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Abstract: The testing of multivariate normality remains a significant scientific problem. Although it
is being extensively researched, it is still unclear how to choose the best test based on the sample size,
variance, covariance matrix and others. In order to contribute to this field, a new goodness of fit test
for multivariate normality is introduced. This test is based on the mean absolute deviation of the
empirical distribution density from the theoretical distribution density. A new test was compared
with the most popular tests in terms of empirical power. The power of the tests was estimated for the
selected alternative distributions and examined by the Monte Carlo modeling method for the chosen
sample sizes and dimensions. Based on the modeling results, it can be concluded that a new test is
one of the most powerful tests for checking multivariate normality, especially for smaller samples. In
addition, the assumption of normality of two real data sets was checked.

Keywords: multivariate normality; power of tests; squared radii; skewness; kurtosis

1. Introduction

Much multivariate data is being collected by monitoring natural and social processes.
IBM estimates that we all generate 175 zettabytes of data every day. To add, the data
were collected at a rapidly increasing rate, i.e., it is estimated that 90% of data has been
generated in the last two years. The need to extract useful information from continuously
generated data sets drives demand for data specialists and the development of robust
analysis methods.

Data analytics is inconceivable without testing the goodness of fit hypothesis. The
primary task of a data analyst is to become familiar with the data sets received. This usually
starts by identifying the distribution of the data. Then, the assumption that the data follow
a normal distribution is usually tested. Since 1990, many tests have been developed to test
this assumption, mostly for univariate data.

It is important to use the powerful tests for the goodness of fit hypothesis to test
the assumption of normality because an alternative distribution is not known in general.
Based on the outcome of normality verification, one can choose suitable analysis methods
(parametric or non-parametric) for further investigation. From the end of the 20th century
to the present day, multivariate tests for testing the goodness of fit hypothesis have been
developed by a number of authors [1–14]. Some of the most popular and commonly used
multivariate tests are Chi-Square [8], Cramer von Mises [2], Anderson-Darling [2], and
Royston [3].

Checking the assumption of normality of multivariate data is more complex compared
to univariate. Additional data processing is required (e.g., standardization). The develop-
ment of multivariate tests is more complex because they require checking the properties
of invariance and contingency. While for the univariate tests, the invariance property is
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always satisfied. The properties of invariance, contingency are presented in Section 2 and
are discussed in more detail in [2,12,15].

The study aims to perform a power analysis of the multivariate goodness of fit
hypothesis tests for the assumption of normality, to find out proposed test performances
compared to other well-known tests and to apply the multivariate tests to the real data.
The power estimation procedure is discussed in [16].

Scientific novelty. The power analysis of multivariate goodness of fit hypothesis
testing for different data sets was performed. The goodness of fit tests were selected as
representatives of popular techniques, which had been analyzed by other researchers
experimentally. In addition, we proposed a new multivariate test based on the mean
absolute deviation of the empirical distribution density from the theoretical distribution
density. In this test, the density estimate is derived by using an inversion formula which is
presented in Section 3.

The rest of the paper is organized as follows. Section 2 defines the tests for the
comparative multivariate test power study. Section 3 presents details of our proposed
test. Section 4 presents the data distributions used for experimental test power evaluation.
Section 5 presents and discusses the results of simulation modeling. Section 6 discusses
the application of multivariate goodness of fit hypothesis tests to real data. Finally, the
conclusions and recommendations are given in Section 7.

2. Multivariate Tests for Normality

We denote the p-variate normal distribution as Np(µ, ∑), where µ is an expecta-

tion vector µ =
(
µ1, . . . , µp

)T and ∑ is the nonsingular covariance matrix. Np indi-
cates a set of all possible p-variate normal distributions. Let X1, X2, . . . , Xn, where Xk =(

Xk1, Xk2, . . . , Xkp

)T
and k = 1, 2, . . . , n, be a finite sample generated by a random p-

variate (column) vector X with distribution function FX. The mean vector X is given by

X = 1
n

n
∑

j=1
Xj, where n is the sample size and the sample covariate matrix is

S =
1
n

n

∑
j=1

(Xj − X)(Xj − X)
T .

To assess multivariate normality of X (based on the observed sample X1, X2, . . . , Xn) a
lot of statistical tests have been developed. Before reviewing specific tests, selected for this
study, let us consider two essential properties. The set Np is closed with respect to affine
transformations, i.e.,

FAX+b ∈ Np ⇔ FX ∈ Np,

for any translation vector b ∈ Rp and any nonsingular matrix A ∈ Rp×p. Thus, a reasonable
statistic Tn for checking the null hypothesis (H0) of multivariate normality should have the
same value for a sample and its affine transforms, that is

Tn(AX1 + b, . . . , AXn + b) = Tn(X1, . . . , Xn). (1)

An invariant test has a statistic, which satisfies the condition (1). It might seem that a
test based on a standardized sample

Yj = S−
1
2 (Xj − X),

is invariant, however Henze and Zirkler [2] note that this is not always the case. In practice,
for a given sample X1, X2, . . . , Xn the alternative distribution is not know. In such a case it
is important to use a test for which the probability of correctly rejecting H0 tends to one
as n→ ∞ . Such a test is said to be consistent. For more elaborate discussion on these
properties we refer the reader to [2]. Other important denotes are given in Appendix A.
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2.1. Tests Based on Squared Radii

This section reviews the properties of several measures of squared radii concerning
their use for assessing multivariate normality. Squared radii are defined as

Dn,j =
(
Xj − X

)TS−1(Xj − X
)
, j = 1, 2, .., n.

Dn,j have a distribution which, under normality, is (n− 1)2/n times a Beta
(

p
2 , n−p−1

2

)
distribution [9]. Under H0, the distribution of Dn,j is approximately χ2

p for large n.

2.1.1. Chi-Squared (CHI2)

In 1981, Moore and Stubblebine presented multivariate Chi-Squared goodness of fit
test based on order statistics [8]. The statistic of the test is defined as

Mn,k =
k
n

k

∑
l=1

(
Nn,l −

n
k

)2
, (2)

where Nn,l =
n
∑

j=1
1
{

al−1 < Dn,j ≤ al
}

, (l = 1, 2, . . . , k; a0 = 0, ak = +∞). Since Mn,k takes

the equivalent form [8]:

Mn,k = k
k

∑
l=1

(Gn(al)− Gn(al−1))
2,

where Gp(·) is the probability distribution function of χ2(p). Gp(al)− Gp(al−1) = k−1(
l = 1, 2, . . . , k; Gp(+∞) = 1

)
.

2.1.2. Cramer-Von Mises (CVM)

In 1982, Koziol proposed the use of Cramer-von Mises-type multivariate goodness of
fit test based on order statistics [2]. This test statistic is defined as

CM =
1

12n
+

n

∑
j=1

(
Gp

(
D(j)

)
− 2j− 1

n

)2
, (3)

where D(j), j = 1, 2, . . . , n is order statistics.

2.1.3. Anderson-Darling (AD)

In 1987, Paulson, Roohan and Sullo proposed the Anderson-Darling type multivariate
goodness of fit test based on order statistics [2]. The test statistic is defined as

AD = −n−
n

∑
j=1

2j− 1
n

(
log Gp

(
D(j)

)
+ log

(
1− Gp

(
D(n+1−j)

)))
. (4)

2.2. Tests Based on Skewness and Kurtosis

This section reviews the properties of several measures of multivariate skewness
and kurtosis regarding their use as statistics for assessing multivariate normality [2]. The
skewness and kurtosis are defined as

s =
m3√
m2

3 , k =
m4

m2
2

,

where mi =
1
n ∑n

i=1(xi − x)ix = 1
n ∑n

i=1 xi.
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2.2.1. Doornik-Hansen (DH)

In 2008, Doornik-Hansen proposed a new multivariate goodness of fit test based on
the skewness and kurtosis of multivariate data transformed to ensure independence [6].
The Doornik-Hansen test statistic is defined as the sum of squared transformations of the
skewness and kurtosis. Approximately, the test statistic follows a χ2 distribution

DH = ZT
1 Z1 + ZT

2 Z2 ∼ χ2(2p), (5)

where ZT
1 =

(
z11, . . . , z1p

)
and ZT

2 =
(
z21, . . . , z2p

)
are defined as

Z1 = δ log
(

y +
√

y2 − 1
)

and Z2 =
√

9α

(
1

9α
− 1 + 3

√
χ

2α

)
where

δ =
1√

log(w2)
, w2 = −1 +

√
2(β− 1), β =

3
(
n2 + 27n− 70

)
(n + 1)(n + 3)

(n− 2)(n + 5)(n + 7)(n + 9)
, y = s

√
(w2 − 1)(n + 1)(n + 3)

12(n− 2)
,

α = a + c× s2, a =
(n− 2)(n + 5)(n + 7)

(
n2 + 27n− 70

)
6δ

, c =
(n− 7)(n + 5)(n + 7)

(
n2 + 2n− 5

)
6δ

,

δ = (n− 3)(n + 1)
(

n2 + 15n− 4
)

, χ = 2l
(

k− 1− s2
)

, l =
(n + 5)(n + 7)

(
n3 + 37n2 + 11n− 313

)
12δ

.

2.2.2. Royston (Roy)

In 1982, Royston proposed a test that uses the Shapiro-Wilk/Shapiro-Francia statistic
to test multivariate normality. If the kurtosis of the sample is greater than 3, then it uses
the Shapiro-Francia test for leptokurtic distributions. Otherwise it uses the Shapiro-Wilk test
for platykurtic distributions [3,5]. LetWj be the Shapiro-Wilk/Shapiro-Francia test statistic
for the jth variable (j = 1, 2, . . . , d) and Zj be the values obtained from the normality
transformation [3,5].

if 4 ≤ n ≤ 11, x = n andWj = − log
[
γ− log

(
1−Wj

)]
,

if 12 ≤ n ≤ 2000, x = log(n) andWj = log
(
1−Wj

)
.

Thus, it are observed that x andWj change with the sample size. The transformed
values of each random variable are obtained by [3,5]

Zj =
Wj − l

σ
,

where γ, l and σ are derived from the polynomial approximations. The polynomial
coefficients are provided for different [3,5]:

γ = a0γ + a1γx + a2γx2 + . . . + adγxd,

l = a0l + a1lx + a2lx
2 + . . . + adlx

d,

log(σ) = a0σ + a1σx + a2σx2 + . . . + adσxd.

The Royston’s test statistic for multivariate normality is defined as

H =
e ∑

p
j=1 ψj

p
∼ χ2

e , (6)
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where e is the equivalent degrees of freedom, Φ(·) is the cumulative distribution function
for the standard normal distribution such that,

e =
p

[1 + (p− 1)c]
,

ψj =

{
Φ−1

[
Φ
(
−Zj

)
2

]}2

, j = 1, 2, . . . , d.

Let R be the correlation matrix and rij is the correlation between ith and jth observa-
tions. Then, the extra term c is found by

c = ∑
i

∑
j

cij

p(p− 1)
,
{

cij
}

i 6=j,

where

cij =

{
g
(
rij, n

)
for i 6= j

1 for i = j
.

When g(0, n) = 0 and g(1, n) = 1, then g(·) can be defined as

g(r, n) = r$

[
1− l

v
(1− r)l

]
,

where l, $ and v are the unknown parameters, which are estimated by Ross modeling [4]. It
was found that l = 0.715 and $ = 5 for sample size 10 ≤ n ≤ 2000 and v is a cubic function

v(n) = 0.21364 + 0.015124(log(n))2 − 0.0018034(log(n))3.

2.2.3. Mardia (Mar1 and Mar2)

In 1970, K.V. Mardia proposed a new multivariate goodness of fit test based on
skewness and kurtosis. The statistic for this test is defined as [17]

MS(s) = n·s
6

p→ χ2
(

p(p+1)(p+2)
6

)
,

Mk(k) =
n(k−p(p+2))2

8p(p+2)
d→ χ2(1).

(7)

2.3. Other Tests

This section reviews the properties of several measures of non-negative functional
distance, a covariance matrix and Energy distance concerning their use as statistics for
assessing multivariate normality. A non-negative functional distance that measures the
distance between two functions is defined as

Dh(P, Q) =
∫ ∣∣P̂(t)− Q̂(t)

∣∣2 ϕh(t)dt,

where P̂(t) is the characteristic function of the multivariate standard normal, Q̂(t) is
the empirical characteristic function of the standardised observations, ϕh(t) is a kernel
(weighting) function

ϕh(t) =
(

2πh2
)−p/4

e
−tT t
2h2 ,

where t ε Rp and h ε R is a smoothing parameter that needs to be selected [10].
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2.3.1. Energy (Energy)

In 2013, G. Szekely and M. Rizzo introduced a new multivariate goodness of fit test
based on Energy distance between multivariate distributions. The statistic for this test is
defined as [18]

En = n

(
2
n

n

∑
j=1

E||Ỹn,j − N1|| −E||N1 − N2|| −
1
n2

n

∑
j,k=1
||Ỹn,j − Ỹn,k ||

)
, (8)

where Ỹn,j =
√

n/(n− 1)Yn,j, Yn,j = S−
1
2

n
(
Xj − Xn

)
, j = 1, . . . , n is called scattering

residues. N1 and N2 are independent randomly distributed vectors according to the normal
distribution. E||N1 − N2|| = 2Γ

(
p+1

2

)
/Γ
(p

2
)

, where Γ(·) is a Gamma function. The null
hypothesis is rejected when En acquires large values.

2.3.2. Lobato-Velasco (LV)

In 2004, I. Lobato and C. Velasco improved the Jarque and Bera test and applied it to
stationary processes. The statistic for this test is defined as [19]

G =
nµ̂2

3

6F̂(3)
+

n(µ̂4 − 3µ̂2)
2

24F̂(4)
, (9)

where F̂(k) =
n−1
∑

t=1−n
ψ̂(t)

[
ψ̂(t) + ψ̂(n− |t|)

]k−1 is an auto-covariance function.

2.3.3. Henze-Zirkler (HZ)

In 1990, Henze and Zirkler introduced the HZ test [1]. The statistic for this test is
defined as

HZ =
1
n2

n

∑
i=1

n

∑
j=1

e−
h2
2 Dij − 2

(
1 + h2

)− p
2

n

∑
i=1

e
− h2

2(1+h2)
Di

+ n
(

1 + 2h2
)− p

2 , (10)

where Dij =
(
Xi − Xj

)TS−1(Xi − Xj
)
, Di =

(
Xi − X

)TS−1(Xi − X
)
.

Di gives the squared Mahalanobis distance of ith observation to the centroid and Dij
gives the Mahalanobis distance between ith and jth observations. If the sample follows a
multivariate normal distribution, the test statistic is approximately log-normally distributed
with mean [1]

1−
a−

p
2

(
1 + ph

2
a +

(
p(p + 2)h4))

2a2 ,

and variance [1]

2
(

1 + 4h2
)− p

2
+

2a−p(1 + 2ph4)
a2 +

3p(p + 2)h8

4a4 − 4wh
− p

2

(
1 +

3ph4

2wh
+

p(p + 2)h8

2wh
2

)
,

where a = 1 + 2h2 and wh =
(
1 + h2)(1 + 3h2). Henze and Zirkler also proposed an

optimal choice of the parameter h in using HZ in the p-variate case as [1]

h∗ =
1√
2

(
n(2p + 1)

4

) 1
p+4

.

A drawback of the Henze-Zirkler test is that, when H0 is rejected, the possible violation
of normality is generally not straightforward. Thus, many biomedical researchers would
prefer a more informative and equally or more powerful test than the Henze-Zirkler test [5].
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2.3.4. Nikulin-Rao-Robson (NRR) and Dzhaparidze-Nikulin (DN)

In 1981, Moore and Stubblebine suggested a multivariate Nikulin-Rao-Robson (NRR)
goodness of fit test [7,8]. This test statistic for a covariance matrix of any dimension is
defined as

Y2
n = ∑ V2

i +
2pr(∑ Vi pi)

2

1− 2pr ∑ p2
i

, (11)

where Vi is a vector of standardized cell frequencies with components

Vi = Vin
(
θ̂n
)
=

(Nin − n/r)√
n/r

, i = 1, . . . , r,

where Nin is the number of random vectors X1, . . . , Xn falling into Ein
(
θ̂n
)
, i = 1, . . . , r.

Then the limiting covariance matrix of standardized frequencies is Vn
(
θ̂n
)
= ∑l = I −

qqT − BJ−1BT , where B is the r×m matrix with elements

Bij =
1√

pi(θ)

∂pi(θ)

∂θj
, i = 1, . . . , r, j = 1, . . . , m,

where q is a r-vector with its entries as 1/
√

r,
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3. The New Test 
Our test is based on distribution distance and has been derived using an inversion 

formula. The estimation of a sample distribution density is based on application of the 
characteristic function and inversion formula. This method is known for its good proper-
ties (i.e., low sensitivity) and has been introduced in [20]. Marron and Wand [21] carried 
out an extensive comparison of density estimation methods (including the adapted kernel 
method) and concluded that density estimation based on application of characteristic 
function and inversion is more accurate for non-Gaussian data sets. 

The random 𝑝-variate vector 𝑋 ∈ ℝ௣ , which follows a distribution of a mixture 
model has a density function  𝑓(𝑋) = 𝑓(𝑋, 𝜃) = ∑ 𝑝௞𝑓௞(𝑋, 𝜃௞)௤௞ୀଵ , (13) 
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tributed random values 𝑋. 

When examining approximations of parametric methods, it should be emphasized 
that as the data dimension increases, the number of model parameters increases rapidly, 
making it more difficult to find accurate parameter estimates. It is much easier to find 
density of univariate data projections 𝑥ఛ = 𝜏்𝑥, (15) 

than multivariate data density 𝑓 because of mutually unambiguous compliance. 𝑓 ↔ ൛𝑓ఛ, 𝜏 ∈ ℝ𝑝ൟ. (16) 

= p + p(p + 1)/2 is the number of
unknown parameters, J = J(θ) is the Fisher information matrix of size
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for one
observation which evaluated as

J(θ) =
[

∑−1 0
0 Q−1

]
,

where Q is the p(p + 1)/2× p(p + 1)/2 covariance matrix of w (a vector of the entries of√
nS arranged column-wise by taking the upper triangular elements) [7]:

w =
(
s11, s12, s22, s13, s23, s33, . . . , spp

)T .

The second term of Y2
n recovers information lost due to data grouping. Another useful

decomposition of Y2
n is defined as

Y2
n = U2

n + S2
n,

where U2
n is the multivariate statistic defined by Dzhaparidze and Nikulin (1974) [7]. It is

defined as

U2
n = VT

n
(
θ̂n
)[

I − Bn

(
BT

n Bn

)−1
BT

n

]
Vn
(
θ̂n
)
, (12)

and in 1985, McCulloch presented a multivariate test statistic [7]:

S2
n = Y2

n −U2
n = VT

n
(
θ̂n
)

Bn

[(
Jn − BT

n Bn

)−1
+
(

BT
n Bn

)−1
]

BT
n Vn

(
θ̂n
)
.

If rank B = s, then U2
n and S2

n are asymptotically independent and distributed in the
limit as χ2

r−s−1 and χ2
s , respectively.

3. The New Test

Our test is based on distribution distance and has been derived using an inversion
formula. The estimation of a sample distribution density is based on application of the
characteristic function and inversion formula. This method is known for its good properties
(i.e., low sensitivity) and has been introduced in [20]. Marron and Wand [21] carried out
an extensive comparison of density estimation methods (including the adapted kernel
method) and concluded that density estimation based on application of characteristic
function and inversion is more accurate for non-Gaussian data sets.
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The random p-variate vector X ∈ Rp, which follows a distribution of a mixture model
has a density function

f (X) = f (X, θ) =
q

∑
k=1

pk fk(X, θk), (13)

where q is the number of clusters (i.e., components, classes) of the mixture, and pk (k = 1, . . . , q)
is the a priori probability which satisfy

pk > 0,
q

∑
k=1

pk = 1. (14)

The fk(X, θk) is a distribution of the kth class and θ is a set of parameters θ ={
p1, . . . , pq, θ1, . . . , θq

}
. We denote the p-variate sample of independent and identically

distributed random values X.
When examining approximations of parametric methods, it should be emphasized

that as the data dimension increases, the number of model parameters increases rapidly,
making it more difficult to find accurate parameter estimates. It is much easier to find
density of univariate data projections

xτ = τTx, (15)

than multivariate data density f because of mutually unambiguous compliance.

f ↔ { fτ , τ ∈ Rp}. (16)

It is quite natural to try to find the multivariate density f using the density estimates
f̂τ of univariate observational projections [20]. In case of Gaussian mixture model, the pro-
jection of the observations (15) is also distributed according to the Gaussian mixture model:

fτ(x) = fτ(x, θτ) =
q

∑
k=1

pk,τ ϕk,τ(x), (17)

where ϕk,τ(x) = ϕ
(

x; mk,τ , σ2
k,τ

)
is univariate Gaussian density. The parameter set θ of

the multivariate mixture and the distribution parameters of the data projections θτ =(
pk,τ , mk,τ , σ2

k,τ

)
, k = 1, . . . , q are related by equations:

pj,τ = pj,
mj,τ = τT Mj,
σ2

j,τ = τTRjτ.
(18)

The inversion formula is used

f (x) =
1

(2π)p

∫
Rp

e−itT xψ(t)dt, (19)

where
ψ(t) = EeitT x, (20)

where ψ(t) denotes the characteristic function of the random variable X. Given that u = |t|,
τ = t/|t| and by changing the variables to a spherical coordinate system we obtain

f (x) =
1

(2π)p

∫
τ: |τ|=1

ds
∫ ∞

0
e−iuτT xψ(uτ)up−1du, (21)
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where the first integral is the surface integral of the unit sphere. The characteristic function
of the projection of the observed random variable is

ψτ(u) = EeiuτT X , (22)

and has the property
ψ(uτ) = ψτ(u). (23)

By selecting the set T of uniform distributed directions on the sphere and replacing
the characteristic function with its estimate, a density estimate is obtained [20,22]:

f̂ (x) =
A(p)
#T ∑

τ∈T

∫ ∞

0
e−iuτT xψ̂τ(u)up−1e−hu2

du, (24)

where #T denotes a size of set T. Using the p-variate ball volume formula

Vp(R) =
π

p
2Rp

Γ
( p

2 + 1
) =


π

p
2 Rp

( p
2 )!

, when p mod 2 ≡ 0,

2
p+1

2 π
p−1

2 Rp

p!! , when p mod 2 ≡ 1,
(25)

the constant A(p) defined as

A(p) =

(
Vp(1)

)′
R

(2π)p =
p2−pπ−

p
2

Γ
( p

2 + 1
) . (26)

Computer simulation studies have shown that the density estimates obtained using
the inversion formula are not smooth. Therefore, in Formula (24), an additional multiplier
e−hu2

is used. This multiplier smoothes the estimate f̂ (x) with the Gaussian kernel function.
Moreover, this form of the multiplier allows the integral value to be calculated analytically.
Monte Carlo studies have shown that its use significantly reduces the error of estimates.
Formula (24) can be used to estimate the characteristic function of the projected data.
Let us consider two approaches. The first one is based on the density approximation
of the Gaussian distribution mixture model. In this case, the parametric estimate of the
characteristic function is used:

ψ̂τ(u) =
q̂τ

∑
k=1

p̂k,τeium̂k,τ−u2σ̂2
k,τ/2. (27)

By substituting ψ̂τ(u) in (24) by (27), we get

f̂ (x) = A(p)
#T ∑τ∈T ∑

q̂τ

k=1 p̂k,τ
∫ ∞

0 eiu(m̂k,τ−τT x)−u2(h+σ̂2
k,τ/2)up−1du

= A(p)
#T ∑τ∈T ∑

q̂τ

k=1 p̂k,τ Ip−1

(
m̂k,τ−τT x√

σ̂2
k,τ+2h

)(√
σ̂2

k,τ + 2h
)−p

,
(28)

where

Ij(y) = Re
[∫ ∞

0
eiyt−t2/2tjdt

]
. (29)

We note, that only the real part of the expression is considered here (the sum of the
imaginary parts must be equal to zero) in other words, the density estimate f̂ (x) can acquire
only the real values. The chosen form of the smoothing multiplier e−hu2

allows relating the
smoothing parameter h with the variances of the projection clusters, i.e., in the calculations
the variances are simply increased by 2h. Next, the expression (29) is evaluated.

Let
Cj(y) =

∫ ∞

0
cos(yt)·e−t2/2·tjdt, (30)
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Sj(y) =
∫ ∞

0
sin(yt)·e−t2/2·tjdt, (31)

then (29) can be written as ∫ ∞

0
e−iyt−t2/2tjdt = Cj(y) + iSj(y). (32)

By integrating in parts, we get

Cj(y) = e−
t2
2 tj−1 cos(yt)

∣∣∣∣∞
0
+
∫ ∞

0 e−
t2
2
(
(j− 1)tj−2 cos(yt)− ytj−1 sin(yt)

)
dt =

1{j=1} + (j− 1)Cj−2(y)− ySj−1(y), j ≥ 1.
(33)

Sj(y) is expressed analogously. With respect to the limitations of the j index, the
following recursive equations are obtained:

Cj(y) = (j− 1)Cj−2(y)− ySj−1(y), j ≥ 2, (34)

C1(y) = 1− yS0(y), (35)

Sj(y) = (j− 1)Sj−2(y)− yCj−1(y), j ≥ 2, (36)

S1(y) = YC0(y). (37)

The initial function S0(y) is founded by starting with the relation

(S0(y))
′
y =

∫ ∞

0
t cos(yt)·e−t2/2dt = C1(y). (38)

From (35) and (38) it follows that S0 satisfies the differential equation

S′0(y) = 1− yS0(y), S0(0) = 0, (39)

which is solved by writing down S0 as the Taylor series:

S′0(y) =
∞

∑
l=0

cl+1(l + 1)yl+1 = 1−
∞

∑
l=2

cl−1yl . (40)

By equating the coefficients of the same powers, its values are obtained:

c0 = 0, c1 = 1,cl = −cl−2/l, l ≥ 2, (41)

which gives us

S0(y) =
∞

∑
l=0

(−1)ly2l+1

(2l + 1)!!
= y− y3

3!!
+

y5

5!!
− y7

7!!
+ . . . . (42)

C0 is found from expression (30):

C0(y) =
∫ ∞

0 cos(yt)·e−t2/2dt = 1
2

∫ ∞
−∞ cos(yt)·e−t2/2dt

= 1
2

∫ ∞
−∞(cos(yt)− i sin(yt))·e−t2/2dt =

√
π
2 e−y2/2.

(43)

The value of the integral (24) then is

Ij(y) = Cj(y). (44)

One of the disadvantages of the inversion formula method (defined by (24)) is that
the Gaussian distribution mixture model (13) described by this estimate (for fk = ϕk)
does not represent density accuratelly, except around observations. When approximating
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the density under study with a mixture of Gaussian distributions, the estimation of the
density using the inversion formula often becomes complicated due to a large number
of components. Thus, we merge components with small a priori probabilities into one
noise cluster.

We have developed and examined a modification of the algorithm which is based on
the use of a multivariate Gaussian distribution mixture model. The parametric estimate of
the characteristic function of uniform distribution density is defined as

ψ̂(u) =
2

(b− a)u
sin
(
(b− a)u

2

)
·e

iu(a+b)
2 , (45)

in the inversion Formula (19). In the density estimate calculation Formula (24), the estima-
tion of the characteristic function is constructed as a union of the characteristic functions
of a mixture of Gaussian distributions and uniform distribution with corresponding a
priori probabilities:

ψ̂τ(u) =
q̂τ

∑
k=1

p̂k,τeium̂k,τ−u2σ̂2
k,τ/2 + p̂0,τ

2
(b− a)u

sin
(
(b− a)u

2

)
·e

iu(a+b)
2 , (46)

where the second member describes uniformly distributed noise cluster, p̂0—noise cluster
weight, a = a(τ), b = b(τ). Based on the established estimates of the parameters of the
uniform distribution and data projections, it is possible to define the range

a =
(

τTx
)

min
−
(
τTx

)
max −

(
τTx

)
min

2(n− 1)
, (47)

b =
(

τTx
)

max
+

(
τTx

)
max −

(
τTx

)
min

2(n− 1)
. (48)

By inserting (46) to (24) we obtain

f̂ (x) = A(p)
#T ∑τ∈T

[
∑

q̂τ

k=1 p̂k,τ
∫ ∞

0 eiu(m̂k,τ−τT x)−u2(h+σ̂2
k,τ/2)up−1du

+
2p̂0,τ
b−a

∫ ∞
0 eiu( a+b

2 −τT x)−u2h·sin
(
(b−a)u

2

)
·up−2du

]
.

(49)

Using notations such as (28), we define the density estimate as

f̂ (x) = A(p)
#T ∑τ∈T

[
∑

q̂τ

k=1 p̂k,τ Ip−1

(
m̂k,τ−τT x√

σ̂2
k,τ+2h

)(
σ̂2

k,τ + 2h
)− p

2

+
2p̂0,τ
b−a Jp−2

(
a+b−2τT x

2
√

2h
, b−a

2
√

2h

)
·(2h)−

p−1
2

]
,

(50)

where Ij(y) is given in (29) which is evaluated by (44) and

Jj(y, t) = Re

 ∞∫
0

eiyu−u2/2·sin(tu)·ujdu

. (51)

By integrating, we get∫ ∞
0 eiyu− u2

2 · sin(tu)·ujdu =
∫ ∞

0 (cos(yu) + i sin(yu))· sin(tu)·e− u2
2 ·ujdu =∫ ∞

0

(
sin((y+t)u)+sin((t−y)u)

2 + i cos((y−t)u)−cos((y+t)u)
2

)
·e− u2

2 ·ujdu = 1
2 Sj(y + t)+

1
2 Sj(t− y) + i 1

2 Cj(y− t)− i 1
2 Cj(y + t),

(52)
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where Sj(y) and Cj(y) are defined in (30) and (31). Then the integral (51) evaluates to

Jj(y, t) =
1
2

Sj(y + t) +
1
2

Sj(t− y). (53)

The above procedure is called a modified inversion formula density estimate. Our proposed
normality test is based on the distance function

T =
∫
Rp

∣∣∣ f (z)− f̂ (z)
∣∣∣dG(z), (54)

where z is a standardized value, f̂ (z) is an estimate of density function.
The choice of G(z) (54) is influenced by three aspects [23]:

• G(z) assigns high weight where |f(z)− f̂ (z)| is large, f(z) pertaining to the alterative
hypothesis. the distribution density is related to the alternative hypothesis.

• G(z) gives high weight where the f̂ (z) is a relatively precise estimator of f(z).
• G(z) is such that the integral (54) has a closed form.

For the distribution free method, the first two aspects are fulfilled by adequately select-
ing the smoothness parameter h, in addition it yields a closed (54) integral form

T = n−1
n

∑
t=1

∣∣∣ f (zt)− f̂ (zt)
∣∣∣. (55)

T does not depend on a moderate sample volume (≥32) but depends on the data
dimension. It is convenient to use the test statistics T ∗ = −log(T ) which had the lowest
sensitivity based on the exploratory study. Under the null hypothesis statistic T ∗ approxi-
mately follows the Johnson SU distribution which is specified by the shape (δ > 0, γ), scale
(λ > 0), location (ξ) parameters and has the density function

f (X) = δ

λ
√

2π
g′
(
X− ξ

λ

)
exp

(
−0.5

[
γ + δg

(
X− ξ

λ

)]2
)

, for X ε (−∞,+∞).

where g(y) = ln
[
y +

√
y2 + 1

]
, g′(y) = 1√

y2+1
.

In the middle of the twentieth century, N. L. Johnson [24] proposed certain systems
of curve derived by the method of translation, which, retain most of the advantages and
eliminate some of the drawbacks of the systems first based on this method. Johnson
introduced log-normal (SL), bounded (SB), and unbounded (SU) systems. The bounded
system range of variation covers the area between the bounding line β2 − β1 − 1 = 0 and
the Pearson Type III distribution; where (β1, β2) points are obtained from the distribution
moments defined by Wicksell [25]:

µ′r(y) =
1√
2π

∫ ∞

−∞
e(r(z−γ))/δe−

1
2 z2

dz = e
1
2 r2δ−2−rγδ−1

.

It follows that
β1 =

(
eδ−2 − 1

)(
eδ−2 + 2

)2
,
(√

β1 > 0
)

,

β2 =
(

eδ−2
)4

+ 2
(

eδ−2
)3

+ 3
(

eδ−2
)2
− 3.

The SU system is bounded at one end only (Pearson Type V). The SL system is lying
between SB and SU systems. These regions are indicated in Figure 1. The SU system is
presented in detail in [24].
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Figure 1. Regions of Johnson’s systems.

Estimates of T ∗ statistic Johnson SU distribution parameters for different dimensions
are given in Table 1.

Table 1. Statistic T ∗ Johnson SU distribution parameter estimates.

Parameter Symbol Estimate

p = 2
Location ξ̂ 4.342807

Scale λ̂ 0.585038
Shape δ̂ 1.498293
Shape γ̂ 0.764906

p = 5
Location ξ̂ 7.025845

Scale λ̂ 0.088023
Shape δ̂ 0.895003
Shape γ̂ 0.400035

p = 10
Location ξ̂ 5.195174

Scale λ̂ 1.578613
Shape δ̂ 2.24856
Shape γ̂ −1.83037

For statistic T ∗, the invariance and contingency properties were checked. The invari-
ance property is confirmed because standardized data was used. The contingency property
is confirmed experimentally (see Section 5).

4. Statistical Distributions

The overviewed normality tests are assessed by the simulation study of 11 statistical
distributions grouped into four groups: symmetric, asymmetric, mixed and normal mixture
distributions [5]. A description of these distribution groups is given in the following sub-
sections.
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4.1. A Group of Symmetric Distributions

Symmetric multivariate distributions are taken from the research [5]:

• Three cases of the Beta(a,b) distribution − Beta(1,1),Beta(1,2) and Beta(2,2), where a and
b are the shape parameters.

• One case of the Cauchy(t,s) distribution − Cauchy(0,1), where t and s are the location
and scale parameters.

• One case of the Laplace(t,s) distribution − Laplace(0,1), where t and s are the location
and scale parameters.

• One case of the Logistic(t,s) distribution − Logistic(0,1), where t and s are the location
and scale parameters.

• Two cases of the t-Student(ν) distribution − t(2) and t(5), where ν is the number of
degrees of freedom.

• One case of the standard normal N(0,1) distribution.

4.2. A Group of Asymmetric Distributions

Asymmetric multivariate distributions are taken from the research [5]:

• Five cases of the Chi-squared(ν) distribution − χ2 (1), χ2 (2), χ2 (5), χ2 (10) and χ2 (15),
where ν is the number of degrees of freedom.

• Two cases of the Gamma(a,b) distribution − Gamma(0.5,1) and Gamma(5,1), where a
and b are the shape and scale parameters.

• One case of the Gumbel(t,s) distribution − Gumbel(1,2), where t and s are the location
and scale parameters.

• Two cases of the Lognormal(t,s) distribution − LN(0,1) and LN(0,0.25) where t and s
are the location and scale parameters.

• Tree cases of the Weibull(β) distribution − Weibull(0.8), Weibull(1) and Weibull(1.5),
where β is the shape parameter.

4.3. A Group of Mixed Distributions

The generated mixed data distribution

Xk =
(

Xk1, Xk2, . . . , Xkm, . . . , Xkp

)T
, k = 1, 2, . . . , n

is such that the first m variates (i.e., Xk1, Xk2, . . . , Xkm) follow the standard normal distri-
bution and distribution of the remaining variates is one of the non-normal distributions
(Laplace(0,1), χ2(5), t(5), Beta(1,1), Beta(1,2), Beta(2,2)). The experimental research covers the
cases for m = p − 1, m = p/2 and m = 1.

4.4. A Group of Normal Mixture Distributions

Normal mixture distributions are considered in this research [5]: nine cases of the mul-
tivariate normal mixture distribution MVNMIX (a,b,c,d) −MVNMIX (0.5,2,0,0), MVNMIX
(0.5,4,0,0), MVNMIX (0.5,2,0.9,0), MVNMIX (0.5,0.5,0.9,0), MVNMIX (0.5,0.5,0.9,0.1), MVN-
MIX(0.5,0.5,0.9,0.9), MVNMIX(0.7,2,0.9,0.3), MVNMIX(0.3,1,0.9,0.1), MVNMIX(0.3,1,0.9,0.9).
The multivariate normal mixture distribution with density:

aN

(
0, ∑

1

)
+ (1− a)N

(
b1, ∑

2

)
,

where 1 is the column vector with all elements being 1,

∑
1
= (1− c)I + c11T and ∑

2
= (1− d)I + d11T .
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5. Simulation Study and Discussion

This section provides a modeling study that evaluates the power of selected multi-
variate normality tests. We used the Monte Carlo method to compare our proposed test
with 13 multivariate tests described above for dimensions p = 2, 5, 10, with sample sizes
n = 32, 64, 128, 256, 512, 1024 at significance level α = 0.05. Power was estimated by
applying the tests on 1 000 000 randomly drawn samples from the alternative distribution
(Beta, Cauchy, Laplace, Logistic, Student, Standard normal, Chi-Square, Gamma, Gumbel,
Lognormal, Weibull, Mixed, Normal mixture).

The values of the test smoothness parameter (h) were selected experimentally: from 0.1
to 5 with a step of 0.1. The value of the test h parameter was determined for each dimension
considered. It was found that the best results are obtained (i.e., maximum statistical value)
for p = 2 with h = 1.05, for p = 5 with h = 0.1, and for p = 10 with h = 2.4. These
smoothness parameter h values were used to carry out the numerical experiments.

The power of 13 (including our proposed test) multivariate goodness of fit hypothesis
tests was estimated calculated for different sample sizes, distributions and mixtures. The
mean power values for the groups for distributions (given in Section 4), for each test and
sample sizes, have been computed and presented in Tables 2–5. It can be determined that
the new test for the groups of symmetric and mixed distributions is the most powerful
one. In the group of asymmetric distributions, the new (for p = 2) and Roy (for p = 5 and
10) tests are the most powerful ones. The new (for p = 2 and 5) and Roy (for p = 10 with
sample sizes n = 256, 512, 1024) tests are also the most powerful in the group of normal
distribution mixtures. Comparing the Mardia (Mar1 and Mar2) tests, based on asymmetry
and excess coefficients, it has been found that Mar1 is the most powerful only for the group
of asymmetric distributions. For the group of symmetric distributions the power of this
test is the lowest (compared to other tests).

Table 2. An average empirical power for a group of symmetric distributions.

AD CHI2 CVM DH DN Energy HZ LV New Mar1 Mar2 NRR Roy

p = 2
n = 32 0.651 0.57 0.652 0.677 0.565 0.65 0.644 0.696 0.999 0.532 0.605 0.608 0.703
n = 64 0.778 0.692 0.779 0.809 0.671 0.77 0.765 0.815 0.999 0.617 0.751 0.736 0.819
n = 128 0.867 0.798 0.868 0.892 0.768 0.86 0.853 0.893 0.999 0.681 0.857 0.842 0.891
n = 256 0.92 0.873 0.92 0.932 0.847 0.914 0.906 0.932 0.999 0.721 0.917 0.91 0.929
n = 512 0.939 0.912 0.94 0.945 0.903 0.941 0.936 0.945 0.999 0.743 0.942 0.941 0.944
n = 1024 0.945 0.932 0.945 0.949 0.937 0.948 0.947 0.949 0.999 0.758 0.95 0.949 0.95

p = 5
n = 32 0.644 0.531 0.624 0.735 0.585 0.632 0.622 0.763 0.985 0.523 0.637 0.602 0.784
n = 64 0.791 0.656 0.775 0.864 0.7 0.758 0.755 0.871 0.989 0.621 0.792 0.739 0.875
n = 128 0.883 0.773 0.876 0.924 0.806 0.863 0.856 0.925 0.988 0.696 0.89 0.851 0.924
n = 256 0.929 0.864 0.926 0.941 0.886 0.921 0.91 0.941 0.987 0.735 0.934 0.916 0.941
n = 512 0.942 0.916 0.942 0.946 0.932 0.945 0.94 0.946 0.981 0.752 0.948 0.944 0.947
n = 1024 0.946 0.941 0.946 0.949 0.949 0.949 0.949 0.949 0.985 0.764 0.95 0.95 0.95

p = 10
n = 32 0.557 0.473 0.534 0.754 0.599 0.598 0.604 0.791 0.997 0.458 0.65 0.599 0.834
n = 64 0.754 0.604 0.728 0.884 0.704 0.709 0.71 0.893 0.998 0.592 0.802 0.719 0.905
n = 128 0.878 0.726 0.865 0.934 0.817 0.821 0.831 0.935 0.998 0.676 0.899 0.844 0.934
n = 256 0.928 0.824 0.922 0.941 0.896 0.906 0.901 0.941 0.998 0.733 0.94 0.913 0.943
n = 512 0.942 0.891 0.941 0.945 0.936 0.943 0.937 0.945 0.991 0.747 0.951 0.942 0.946
n = 1024 0.945 0.928 0.945 0.948 0.949 0.948 0.949 0.948 0.991 0.756 0.95 0.949 0.95
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Table 3. An average empirical power for a group of asymmetric distributions.

AD CHI2 CVM DH DN Energy HZ LV New Mar1 Mar2 NRR Roy

p = 2
n = 32 0.634 0.631 0.639 0.852 0.55 0.832 0.811 0.87 0.999 0.813 0.63 0.639 0.877
n = 64 0.744 0.767 0.744 0.956 0.657 0.93 0.906 0.961 0.999 0.941 0.776 0.759 0.962
n = 128 0.827 0.861 0.822 0.995 0.724 0.985 0.968 0.995 0.999 0.992 0.876 0.841 0.995
n = 256 0.897 0.931 0.892 0.999 0.774 0.999 0.995 0.999 0.999 0.999 0.947 0.915 0.999
n = 512 0.954 0.977 0.949 0.999 0.816 0.999 0.999 0.999 0.999 0.999 0.988 0.968 0.999
n = 1024 0.985 0.996 0.982 0.999 0.864 0.999 0.999 0.999 0.999 0.999 0.999 0.993 0.999

p = 5
n = 32 0.614 0.6 0.608 0.915 0.551 0.854 0.798 0.932 0.982 0.803 0.623 0.61 0.945
n = 64 0.763 0.779 0.761 0.99 0.675 0.958 0.907 0.992 0.989 0.954 0.791 0.763 0.993
n = 128 0.869 0.892 0.869 0.999 0.748 0.996 0.974 0.999 0.997 0.997 0.908 0.869 0.999
n = 256 0.946 0.965 0.947 0.999 0.812 0.999 0.998 0.999 0.997 0.999 0.978 0.95 0.999
n = 512 0.984 0.994 0.985 0.999 0.872 0.999 0.999 0.999 0.999 0.999 0.997 0.989 0.999
n = 1024 0.995 0.999 0.995 0.999 0.926 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999

p = 10
n = 32 0.483 0.443 0.459 0.944 0.532 0.829 0.744 0.96 0.922 0.693 0.573 0.532 0.98
n = 64 0.707 0.712 0.7 0.998 0.679 0.956 0.861 0.998 0.947 0.931 0.746 0.722 0.999
n = 128 0.863 0.87 0.859 0.999 0.776 0.997 0.954 0.999 0.98 0.997 0.898 0.86 0.999
n = 256 0.955 0.96 0.953 0.999 0.858 0.999 0.994 0.999 0.995 0.999 0.978 0.952 0.999
n = 512 0.99 0.994 0.989 0.999 0.93 0.999 0.999 0.999 0.996 0.999 0.998 0.992 0.999
n = 1024 0.996 0.999 0.996 0.999 0.975 0.999 0.999 0.999 0.996 0.999 0.999 0.999 0.999

Table 4. An average empirical power for a group of mixed distributions.

AD CHI2 CVM DH DN Energy HZ LV New Mar1 Mar2 NRR Roy

p = 2
n = 32 0.469 0.408 0.463 0.436 0.439 0.582 0.572 0.453 0.999 0.476 0.412 0.444 0.451
n = 64 0.572 0.476 0.567 0.51 0.511 0.703 0.697 0.547 0.999 0.577 0.527 0.533 0.513
n = 128 0.683 0.571 0.679 0.591 0.59 0.809 0.807 0.667 0.999 0.659 0.651 0.641 0.572
n = 256 0.78 0.667 0.778 0.66 0.674 0.872 0.871 0.749 0.999 0.717 0.762 0.741 0.643
n = 512 0.848 0.763 0.847 0.746 0.763 0.895 0.894 0.808 0.999 0.76 0.843 0.827 0.72
n = 1024 0.883 0.842 0.883 0.826 0.835 0.902 0.901 0.857 0.999 0.78 0.884 0.878 0.764
p = 5
n = 32 0.626 0.466 0.585 0.545 0.538 0.703 0.706 0.553 0.982 0.584 0.584 0.551 0.47
n = 64 0.749 0.582 0.726 0.631 0.684 0.788 0.815 0.628 0.989 0.675 0.723 0.694 0.524
n = 128 0.805 0.67 0.791 0.695 0.771 0.845 0.864 0.692 0.995 0.722 0.791 0.769 0.589
n = 256 0.852 0.729 0.841 0.747 0.825 0.88 0.885 0.751 0.998 0.75 0.838 0.822 0.669
n = 512 0.88 0.763 0.875 0.777 0.865 0.894 0.895 0.81 0.999 0.766 0.864 0.863 0.73
n = 1024 0.894 0.789 0.893 0.795 0.891 0.9 0.899 0.883 0.999 0.778 0.889 0.889 0.764
p = 10
n = 32 0.688 0.477 0.642 0.58 0.669 0.719 0.745 0.592 0.916 0.614 0.731 0.679 0.475
n = 64 0.753 0.579 0.744 0.69 0.753 0.744 0.78 0.69 0.942 0.68 0.796 0.753 0.529
n = 128 0.775 0.651 0.771 0.736 0.776 0.777 0.821 0.735 0.94 0.722 0.795 0.774 0.602
n = 256 0.802 0.709 0.795 0.761 0.793 0.823 0.87 0.76 0.968 0.745 0.811 0.79 0.689
n = 512 0.833 0.746 0.821 0.778 0.818 0.875 0.892 0.776 0.995 0.764 0.84 0.814 0.745
n = 1024 0.866 0.763 0.853 0.791 0.842 0.897 0.899 0.79 0.997 0.779 0.861 0.837 0.769

In order to supplement and emphasize the results presented in Tables 2–5, the general-
ized line diagrams were drawn using the Trellis display [26] multivariate data visualization
method. The resulting graph is shown in Figure 2 which shows that the New test is sig-
nificantly more powerful than the other tests. The power of the Mar1 tests is the lowest
compared with the other tests. Figure 2 indicate that the power of the tests increases as the
sample size increases. By increasing the dimensions of the power of 8 (AD, CHI2, CVM,
Energy, HZ, New, Mar1 and NRR) tests decreases while the power of the other (DH, DN,
LV, Mar2 and Roy) tests increases slightly. For small sample sizes, the most powerful tests
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are New, Roy and DH. For large sample sizes, the most powerful tests are New, Energy,
HZ and LV.

Table 5. An average empirical power for a group of normal mixture distributions.

AD CHI2 CVM DH DN Energy HZ LV New Mar1 Mar2 NRR Roy

p = 2
n = 32 0.465 0.422 0.468 0.56 0.428 0.537 0.529 0.588 0.999 0.433 0.437 0.442 0.607
n = 64 0.576 0.508 0.581 0.74 0.503 0.682 0.672 0.752 0.999 0.544 0.563 0.544 0.778
n = 128 0.71 0.618 0.715 0.893 0.582 0.836 0.823 0.895 0.999 0.633 0.707 0.664 0.908
n = 256 0.844 0.738 0.848 0.974 0.685 0.938 0.926 0.974 0.999 0.701 0.84 0.805 0.978
n = 512 0.943 0.845 0.945 0.998 0.791 0.986 0.977 0.998 0.999 0.733 0.931 0.924 0.998
n = 1024 0.987 0.917 0.988 0.999 0.882 0.999 0.998 0.999 0.999 0.757 0.977 0.985 0.999
p = 5
n = 32 0.45 0.399 0.441 0.594 0.443 0.503 0.485 0.632 0.98 0.384 0.46 0.442 0.672
n = 64 0.574 0.491 0.563 0.782 0.51 0.64 0.621 0.795 0.994 0.516 0.59 0.539 0.828
n = 128 0.699 0.598 0.689 0.916 0.594 0.781 0.761 0.92 0.997 0.619 0.728 0.655 0.934
n = 256 0.806 0.702 0.798 0.979 0.691 0.894 0.877 0.979 0.999 0.694 0.832 0.766 0.984
n = 512 0.889 0.787 0.883 0.998 0.782 0.963 0.95 0.998 0.999 0.736 0.905 0.857 0.998
n = 1024 0.946 0.857 0.942 0.999 0.859 0.992 0.985 0.999 0.999 0.758 0.954 0.925 0.999
p = 10
n = 32 0.402 0.392 0.396 0.62 0.495 0.476 0.487 0.667 0.989 0.287 0.547 0.487 0.735
n = 64 0.556 0.47 0.537 0.8 0.536 0.599 0.581 0.815 0.984 0.472 0.634 0.55 0.855
n = 128 0.709 0.587 0.692 0.915 0.629 0.723 0.708 0.919 0.977 0.582 0.758 0.674 0.939
n = 256 0.801 0.688 0.79 0.973 0.723 0.834 0.815 0.974 0.971 0.669 0.834 0.771 0.98
n = 512 0.853 0.76 0.846 0.995 0.8 0.912 0.887 0.995 0.971 0.711 0.885 0.833 0.997
n = 1024 0.893 0.818 0.886 0.999 0.85 0.96 0.939 0.999 0.973 0.739 0.924 0.875 0.999

Figure 2. The summary of average empirical power of all examined distribution groups by sample size and dimensionality.
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6. Examples
6.1. Survival Data

The data set collected in 2001–2020 by the Head of the Department of Urology Clinic of
the Lithuanian University of Health Sciences [27] illustrates the practical application. This
dataset consists of study data from 2423 patients and two different continuous attributes
(patient age and prostate-specific antigen (PSA)). The assumption of normality was verified
by filtering patients’ age and PSA by year of death (i.e., deaths during the first 1, 2, 3, 4, 5,
6, 7, 10, and 15 years). The filtered data was standardized. The power and p-value were
calculated for the multivariate tests. The significance level of α = 0.05 was used for the
study. Based on the obtained results, it was found that all the applied multivariate tests
rejected the H0 the hypothesis of normality. The power of tests CHI2, DH, Energy, HZ, LV,
New, Mar, NRR and Roy was 0.999 and the p-value was <0.0001. Except for DN test, which
power was 0.576 and the p-value was 0.026.

6.2. IQOS Data

In 2017, the data set of pollution research with IQOS and traditional cigarettes [28]
was used by Kaunas University of Technology, Faculty of Chemical Technology, and
Department of Environmental Technology for practical application. This data set consists
of 33 experiments (with different conditions) in which the numerical (Pn10) and mass
concentrations (Pm2.5, Pm10) of particles were measured. The assumption of normality
was checked by filtering Pn10, Pm2.5, Pm10 according to the number of the experiment
in the smoking phase. The filtered data was standardized. The power and p-values
of multivariate tests with a significance level of α = 0.05 were calculated. Based on
the obtained results, it was found that all the applied multivariate tests show that the
assumption of normality is rejected. Most of the multivariate tests used (CHI2, DH, Energy,
HZ, LV, New, Mar, NRR, and Roy) had a power of 0.999 and p-value of <0.0001. The power
of the other tests was also close to 0.99 and the p-value was about 0.0001.

7. Conclusions

In this study, the comprehensive comparison of the power of 13 multivariate goodness
of fit tests was performed for groups of symmetric, asymmetric, mixed, and normal mixture
distributions. Two-dimensional, five-dimensional, and ten-dimensional data sets were
generated to estimate the test power empirically.

A new multivariate goodness of fit test based on inversion formula was proposed.
Based on the obtained modeling results, it was determined that the most powerful tests
for the groups of symmetric, asymmetric mixed and normal mixture distributions are the
proposed test and Roy multivariate test. From two real data examples, it was concluded
that our proposed test is stable, even when applied to real data sets.
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Appendix A

Rp is p-variate set of real numbers,

Xk =
(

Xk1, Xk2, . . . , Xkp

)T
∈ Rp, k = 1, 2, . . . , n is p-variate vector,

#T denotes a size of set T,
p is dimension,
h is smoothness parameter,
D(j), j = 1, 2, . . . , n are ordered statistics,
Gp(·) is the probability distribution function of χ2(p),
s is skewness,
k is kurtosis,
n is sample size,
x is sample mean,
σ2 is sample variance,
z is a standardized value,
d is number of variables,
e is the equivalent degrees of freedom,
Φ(·) is the cumulative distribution function for the standard normal distribution,
R is the correlation matrix,
rij is the correlation between ith and jth observations,
Vi is a vector of standardized cell frequencies,
Nin is the number of random vectors,
J = J(θ) is the Fisher information matrix,
Q is the p(p + 1)/2× p(p + 1)/2 covariance matrix of w,
P̂(t) is the characteristic function of the multivariate standard normal,
Q̂(t) is the empirical characteristic function of the standardised observations,
ϕβ(t) is a kernel (weighting) function,
Γ(·) is a Gamma function,
F̂(k) is an auto-covariance function,
Dij is Mahalanobis distance between ith and jth observations,
Wj is the normality transformations,
fk(X, θk) is a distribution of the kth class,
θ is a set of parameters θ =

{
p1, . . . , pq, θ1, . . . , θq

}
,

ψ(t) is the characteristic function of the random variable X.
pk (k = 1, . . . , q) is the a priori probability,
R is the radius of the ball (bounded sphere),
qς is a quantile of standardized normal distribution
δ and γ are shape parameters,
λ is scale parameter,
ξ is location parameter.
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