ 6= 0. Now, let us take an arbitrary α ∈ K× such
that

|α| > |(T
k(x))i|

|(Tk(x))j|
, k ∈ {0, 1, . . . , N}, (Tk(x))j 6= 0.

Then, for any λ ∈ K and for every n ≥ 0, we have either
∣∣λ(Tn(x))j − 1

∣∣ ≥ 1 or
|λ(Tn(x))i − α| ≥ |α|, which yields ‖ Tn(x)− αei − ej ‖≥ min{|α|, 1} for all n ≥ 0. This
shows that x /∈ SC(T).

4. Generalized Weighted Backward Shift Operators on c0(N)
Let us consider an infinite dimensional upper-triangular matrix B = (bi,j)

∞
i,j=1 over a

non-Archimedean field K, such that

sup
i,j
{|bi,j|} < ∞, bk,l = 0, ∀k ≥ l. (7)

For a given B with (7), we define the following linear operator on c0(N) by

BB(en) =

{
0, if n = 1;
∑n−1

j=1 bj,nej, if n ≥ 2. (8)

The linear operator (8) is called the generalized weighted backward shift operator. Recall that if
matrix B has the following extra condition bk,l = 0 for all k 6= l + 1, then the corresponding
linear operator BB is reduced to weighted backward shift. In this setting, the operator acts
as follows: Ba(e1) = 0 and Ba(en) = an−1en−1 if n ≥ 2, where an−1 := bn−1,n−1 is called
a weighted backward shift. Here, a = (an)n∈N. The operator Ba is called a backward shift if
bn−1,n−1 = 1 for all n ≥ 1, and such a shift is denoted by B.

We notice that the supercyclicity and hypercyclicity of weighted backward shift
operators have been studied in [25].
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Theorem 3 ([25]). Let Ba be a weighted backward shift on c0(N). If ak 6= 0 for all k ≥ 1, then the
following statements hold:

(i) Ba is supercyclic;
(ii) Ba is hypercyclic if

lim sup
n→∞

n

∏
k=1
|ak| = ∞.

In this section, we are going to extend the formulated result for generalized weighted
backward shift operators on c0(N).

Theorem 4. Let B be a matrix given by (7). Assume that bk,k+1 6= 0 for all k ≥ 1. Then the
generalized weighted backward shift operator BB is supercyclic on c0(N).

Proof. Let BB be a generalized weighted backward shift, and D1 = D2 := c00(N) be the
set of all finitely supported sequences. We define a linear map S on D2 as follows:

S(en) =

{ 1
b1,2

e2, if n = 1,

∑n
j=1 αn,jej+1, if n ≥ 2,

(9)

where the coefficients αn,1, . . . , αn,n are given by

αn,n =
1

bn,n+1
, αn,n−i = −

1
bn−i,n−i+1

n

∑
j=n−i+1

αn,jbn−i,j+1, i ∈ {1, 2, . . . , n− 1}.

Then, we put Sk := Sk. One can see that Bk
BSk = I on D2. Let us pick an arbitrary x ∈ D1.

Then there exists an integer N ≥ 1 such that xk = 0 for all k > N. Hence, Bk
B(x) = 0

for every k > N. This means that ‖Bk
B(x)‖ = 0 for all k > N. Then, for any y ∈ D2, we

have ‖Bk
B(x)‖ · ‖Sk(y)‖ = 0 for every k > N. According to Theorem 2, the operator BB is

supercyclic.

Due to Remark 2 from the last theorem, we can formulate the following fact.

Corollary 1. Let B be a matrix given by (7). Assume that bk,k+1 6= 0 for all k ≥ 1. Then the
generalized weighted backward shift BB is cyclic on c0(N).

Now we study the hypercyclic phenomena of the generalized weighted backward
shift operator on c0(N).

Theorem 5. Let B be a matrix given by (7) with an extra condition,

sup
j
{|bk,j|} = |bk,k+1| 6= 0, for any k ≥ 1. (10)

Then, BB is hypercyclic on c0(N) if

lim sup
n→∞

n

∏
i=1
|bi,i+1| = ∞. (11)

Proof. For a given matrix B = (bi,j)
∞
i,j=1, we define a sequence b = {bn,n+1}∞

n=1. Now,
we consider the weighted backward shift operator Bb and show the existence of a linear
homeomorphism P on c0(N) such that BbP = PBB .

Let us consider the linear operator

P(en) =
n

∑
j=1

pj,nej, ∀n ≥ 1, (12)
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where

pi+1,i+1 = pi,i, pi+1,j =
1

bi,i+1

j−1

∑
k=i

bk,j pi,k, for every 1 < i + 1 < j. (13)

For convenience, we assume that p1,j = 1 for all j ≥ 1. Then by (10), and applying the
strong triangle inequality into the second equality of (13), we obtain |pi,j| ≤ 1 for all
1 ≤ i ≤ j, which guarantees the boundedness of P. Thus, P ∈ L(c0(N)).

Now we are going to establish the invertibility of P and P−1 ∈ L(c0(N)). Let us fist
consider the following linear operator

P̂(en) =
n

∑
j=1

p̂j,nej, ∀n ≥ 1,

where p̂ij coefficients satisfy the following recurrence formula:

p̂i,i = pi,i, p̂i,j = −
j

∑
k=i+1

pi,k p̂k,j, for every 1 ≤ i < j. (14)

We notice that (14) is equivalent to the following

: p̂i,i = pi,i, p̂i,j = −
j−1

∑
k=i

p̂i,k pk,j, for every 1 ≤ i < j. (15)

From (14) and (15), we obtain P̂P = PP̂ = I, which shows that P−1 = P̂. Moreover, due to
|pi,j| ≤ 1 for all i, j ∈ N, from (14) it follows that | p̂i,j| ≤ 1 for any i, j ∈ N. This means that
the operator P̂ is bounded, that is, P−1 ∈ L(c0(N)).

Thus, we have shown that P is a linear homeomorphism on c0(N). One can see that
(13) implies BbP = PBB . Then, thanks to Lemma 2, we infer that HC(BB) 6= ∅ if, and
only if HC(Bb) 6= ∅. Then, by Theorem 3, the hypercyclicity of the generalized weighted
backward shift operator is equivalent to (11). This completes the proof.

Remark 4. We stress that a similar kind of result does not exist in the real/complex setting. In the
proof of Theorem 5, we have essentially used the non-Archimedean property.

5. I + BB Operator on c0(N)
In many areas of mathematics, an operator I + T appears, where I is an identity and

T is a given operator. In this paper, we consider the generalized weighted backward shift
operator BB instead of T. Our aim is going to study the supercyclicity of such types of
operators on c0(N).

For a given B with (7), we denote

TB := I + BB , (16)

that is, for any x ∈ c0(N)

(TB(x))k = xk +
∞

∑
j=k+1

bk,jxj, ∀k ∈ N. (17)

Proposition 2. Let TB be an operator given by (16). Then the following assertions hold:

(i) If CC(TB) 6= ∅, then

card({n ∈ N : (bn1, bn2, . . . ) = 0}) ≤ 1.

Here, card(A) stands for the cardinality of a set A.
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(ii) If SC(TB) 6= ∅, then
(bk1, bk2, bk3, . . . ) 6= 0, ∀k ≥ 2.

(iii) If HC(TB) 6= ∅, then
(bk1, bk2, bk3, . . . ) 6= 0, ∀k ≥ 1.

Proof. Let TB be a cyclic operator on c0(N). Suppose that there exist two distinct positive
integers k and m, such that bkj = bmj = 0 for all j ≥ 1. Then for any n ≥ 1, one has

(Tn
B(x))k = xk,

(Tn
B(x))m = xm,

∀x ∈ c0(N).

This means that a vector x satisfies (1), then Lemma 3 implies x /∈ CC(TB). Hence, the
arbitrariness of x yields c0(N) ∩ CC(TB) = ∅, which contradicts the cyclicity of TB .

(ii) Let SC(TB) 6= ∅. Suppose that there exists an integer k ≥ 2 such that

(bk1, bk2, bk3, . . . ) = 0.

Take an arbitrary x ∈ SC(TB). Then,

(Tn
B(x))k = xk, ∀n ≥ 1. (18)

We denote b = max
{

1, supi,j{|bij|}
}

, and due to x ∈ SC(TB), one can find an integer

N ≥ 1 such that
∣∣(TN
B (x))k−1

∣∣ > ∣∣b(TN
B (x))i

∣∣ for all i ≥ k. Then, keeping in mind

(TB(x))k−1 = xk−1 +
∞

∑
j=k

bk−1,jxj,

and by the strong triangle inequality, we obtain

|(Tn
B(x))k−1| > |b(Tn

B(x))i|

for all n ≥ N, and for every i ≥ k. Hence,

|(Tn
B(x))k−1| =

∣∣∣(TN
B (x))k−1

∣∣∣, ∀n ≥ N.

The last equality together with (18), thanks to Lemma 4, yields that x /∈ SC(TB), which is a
contradiction.

(iii) Let HC(TB) 6= ∅. Then, SC(TB) 6= ∅ which by (ii) yields (bk1, bk2, bk3, . . . ) 6= 0
for all k ≥ 2. Thus, it is enough to show that (b11, b12, b13, . . . ) 6= 0.

Take x ∈ HC(TB). Assume that (b11, b12, b13, . . . ) = 0. Then for any n ≥ 1, one gets
(Tn
B(x))1 = x1. Hence, for any α ∈ K with |α| > |x1|, we get ‖ Tn

B(x)− αe1 ‖≥ |α|. This
contradicts x ∈ HC(TB). Thus, we conclude that (b11, b12, b13, . . . ) 6= 0.

The proved proposition clearly shows (see (i) and (ii)) the difference between the
supercyclicity and cyclicity of TB .

Theorem 6. Let B be a matrix given by (7). If

sup
j≥1
{|b1,j|} = 0, (19)

then the following statements are equivalent:

(i) TB is supercyclic on c0(N);
(ii) TB′ is hypercyclic on c0(N), where B′ = (b′i,j)

∞
i,j and b′i,j = bi+1,j+1 for all i, j ∈ N.
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Proof. Assume that (19) holds. Let us establish the implication (i) ⇒ (ii). Pick any
x ∈ SC(TB). Then (TB(x))1 = x1. We notice that x1 6= 0, otherwise it is not a supercyclic
vector for TB . Indeed, for x1 = 0, we can easily check that e1 /∈ K ·O(x, TB).

Due to x ∈ SC(TB), for any y ∈ c0(N) with y1 = x1 and for any 0 < ε < |x1|, there
exist λ ∈ K× and n ∈ N such that

|(λ− 1)x1| < ε,∣∣λ(Tn
B(x))j − yj

∣∣ < ε, ∀j ≥ 2.
(20)

From the first inequality of (20), we get |λ− 1| < ε
|x1|

and |λ| = 1. Then, from the

second inequality of (20) together with |(λ− 1)yj| <
ε|yj |
|x1|

, one finds

∣∣λ((Tn
B(x))j − yj

)∣∣ < max
{

ε,
ε|yj|
|x1|

}
, ∀j ≥ 2.

Hence, using |λ| = 1,

∣∣(Tn
B(x))j − yj

∣∣ < ε ·max
{

1,
‖ y ‖
|x1|

}
, ∀j ≥ 2. (21)

We denote x′ = (x2, x3, x4, . . . ). Then, by rewriting (21)

∣∣(Tn
B′(x

′))j − yj+1
∣∣ < ε ·max

{
1,
‖ y ‖
|x1|

}
, ∀j ≥ 1.

The last one together with the arbitrariness of y implies that x′ = (x2, x3, x4, . . . ) is a
hypercyclic vector for TB′ .

(ii)⇒ (i). Now, we assume that HC(TB′) 6= ∅. Pick x ∈ HC(TB′) and show that for
any α 6= 0 the following vector

xj =

{
α, j = 1,
xj−1, j > 1.

is supercyclic for TB .
Indeed, take an arbitrary z ∈ c0(N). Then for any ε > 0, one finds λ ∈ K× such that

|λα− z1| < ε. On the other hand, by x ∈ HC(TB′) there is an integer n ≥ 1 with∣∣∣(Tn
B′(x))j − λ−1zj+1

∣∣∣ < ε

|λ| , ∀j ≥ 1,

which is equivalent to ∣∣λ(Tn
B(x))j − zj

∣∣ < ε, ∀j ≥ 2.

The last inequality together with |λα− z1| < ε yields that λTn
B(x) ∈ B(z, ε−). The arbitrari-

ness of z and ε imply x ∈ SC(TB).

Proposition 3. Assume that a ∈ `∞(N). Let Ba be a weighted backward shift operator and TBa be
an operator given by (16). If

lim
n→∞

n

∏
j=1
|aj| = ∞, (22)

then HC(TBa) 6= ∅;

Proof. Let (32) be satisfied. First, we show that

∞⋃
n=1

T−n
Ba

(0)
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is dense in c0(N).
We notice that Tn

Ba
(x) = 0 has non-zero solution for any n ≥ 1. Indeed, Tn

Ba
(x) = 0 is

equivalent to

xj +
n

∑
k=1

(
n
k

)
xj+k

k

∏
i=1

aj+i−1 = 0, ∀j ≥ 1, (23)

where xm → 0 as m→ ∞.
It is clear that for any (c1, c2, . . . , cn) ∈ Kn the sequence (xm)m≥1 defined by

xm =

 cm, if m ≤ n,

− xm−n+∑n−1
k=1 (n

k)xm−n+k ∏k
i=1 am−n+i−1

∏n−1
i=0 am−n+k

, if m > n,
(24)

satisfies (23). We need to check the sequence (24) belongs to c0(N). Let n ≥ 1, then by (24)
one finds

|xn+k| ≤ max
k≤j≤n+k−1

|xj|
∏n+k−1

i=j |ai|
, ∀k ≥ 1. (25)

Using (25) by induction, one can prove the following

|xn+k| ≤ max
1≤j≤n

|xj|
∏n+k−1

i=j |ai|
, ∀k ≥ 1. (26)

Then, keeping in mind (22) from (26), one finds |xn+k| → 0 as k → ∞, hence,
(xm)m≥1 ∈ c0(N). Thus, we have shown that Tn

Ba
(x) = 0 has a non-zero solution. Moreover,

we can find all solutions of that equation.
Now, let us establish that

⋃∞
n=1 T−n

Ba
(0) = c0(N). Pick any y ∈ c0(N). Then, for any

ε > 0, there exists a positive integer n0 such that |ym| < ε for all m > n0. Due to (22), one
can find an integer N > n0 such that

min
1≤j≤N

N+k−1

∏
i=j
|ai| >

‖ y ‖
ε

, ∀k ≥ 1. (27)

Take x = (xm)m≥1 as follows:

xm =

 ym, if m ≤ N,

− xm−N+∑N−1
k=1 (N

k )xm−N+k ∏k
i=1 am−N+i−1

∏N−1
i=0 am−N+k

, if m > N,
(28)

Then TN
Ba
(x) = 0, that is, x ∈ ⋃∞

n=1 T−n
Ba

(0). By (27), (28) together with (26), one gets
|xm| < ε for any m > N. Hence, by (28) we infer ‖ x− y ‖< ε. By the arbitrariness of y we
arrive at the required assertion.

Now, we are going to show that TBa satisfies the Hypercyclic Criterion. Indeed, let us
denote

D1 :=
∞⋃

n=1

T−n
Ba

(0), D2 := c00(N).

It isobvious that these sets are dense in c0(N). We recall that, by the construction of D1, for
any x ∈ D1 there exists k ≥ 1 such that Tn

Ba
(x) = 0 for all n ≥ k.

Over the set D2, we define a linear operator Sb by

(Sa(y))j =

{
0, if j = 1,

∑
j−1
k=1(−1)j−1−kyk ∏

j−1
i=k a−1

i , if j > 1
(29)
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We are going to estimate the norm of Sn
a (y) for any n 6= 1 and y ∈ D2. Given any

y ∈ D2, one finds an integer m ≥ 1 such that ym 6= 0 and yk = 0 for all k > m. For any
ε > 0, we get n0 ∈ N such that

min

{
n

∏
k=j
|ak| : 1 ≤ j ≤ m

}
>

1
ε

, ∀n > n0.

By (29) together with The last inequalit, for any n ≥ n0, we obtain

‖ Sn
a (y) ‖≤ ε· ‖ y ‖ . (30)

Hence, for every y ∈ D2,
‖ Sn

a (y) ‖→ 0 as n→ ∞. (31)

On the other hand, it is easy to check that Tn
Ba

Sn
b(y) = y for every y ∈ c00(N) and n ≥ 1.

Consequently, we have shown that TBa satisfies the Hypercyclic Criterion. Thus, due to
Theorem 1, we infer that TBa is hypercyclic. This completes the proof.

Theorem 7. Let B be an infinite dimensional matrix (7) with the extra condition (10). Then for
the operator TB given by (16) the following statements hold:

(i) if

lim
n→∞

n

∏
j=1
|bj,j+1| = ∞, (32)

then HC(TB) 6= ∅;
(ii) if

lim
n→∞

n

∏
j=2
|bj,j+1| = ∞, (33)

then SC(TB) 6= ∅.

Proof. Let P be a linear homeomorphism given by (12), (13). Then, by Theorem 5, we know
that BbP = PBB , where b = {bk,k+1}∞

k=1. Hence, TBb P = PTB . Therefore, the hypercyclicity
(supercyclicity) of TB is equivalent to the hypercyclicity (resp. supercyclicity) of TBb . Due
to Proposition 3, we obtain the statement (i). The assertion (ii) immediately follows from
Theorem 6 and the statement (i). This completes the proof.

Example 2. Let us consider the following example, which has not any classical analogue. Assume
that K = Qp, and define the matrix B as follows: bk,k+1 = 1/p, bij = 1, j− i ≥ 2 and bij = 0, if
i− j ≥ 0. Clearly, the defined matrix is upper triangular, and (10) is satisfied. Then, the operator
TB has the following form:

(TB(x))k = xk +
xk+1

p
+

∞

∑
j=k+2

xj, ∀k ∈ N. (34)

Moreover, by Theorem 7 (i) the operator TB is hypercyclic. However, if one looks at this operator on
`2(N) (over R or C), then it is unbounded, so its hypercyclicity is another story.

We notice that in [23] various functional models of the unilateral shift operator B have
been given. Let us provide an application of the result.

Example 3. Let Zp be the unit ball in Qp. By C(Zp,Cp) we denote the space of all continuous
functions on Zp with values in Cp endowed with “sup”-norm. Consider a linear operator K :
C(Zp,Cp)→ C(Zp,Cp) defined by

(K f )(x) = f (x + 1)− f (x), (x ∈ Zp), f ∈ C(Zp,Cp).
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This operator K can be interpreted as the annihilation operators in a p-adic representation of the
canonical commutation relations of quantum mechanics [36].

It is well-known [34] that the Mahler polynomials

Pn(x) =
x(x− 1) · · · (x− n + 1)

n!
, n ∈ N; P0(x) = 1,

form an orthonormal basis in C(Zp,Cp). Then, K acts on the Mahler polynomials as follows:

KPn = Pn−1, n ∈ N; KP0 = 0.

It is known that the spaces C(Zp,Cp) and c0(N) are isomorphic via the isomorphism

∞

∑
n=0

xnPn → (x0, x1, . . . , xn, . . . )

therefore, the operator K is transformed to the shift operator B.
Now, let us consider an operator I + λK on C(Zp,Cp). By Theorem 7, one can establish

that the operator I + λK is hypercyclic if, and only if |λ| > 1. Assume that g ∈ C(Zp,Cp) be a
hypercyclic vector for I + λK provided |λ| > 1. Then the hyperbolicity of I + λK implies that the
set {(I + λK)ng} is dense in C(Zp,Cp). On the other hand, we have

(Kmg)(x) =
m

∑
j=0

(
m
j

)
g(x + m− j). (35)

So,

((I + λK)ng)(x) =
n

∑
k=0

(
n
k

)
λk(Kkg)(x)

=
n

∑
k,j=0

(
n
k

)(
k
j

)
λkg(x + k− j). (36)

Due to the hypercyclicity of I + λK we infer that for arbitrary ε > 0 and any function f ∈
C(Zp,Cp) there is N ∈ N such that∥∥∥∥ f −

n

∑
k,j=0

(
N
k

)(
k
j

)
λkg(·+ k− j)

∥∥∥∥ < ε.
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