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Abstract: Categorical functional data represented by paths of a stochastic jump process with continu-
ous time and a finite set of states are considered. As an extension of the multiple correspondence
analysis to an infinite set of variables, optimal encodings of states over time are approximated using
an arbitrary finite basis of functions. This allows dimension reduction, optimal representation, and
visualisation of data in lower dimensional spaces. The methodology is implemented in the cfda
R package and is illustrated using a real data set in the clustering framework.
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1. Introduction

Most literature devoted to functional data considers data as sample paths of a real-
valued stochastic process, X = {Xt, t ∈ T }, Xt ∈ Rp, p ≥ 1, where T is some continuous
set. Among a considerable number of papers on the subject, the monographs of [1,2] are
still the main references presenting methodologies for visualisation, denoising, clustering,
and regression when dealing with functional data represented by real-valued functions.
The fda R package [3,4] implements these methodologies and tools for such functional data.

In this paper, we consider the case where the underlying stochastic model generating
the data is a continuous-time stochastic process X = {Xt, t ∈ T } such that for all t ∈ T , Xt
is a categorical random variable rather than a real-valued one.

Let (Ω,A,P) be a probability space, S = {s1, . . . , sK}, K ≥ 2, be a set of K states, and

X = {Xt ; Xt : Ω −→ S , t ∈ T } (1)

be a family of categorical random variables indexed by T . Thus, for some ω ∈ Ω, a path of
X, X(ω), is a sequence of states sij = sij(ω) and time points ti = ti(ω) of transitions from
one state to another one:

{(t0, si0), (t1, si1), (t2, si2), . . .}, (2)

where 0 = t0 < t1 < t2 < . . . are the jump times in T , and sij ∈ S with ij ∈ {1, . . . , K},
∀j ≥ 0. This path is read as follows. At time t0 = 0, ω is in some state si0 ; at time t1, t1 > t0,
ω moves randomly from si0 to the state si1 ; then, at time t2 > t1 it moves from the state si1
to state si2 , and so on. If T is the interval of time [0, T] for some T > 0, then the observation
process stops when the time T is reached or some absorbing state is observed.

We call the sample paths of X given by sequences of type (2) categorical functional data
generated by the process X.

Notice that there is no order assumption on the set of states. However, in some
applications that order can be natural, all methodology developed in this paper being still
valid. Figure 1 presents the graphical representation of one observation of a categorical
functional random variable. The representation in (a) is appropriate when no natural order
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relationship exists on the set of states S , whereas the representation in (b) supposes that
there exists some order relationship (≺) on S : s1 ≺ s2 ≺ . . . ≺ sK.

Figure 1. Categorical functional data: graphical representation of a path with (a) not ordered states,
(b) ordered states.

To the best of our knowledge, and quite surprisingly, there is no recent research de-
voted to categorical functional data despite its ability to model real situations in different
fields of applications: health and medicine (status of a patient over time) [5], economy (sta-
tus of the market) [6,7], sociology (evolution of social status) [8,9], and so on. As a starting
point on this topic, we mention the works of [7,8,10,11]. These works are devoted to the
extension of factorial techniques (canonical and multiple correspondence analysis) towards
functional data. The authors call that methodology “harmonic analysis”. Applications
of these techniques are presented in [9] for analysing career data and in [12] for studying
the spectral properties of the transition probability matrix of a stationary Markovian jump
process with continuous time. In [13], the authors cluster paths of semi-Markov processes
using mixtures with application to sensory data. In [14], the authors present the harmonic
analysis applied to the Brownian motion as an extension to an infinite (continuous) number
of states.

In this article, we present categorical functional data analysis as an extension of the
multiple correspondence analysis towards functional data and its implementation in the
cfda R package. The theoretical foundations of this work are given in [8] and are based
on the concept of optimal encoding of the states of the process X with respect to maximum
variance criterion among all encodings. In Section 2, we present the theoretical background
of the optimal encoding methodology defining the principal components of the process X
throughout the optimal encodings. The approximation of the optimal encodings of the
states into a basis of functions and optimal representation of categorical functional data in
lower dimensional spaces are detailed. The implementation of the optimal encodings is
presented throughout the cfda R package in Section 3, where an application on a real data
set (care trajectories for patients diagnosed with severe infection) is performed in view of
visualisation, descriptive statistics, and clustering.

2. Categorical Functional Data Analysis

Introduced in [8,11] under the name “analyse harmonique qualitative”, multiple cor-
respondence analysis is extended to categorical functional data. There are several ways to
complete this; we have chosen in this work to introduce it as a problem of finding the latent
variables (principal components) that are the most related to the process X = {Xt, t ∈ T }.
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Therefore, the principal components will enable defining the optimal encoding of states
S = {s1, . . . , sK}.

Without loss of generality, let us suppose that T = [0, T], with T > 0. For x, y ∈ S ,
and ∀t ∈ [0, T], let us denote by:

• 1x
t =


1 if Xt = x,

0 otherwise,
• px(t) = P(Xt = x) and px,y(t, s) = P(Xt = x, Xs = y).

The general hypotheses considered in that framework are:

Hypothesis 1. (H1) the process X is continuous in probability,

lim
h→0

P(Xt+h 6= Xt) = 0

and

Hypothesis 2. (H2) for each time t ∈ [0, T] (except possibly a finite discrete set of timepoints),
any state has a strictly positive probability to occur:

px(t) 6= 0, ∀x ∈ S , ∀t ∈ [0, T].

2.1. The Principal Components

Let L2(Ω) be the space of real random variables with finite second moment and,
for some t ∈ [0, T], L(Xt) be the linear space spanned by Xt. Then, the conditional
expectation operator associated to Xt,

Et : L2(Ω)→ L(Xt),

z ∈ L2(Ω), z 7−→ Et(z) = ∑
x∈S

E(z|Xt = x)1x
t ,

is also the orthogonal projector on the space linearly spanned by the set of indicator random
variables {1x

t , x ∈ S}. Notice that Et is self-adjoint, idempotent, and of rank K.
For z ∈ L2(Ω) and t ∈ [0, T], the coefficient

η2(z; Xt) =
VAR(Et(z))
VAR(z)

is a measure of the correlation between z and the variable Xt. The empirical version of η2

is known as Wilks’ Lambda statistics, well known in multivariate ANOVA [15].
Let us recall that if t1, t2, . . . , tp are p different time points in [0, T], then, the random

variable z, which maximizes
p

∑
i=1

η2(z; Xti ) (3)

defines the first principal component of the multiple correspondence analysis of the set
of p categorical variables {Xt1 , Xt2 , . . . Xtp} [16]. By an iterative procedure, the principal
components of higher order are defined as maximizing (3) under orthogonality conditions
with respect to the principal components of lower order.

In [8,11], the authors extend the multiple correspondence analysis to the process
X = {Xt, t ∈ [0, T]} (seen as an infinite set of categorical random variables). More
specifically, the principal components are defined as the random variable z that maximizes
the criterion ∫ T

0
η2(z; Xt)dt. (4)
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They show that under the Hypotheses H1 and H2, the variable z, which maximizes (4)
is the variable associated with the largest eigenvalue of the following (stochastic) eigenvalue
problem: ∫ T

0
Et(z)dt = λz. (5)

The operator Q =
∫ T

0
Etdt is positive, hermitian, and compact. Therefore, Q has a

countable set of positive eigenvalues and eigenvectors, {(λi, zi)}i≥1 such that λ1 ≥ λ2 ≥
. . . ≥ 0 and ∫ T

0
Et(zi)dt = λizi.

The variables {zi}i≥1 are called principal components of the process X. Notice that
z = 1 (constant) is an eigenvector of Q associated to the largest eigenvalue λmax = T.
It follows that the principal components {zi}i≥1 form a set of zero-mean uncorrelated
random variables.

Moreover, we have that
∑
i≥1

λi = KT,

where K is the number of states. Thus, excluding the trivial eigenvalue λmax = T, the con-
tribution of the i-th principal component zi to (4) is

Ctr(zi) =
λi

(K− 1)T
.

2.2. Optimal Encoding Functions

In order to solve (5), let denote by

ξt =
1
λ
Et(z), ∀t ∈ [0, T]. (6)

Under the Hypotheses H1 and H2, for each t ∈ [0, T] ξt is Xt-measurable, i.e., Etξt = ξt
and {ξt}t∈[0,T] is a L2-continuous stochastic process.

From (5) it follows that

z =
∫ T

0
ξtdt. (7)

Taking the conditional expectation with respect to Xt in (5), one obtains that the
stochastic process {ξt}t∈[0,T] is eigenvector of the following (stochastic) eigenvalue problem
posed in the space of L2-continuous stochastic processes:∫ T

0
K(t, s)ξsds = λξt, ∀t ∈ [0, T], (8)

with K(t, s) = EtEs, for all t, s ∈ [0, T]. Recall that the spectral analysis of the kernel K(t, s)
yields to the canonical analysis of Xt and Xs [17].

It can be shown ([11]) that the eigenvalue problems (5) and (8) are equivalent in
that sense that they have the same set of eigenvalues {λi}i≥1 and there is an one-to-one
correspondence between the principal components zi and the process ξi = {ξi,t, t ∈ [0, T]},
∀i ≥ 1. This correspondence is given by (6).

As in (5), the solution of (8) is unique up to a constant. To have unique eigenvectors,
the usual constraint on {ξt}t∈[0,T] is that of total variance equals to one,

∫ T

0
VAR(ξt)dt =

∫ T

0
E(ξ2

t )dt = 1. (9)
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The relation (9) implies
VAR(z) = E(z2) = λ. (10)

It follows from (6) that ξt is Xt-measurable for all t ∈ [0, T], and one can write

ξt = ∑
x∈S

ax(t)1x
t , (11)

where {ax}x∈S are deterministic functions on [0, T] that we call optimal encoding functions.
Introducing (11) into (8) one obtains the following eigenvalue equation,∫ T

0
∑

y∈S
px,y(t, s)ay(s)ds = λax(t)px(t), ∀t ∈ [0, T], ∀x ∈ S , (12)

where px(t) = P(Xt = x), and px,y(t, s) = P(Xt = x, Xs = y).
The integral system (12) is a more “classic” one than (5) and (8). Under the Hypotheses

H1 and H2, it admits the sequence of eigenvalues {λi}i≥1 associated with the optimal
encoding eigen-functions {ax

i , x ∈ S}i≥1.
Notice that the constraint conditions in (9) are expressed now in terms of optimal

encoding functions, ∫ T

0
∑

x∈S
[ax(t)]2 px(t)dt = 1. (13)

According to (7), for i ≥ 1, the i-th principal component zi is derived from the i-th
optimal encoding functions {ax

i } as

zi =
∫ T

0
∑

x∈S
ax

i (t)1
x
t dt, ∀i ≥ 1. (14)

2.3. Expansion Formulas and Dimension Reduction

As a summary of the previous section, the three equivalent eigen-problems stated in
(5), (8), and (12) yield to the following elements of the analysis of X:

• the set of principal components {zi}i≥1 are zero-mean and uncorrelated:

– E(zi) = 0, ∀i ≥ 1.

– COV(zi, zj) =

{
λi if i = j,
0 otherwise.

• the set of eigen-processes {ξi = {ξi,t, t ∈ [0, T]}}i≥1, which generates the principal
components by (7),

zi =
∫ T

0
ξi,tdt, i ≥ 1,

are zero-mean and of unit total variance.
• the optimal encoding functions, {ax

i = {ax
i (t), t ∈ [0, T]}}x∈S ,i≥1. They generate the

eigen-processes ξi by (11),

ξi,t = ∑
x∈S

ax
i (t)1

x
t , ∀t ∈ [0, T].

They satisfy the normalization condition (13).

Expansion Formulas
As an analogy to the Karhunen-Loève expansion for the scalar processes [18], the fol-

lowing expansion formulas hold [11]:

• for the process X = {Xt, t ∈ [0, T]} throughout the indicators 1x = {1x
t , t ∈ [0, T]}:

1x
t = ∑

i≥1
ziax

i (t)
1

px(t)
, ∀x ∈ S . (15)
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• for the bivariate joint probability function, px,y = {px,y(t, s), t, s ∈ [0, T]}: applying
the Mercer theorem [19] to the integral Equation (12), one has the following expansion
formula:

px,y(t, s) = px(t)py(s) ∑
i≥1

λiax
i (t)ay

i (s), ∀t, s ∈ [0, T], ∀x, y ∈ S . (16)

In particular, for x = y and s = t, we obtain

px(t) =

{
∑
i≥1

λi[ax
i (t)]

2

}−1

, ∀t ∈ [0, T], ∀x ∈ S . (17)

Dimension Reduction
Using only the q first terms in the right-side part of (15), q ≥ 1, one obtains the best

approximation of order q of X (viewed as a vector process X = {1x, x ∈ S}) under the L2
norm, among all the linear expansions of type

1x
t ≈

q

∑
i=1

ziax
i (t)

1
px(t)

, ∀x ∈ S .

Thus, the q first principal components,

{z1, . . . , zq}, q ≥ 1,

allow for

– graphical representation of sample paths of X in Rq (especially for q = 2, one obtains
a 2-D representation of categorical functional data);

– fit of clustering and regression models with X as explanatory variables;
– outliers or unusual data detection: in the context of real-valued functional data, in [20],

the authors propose transformations and algorithms based on the concept of depth
function in order to detect outliers. Transforming a real-valued functional variable
into a categorical functional one (interval discretisation) and then performing optimal
encoding can be an alternative to that proposed in [20].

2.4. Approximation of Optimal Encoding Functions: A Basis Expansion Approach

The eigenvalue equation in (12) provides the optimal encoding functions. For a
two-state process, [11] considers the birth-and-death process on [0, 1],

Xt =

{
0, if t < θ,
1, if t ≥ θ,

(18)

where θ is a random variable uniformly distributed on [0, 1]. The authors provide in this
case explicit formulas for the eigenvalues {λi}i≥1, the optimal encoding functions {ax

i }i≥1,
x ∈ S , and the principal components {zi}i≥1. In [12], the author considers the case of
stationary Markovian continuous time processes with reversible distribution. In this case,
the system in (12) reduces to a system of linear second-order differential equations with
constant coefficients.

In general, the solution of (12) is obtained by approximation. In their seminal work [8],
the authors propose to approximate the encoding functions {ax

i }i≥1, x ∈ S , into a basis of
functions of dimension m, m ≥ 1. As in the classical framework of functional data ([1]),
the choice of m is a tradeoff between complexity computation and precision of the approxi-
mation. In our simulation study (Section 4), we show the influence of the choice of m on
the approximation of optimal encodings.
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Let {φ1, . . . , φm}, φi : [0, T] → R, i = 1, . . . , m, be a basis of functions (Fourier, B-
splines, monomial, etc.), and for each x ∈ S consider the approximation:

ax(t) ≈ α(x,1)φ1(t) + α(x,2)φ2(t) + . . . + α(x,m)φm(t), ∀t ∈ [0, T], (19)

where αx =
(

α(x,1), α(x,2), . . . , α(x,m)

)′
∈ Rm is the column vector of the expansion coeffi-

cients of ax into the basis {φ1, . . . , φm}.
Plugging (19) into (12) and (13), one obtains the following classical eigen-problem:

Gα = λFα, (20)

under the constraint
α′Fα = 1, (21)

where α ∈ Rm×K is the column vector obtained by the concatenation of the vectors {αx}x∈S ,
and G and F are square matrices of size mK×mK defined as follows:

• The matrix G is the covariance matrix of the random variables {V(x,i), x ∈ S , i ∈
1, . . . m}, defined as

V(x,i) =
∫ T

0
φi(t)1x

t dt, ∀x ∈ S , (22)

G =
{

G(x,i),(y,j) = COV
(

V(x,i), V(y,j)

)
, x, y ∈ S , i, j = 1, . . . , m

}
, (23)

G =

. . . (y, 1) . . . (y, j) . . . (y, m) . . .



· · · · · · · · · · · · · · · ·
...

...
...

...
...

...
...

...
(x, 1) · · · · · · · · · · · · · · ·

...
...

...
...

...
...

...
...

(x, i) · · · · · · · COV
(

V(x,i), V(y,j)

)
· · · · · · ·

...
...

...
...

...
...

...
...

(x, m) · · · · · · · · · · · · · · ·
...

...
...

...
...

...
...

...

.

• The matrix F is defined by

F =
{

F(x,i),(y,j) = E
(

U(x,i),(y,j)

)
, x, y ∈ S , i, j = 1, . . . , m

}
, (24)

where U(x,i),(y,j) is the random variable

U(x,i),(y,j) =
∫ T

0
φi(t)φj(t)1x

t 1y
t dt =


∫ T

0
φi(t)φj(t)1x

t dt if x = y,

0 otherwise.

(25)

Thus, F is a block diagonal matrix, each block being a square matrix of size m×m
corresponding to each x in S , {U(x,i),(x,j), i, j = 1, . . . , m}.

Example 1. Let us observe that if 0 = t0 < t1 < . . . < tm = T is a sequence of timepoints in
[0, T], and for i = 1, . . . , m, one defines the basis (B-splines of order 1),

φi(t) =


1 if t ∈ [ti−1, ti],

0 otherwise,
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then, the random variable V(x,i) represents the time spent in the state x in the interval [ti−1, ti].
Since V(x,i) = U(x,i),(x,i), then F is a diagonal matrix with elements E(V(x,i)), x ∈ S , i = 1, . . . , m.

2.5. Estimation

Notice that the random variables V(x,i) and U(x,i),(y,j), x, y ∈ S , i, j = 1, . . . , m are
computed from X = {Xt, t ∈ [0, T]} throughout the basis of functions {φ1, . . . , φm}.
Thus, if {X1, . . . , Xn} is a sample of n paths of X corresponding to a random sample
(ω1, . . . , ωn) ∈ Ωn, then the corresponding samples V(x,i)(ω) and U(x,i),(x,j)(ω), ω ∈
{ω1, . . . , ωn}, provide two classical data sets, V and U, as:

• the V data set with n rows and Km columns for the V’s random variables,

V =

ω V(s1,1) · · · V(s1,m) · · · V(x,i) · · · V(sK ,m)

ω1 V(s1,1)(ω1) · · · V(s1,m)(ω1) · · · V(x,i)(ω1) · · · V(sK ,m)(ω1)
...

...
...

...
...

...
...

...
ωn V(s1,1)(ωn) · · · V(s1,m)(ωn) · · · V(x,i)(ωn) · · · V(sK ,m)(ωn)

• and the U dataset with n rows and Km2 columns for the U’s random variables,
respectively:

U =

ω · · · U(x,i),(x,1) · · · U(x,i),(x,m) · · · U(sK ,m),(sK ,m)

ω1 · · · U(x,i),(x,1)(ω1) · · · U(x,i),(x,m)(ω1) · · · U(sK ,m),(sK ,m)(ω1)
...

...
...

...
...

...
...

ωn · · · U(x,i),(x,1)(ωn) · · · U(x,i),(x,m)(ωn) · · · U(sK ,m),(sK ,m)(ωn)

Therefore, the matrices G and F are estimated from the sample {X1, . . . , Xn} by the
matrices Ĝ and F̂, the covariance matrix estimator of the random variables V’s, and the
mean estimator of the random variables U’s. For each i and j in {1, . . . , m} and x and y in
S , one has:

Ĝ(x,i),(y,j) = ĈOV
(

V(x,i), V(y,j)

)
=

1
n− 1

(
n

∑
h=1

V(x,i)(ωh)V(y,j)(ωh)− nV̄(x,i)V̄(y,j)

)

and

F̂(x,i),(y,j) =

 Ū(x,i),(y,j) =
1
n

n

∑
h=1

U(x,i),(y,j)(ωh) if x = y,

0 otherwise.

An estimate of i-th eigen vector of (20), i ≥ 1, is the i-th eigenvector α̂i of the eigen-
Equation (26),

Ĝα̂ = λ̂F̂α̂, (26)

under the constraint
α̂′ F̂α̂ = 1. (27)
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Notice that, from the construction of F and G matrices, the elements of α̂i are indexed
by the couple (state and basis function) i.e., (x, j) with x ∈ S and j ∈ {1, . . . , m}:

α̂i = (α̂i,(s1,1), . . . , α̂i,(s1,j), . . . α̂i,(s1,m)︸ ︷︷ ︸
state s1

, . . . , α̂i,(x,1), . . . , α̂i,(x,j), . . . α̂i,(x,m)︸ ︷︷ ︸
state x

, . . . , α̂i,(sK ,1), . . . , α̂i,(sK ,j), . . . α̂i,(sK ,m)︸ ︷︷ ︸
state sK

).

Then, for each x ∈ S , the i-th encoding eigen-function ax
i is estimated by

âx
i =

m

∑
j=1

α̂i,(x,j)φj, i ≥ 1. (28)

The estimates for the encoding functions enable computing the principal components
zi for each unit ω in the sample (ω1, . . . , ωn), as

ẑi(ω) =
∫ T

0
∑

x∈S
âx

i (t)1
x
t (ω)dt = ∑

x∈S

m

∑
j=1

α̂i,(x,j)V(x,j)(ω), i ≥ 1. (29)

Notice that the variance of ẑi equals the i-th eigenvalue λ̂i of (26),

V̂AR(ẑi) = λ̂i, i ≥ 1. (30)

Confidence bounds.
Bootstrapping from the V and U datasets, through (26), one obtains an estimate of the

covariance matrix of α̂i denoted with Σ̂i. Therefore, for each t ∈ [0, T], we have

̂VAR(ax
i (t)) = φφφ(t)′Σ̂(i,x)φφφ(t),

where φ(t) is the column vector φ(t) = (φ1(t), . . . , φm(t))
′, and Σ̂(i,x) is the covariance

matrix of α̂i,x =
(

α̂i,(x,1), . . . , α̂i,(x,m)

)
. Notice that Σ̂(i,x) is a submatrix of Σ̂i.

Then, for a confidence level 1− u, u ∈ [0, 1], a confidence interval for ax
i (t) is ob-

tained as

CI1−u(ax
i (t)) = âx

i (t)± ζ1− u
2

√
̂VAR(ax

i (t)),

where ζ1− u
2

is the quantile of order 1− u
2 of the standard normal distribution.

Computational details

• The approximation of optimal encoding functions in a basis of functions is based
on the computation of random variables V(x,i) and U(x,i),(x,j) defined in (22) and (25),
respectively. The computation of integrals involved in the definition of these random
variables uses the inprod function of the fda R package which, at its turn, calls the
function eval.fd. For n and K fixed, this step is the most computational in terms of
time resources, and it depends on the number of basis functions, m, considered for
the approximation (19). As the computation is performed for every ω in (ω1, . . . , ωn),
parallel computation is performed.

• The F matrix (24) can be singular in some specific situations, namely when there exists
an interval I ⊂ [0, T] and some state x such that px(t) = 0, ∀t ∈ I. In this case, the
hypothesis H2 is not satisfied. For t ∈ I, the operator Et is degenerated; however,
the eigenvalue Equation (5) is still valid. From (12), the optimal encoding function ax

is not defined for t ∈ I. From a computational point of view, if φi is some element of
the basis functions {φ1, . . . , φm} with support in I, then the random variables V(x, i)
and U(x,i),(.,.) are zero-constant and therefore, the row and column corresponding to
(x, i) in the F and G matrices are zero vectors. Thus, the element α(x,i) of the expansion
coefficients vector αx is not defined. Dropping the rows and columns from F and
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G corresponding to (x, i) enables solving the eigen-problem in (26). Notice that the
constraints (27) are fulfilled.

3. The cfda Package through Examples

The cfda R package (available online: https://cran.r-project.org/package=cfda, ac-
cessed on 28 November 2021) provides functions to analyze categorical functional data
enabling computation of basic statistics (such as transition tables or visualisation) and the
optimal encoding functions. It uses the ggplot2 [21] package to display graphics and the
parallel [4] and pbapply [22] packages for code parallelization.

Many other R packages analyzing categorical data indexed by time exist, but they do
not take into account the functional feature of data (continuous-time) or do not provide
optimal representation of data for statistical learning purposes. The TraMineR [23] R
package provides functions to perform descriptive analysis, and distance functions between
sequences are defined to perform clustering analysis. The WeightedCluster [24] package
relies on TraMineR and implements an associated clustering method. The msm [5] package
estimates from categorical functional data and covariates a continuous-time (hidden)
Markov multi-state model. The R packages ClickClust [25] and clickstream [26] deal with
categorical functional data as discrete Markov chains and propose clustering methods
based on mixture models.

3.1. Data
3.1.1. An Example of Real Dataset: Paths of Patients with Severe Infection

The cfda package is illustrated with the care dataset [27]. It contains 2929 care
trajectories for patients diagnosed with a severe infection. Each month from the diagnosis of
the infection, the followup of each patient is recorded using one of the following four states:

– “D”: the patient has not a medical followup,
– “C”: the patient has a medical followup but no treatment,
– “T”: the patient has a medical followup with a treatment, but the infection is not

suppressed,
– “S”: the patient has a medical followup with a treatment, and the infection is sup-

pressed.

The dataset is loaded running:

R> data(care)
R> head(care, 10)

id time state
3 0 D
3 5 D
9 0 D
9 1 D
13 0 D
13 7 D
15 0 D
15 4 T
15 7 C
15 8 D

The dataset is in a specific format required by every function in this package. Data
must be provided as a data.frame with three columns named id, time, and state. The id
column contains the identifiers of the statistical units (e.g., patient IDs), the time column
contains the different timepoints of state changes ,and the state column contains the state
that occurs at the corresponding time. For example, in the dataset above, four patients
with IDs 3, 9, 13, and 15 are shown. The patient with ID 15 has an initial state (D) at time

https://cran.r-project.org/package=cfda
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t = 0, he stays in this state until t = 4 months, at which time he moves in a new state (T),
and so on.

Note that within each trajectory, the time values must be ordered. Concerning id and
state, the used format is quite versatile: character, factor, or integer can be used.

3.1.2. Visualize a Dataset

The summary_cfd function gives an overview of the dataset by printing informa-
tion such as the number of paths, the time range, or the number of states, etc. All this
information is returned in a list.

R> summary_cfd(care)

Number of rows: 10017
Number of individuals: 2929
Time Range: 0--50
Same time start value for all ids: TRUE
Same time end value for all ids: FALSE
Number of states: 4
States:

D, T, C, S
Number of individuals visiting each state:

D C T S
2905 1154 1014 1063

Notice that all paths have the same start time value but not the same end time value.
This does not meet the constraints for performing a functional data analysis. A subsample
of paths observed until some specified time must be considered in order to perform optimal
encoding computation.

A sample of paths from the care dataset is plotted using the plotData function (see
Figure 2). Each line corresponds to a patient path in the dataset, the successive changes of
states are represented by different colors.

plotData(data, col, addId, addBorder, sort)

The plotData function takes in argument a formatted data.frame (data) and addi-
tional aesthetic parameters:

group a vector of the length of the number of paths of data containing a variable describing
a group structure (if any) of data. Paths from different groups are displayed on
different subplots. Paths whose group is coded asNA are ignored.

addId a boolean to add the id of paths on the y-axis.

addBorder a boolean to add the black border around each state.

sort a boolean to sort paths according to the duration of their first state.

col allows users to customize state colors by providing a vector of the same length as the
number of state. col is a character (named) vector containing defined color names
from R (e.g., c(“red”, “blue”, “darkgreen”)) or RGB colors (e.g., c(“#E41A1C”,
“#377EB8”, “#4DAF4A”)).

nCol only when group is used, the number of columns used to display different groups.

R> plotData(care[care$id <= 100, ])
R> plotData(care, addBorder = FALSE, addId = FALSE, sort = TRUE)
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Figure 2. A sample (left) and all paths (right) from the care dataset plotted using the plotData function.

3.1.3. Paths of Same Length T

To compute the encoding functions, all paths must have the same start and end time.
This is not the case in the care dataset. So, we need to select patients followed on a time
interval of the same length, say [0, T].

First, we compute the length (duration of followup) of each patient path using the
compute_duration function. It returns a named vector, with the id as names, containing
the duration. The results can be plotted using the hist function with the output of
compute_duration as argument; it returns a ggplot object that can be modified.

R> duration <- compute_duration(care)
R> head(duration)

3 9 13 15 18 21
5 1 7 32 18 5

R> hist(duration)

The resulting plot is displayed in Figure 3. Most paths last less than 40 months with
a mode value around 20 months. We decide to keep in the analysis a followup on the
common interval [0, 18].

To restrict paths to the interval [0, 18], we use the cut_data function that has two
parameters: data and Tmax, the maximal time value. After applying this function, the result
contains all paths observed on [0, Tmax].

R> idToKeep <- names(duration[duration >= 18])
R> care2 <- cut_data(care[care$id %in% idToKeep, ], 18)
R> head(care2)

id time state
1 15 0 D
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5 15 15 C
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7 18 0 D
8 18 2 S
9 18 18 S
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0

200

400

600

800

0 20 40
Duration

F
re

qu
en

cy

Figure 3. Distribution of the duration of trajectories.

3.2. Basic Statistics for Categorical Functional Data
3.2.1. Time Spent in Each State

An interesting statistic is the time spent in each state per patient that can be computed
with compute_time_spent function. It returns a matrix with n rows (number of patients)
and K columns (number of states) with the computed time. A plot function is provided to
plot the distribution for each state. Figure 4 displays the graphic for the care dataset. We
note that patients tend to stay longer without medical followup (D) than in the other states.

R> timeSpent <- compute_time_spent(care2)
R> head(timeSpent)

D C T S
15 11 4 3 0
18 2 0 0 16
43 4 1 2 11
48 0 7 11 0
53 7 0 0 11
65 18 0 0 0
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R> boxplot(timeSpent)
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Figure 4. Distribution of time spent per state.

3.2.2. Number of Jumps

The compute_number_jumps function counts the number of transitions within paths.
It has two arguments: data, the dataset in the right format and countDuplicated, a binary
value indicating if jumps in the same state must be ignored (FALSE) or not, the default is
FALSE. A hist function is provided to plot the distribution of the number of jumps. For the
care dataset, the number of jumps varies between 0 and 8 (cf. Figure 5), with most patients
with less than 6 jumps.

R> nJump <- compute_number_jumps(care2, countDuplicated = FALSE)
R> head(nJump)

15 18 43 48 53 65
4 1 3 6 1 0

R> hist(nJump)

The transitions are visible using the statetable function that counts the number of
transitions between each pair of states. Transitions between identical states can be removed
from the output table using removeDiagonal = TRUE.

R> statetable(care2, removeDiagonal = TRUE)

to
from D C T S

D 0 697 253 146
C 271 0 346 97
T 16 74 0 461
S 16 91 31 0
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Notice that the state S (infection suppressed) is not an absorbing state, indicating some
patients have relapsed.
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cy

Figure 5. Distribution of number of jumps per individual.

3.2.3. States Distribution over Time

The last interesting statistic is the probability to be in some state at a given time. It is
computed using the estimate_pt function. It has two arguments: data, the dataset in the
right format and NAafterTmax. If NAafterTmax = FALSE, it considers that the last entry of
an individual corresponds to its last change of state, i.e., the individual stays in the last
recorded state for any time greater than the last time entry; if TRUE, it considers that for any
time greater than the last time entry, the records are missing; the default is FALSE. This is an
important parameter when paths have different ending times. This function returns a list
of two elements: t, a vector containing the time values, and pt, a matrix (with the states
in rows and the time values in columns) containing the computed probabilities. A plot
function is provided to display the results; the first parameter is the output of estimate_pt
function, the second is ribbon. If ribbon = FALSE, the probability for a state is displayed
with a line, if TRUE, with a ribbon (cf. Figure 6). In this figure, we note that the probability
of not having a followup (D) decreases over time, whereas the probability to be cured (S)
has an opposite trend.

R> proba <- estimate_pt(care2)
R> proba

$pt
0 1 2 3 4 5 ...

D 0.991 0.653 0.596 0.566 0.555 0.552 ...
C 0.008 0.202 0.180 0.166 0.156 0.134 ...
T 0.000 0.099 0.171 0.203 0.159 0.128 ...
S 0.001 0.046 0.053 0.065 0.131 0.185 ...
$t
[1] 0 1 2 3 4 5 6 ...
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R> plot(proba, ribbon = TRUE)
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(b)
Figure 6. Probabilities to be in each state with regards to the time. (a) ribbon = TRUE; (b) ribbon = FALSE.

3.2.4. Continuous-Time Markov Chain

Let us assume data come from a continuous-time Markov process X = {Xt, t ∈ [0, T]}
with a set of states S , Xt ∈ S , t ∈ [0, T]. Then for i, j ∈ S and t, s ≥ 0, the probability that
the process will be in state j at time t + s, given it is in state i at time s, and the whole
history until s is given by:

P(Xs+t = j|Xs = i, {Xu = xu : 0 ≤ u < s}) = P(Xs+t = j|Xs = i).

A continuous-time Markov chain is completely described by its transition matrix
Π = (πij)i,j∈S and λ = {λi}i ∈ S , the parameters of the exponentially distributed sojourn
time in each state. See for more details [5].

The estimate_Markov function estimates the transition matrix (Π) and the λ parame-
ter (lambda) associated with the mean sojourn time spent in each state.

R> mark <- estimate_Markov(care2)
R> mark

$P
to

from D C T S
D 0.00000000 0.63594891 0.23083942 0.13321168
C 0.37955182 0.00000000 0.48459384 0.13585434
T 0.02903811 0.13430127 0.00000000 0.83666062
S 0.11594203 0.65942029 0.22463768~0.00000000

$lambda
D C T S

0.1328033 0.2538578 0.2438443 0.1149503
attr(,‘‘class’’)
[1] ‘‘Markov’’
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The estimated process can be plotted as a diagram with the plot function displayed
in Figure 7. Each node represents a state with its mean sojourn time. An arrow between
two nodes defines a possible transition with its probability.

R> plot(mark, main = ‘‘care: transition graph’’)

care: transition graph
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0.48
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0.13

0.84
0.12

0.66

0.22

D (7.53)

C (3.94)

T (4.1)

S (8.7)

Figure 7. Transition graph displayed using plot.Markov.

3.3. Optimal Encoding

The main contribution of cfda is the computation of an optimal encoding for cate-
gorical functional data performed by the compute_optimal_encoding function. The two
main parameters are data, the dataset in the cfda format, and basisobj, a basisfd ob-
ject created using the different create.*.basis functions from the fda package. It also
performs bootstrapping for computing confidence intervals of the computed encoding
functions; associated parameters are computeCI, a logical indicating whether bootstrap
must be performed, nBootstrap, the number of bootstrap samples, and propBootstrap,
the proportion of individuals used for each bootstrap sample. Other parameters are nCores
the number of cores to use, verbose, if TRUE, some information is printed during the
process. The compute_optimal_encoding function uses integrate [4] to compute inte-
grals, parameters for this function can be passed through ... in particular subdivisions,
the number of subdivisions to estimate the integral.

R> set.seed(42)
R> basis <- create.bspline.basis(c(0, 18), nbasis = 10, norder = 4)
R> fmca <- compute_optimal_encoding(care2, basis, nCores = 7)

######### Compute encoding #########
Number of individuals: 1317
Number of states: 4
Basis type: bspline
Number of basis functions: 10
Number of cores: 7
---- Compute V matrix:
|==================================================| 100% elapsed=21 s
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DONE in 21.78 s
---- Compute U matrix:
|==================================================| 100% elapsed=122 s

DONE in 122.42 s
---- Compute encoding:
DONE in 0.13 s
---- Compute Bootstrap Encoding:
**************************************************
DONE in 1.3 s
Run Time: 149.84 s

The main part of the computational time comes from the computation of V and U ma-
trices using parallel computation. Once these matrices are computed, a bootstrap estimation
is performed for a low computational cost. The output object of compute_optimal_encoding
is a list containing:

eigenvalues eigenvalues of the problem (26)

alpha coefficients of the different encoding for each eigenvector (a list of matrices) (26)

pc principal components for each eigenvector

F F matrix (see Equation (24))

V V matrix (see Equation (22))

G covariance matrix of V (see Equation (23))

basisobj basisobj parameter

bootstrap encoding for each bootstrap sample

varAlpha a list containing
Σ̂(i,x) ∀i, ∀x ∈ S , covariance matrix of α̂i,x =

(
α̂i,(x,1), . . . , α̂i,(x,m)

)
This object has its own summary and print functions.

3.3.1. Plot Functions

Three plot functions are associated with the compute_optimal_encoding function;
the first argument of these functions is the output of compute_optimal_encoding.

The first one, the plot function plots the encodings associated with a given eigen-
vector (harm parameter, by default, the encodings associated with the first eigenvector
are plotted). If compute_optimal_encoding was run with parameter computeCI = TRUE,
then the confidence interval can be added on the plot using the parameter addCI = TRUE.
A subset of states can be plotted by providing a vector with the state names to the states
parameter.

The plotEigenvalues function plots the computed eigenvalues. It has two extra
boolean parameters: cumulative, if TRUE, the cumulative sum of the eigenvalues is plotted
and normalize, if TRUE, eigenvalues are normalized such that their sum is equal to 1.

The third one is the plotComponent function that plots paths coordinates using the
principal components (comp parameter, a vector of length 2 containing the components
number). The other arguments are addNames that adds the path’s names on the plot
and some parameters to adjust the position and size of these names (nudge_x, nudge_y
and size).

The plots for the care dataset are shown in Figures 8 and 9 and are produced by the
following code:

R> plotEigenvalues(fmca, cumulative = TRUE, normalize = TRUE)
R> plotComponent(fmca, comp = c(1, 2), addNames = FALSE)
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R> plot(fmca)
R> plot(fmca, addCI = TRUE)
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Figure 8. Plots generated by different graphical functions on the output of the compute_optimal_encoding function.
(a) plotEigenvalues; (b) plotComponent.

−0.25

0.00

0.25

0 5 10 15
Time

a x
(t

)

State

D

C

T

S

Encoding function for harmonic number 1

(a)
Figure 9. Cont.
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Figure 9. Plots generated by the plot function on the output of the compute_optimal_encoding
function. (a) plot(fmca); (b) plot(fmca, addCI = TRUE).

3.3.2. Extract the Encoding Functions

The computed encoding functions can be extracted using the get_encoding function
as an object of class fd (functional object from fda) using fdObject = TRUE or as a matrix
using fdObject = FALSE. In the latter case, an extra parameter nx specifies the number of
time points to extract.

R> encodingFd <- get_encoding(fmca, fdObject = TRUE)
R> str(encodingFd)

List of 3
$ coefs : num [1:10, 1:4] 0.0299 -0.0543 -0.1965 -0.1645 -0.2371 ...
..- attr(*, ‘‘dimnames’’)=List of 2
.. ..$ : NULL
.. ..$ : chr [1:4] ‘‘D’’ ‘‘C’’ ‘‘T’’ ‘‘S’’
$ basis :List of 10
..$ call : language basisfd(type = type, | __truncated__
..$ type : chr ‘‘bspline’’
..$ rangeval : num [1:2] 0 18
..$ nbasis : num 10
..$ params : num [1:6] 2.57 5.14 7.71 10.29 12.86 ...
..$ dropind : NULL
..$ quadvals : NULL
..$ values : list()
..$ basisvalues: list()
..$ names: chr [1:10] ‘‘bspl4.1’’ ‘‘bspl4.2’’ ‘‘bspl4.3’’ ‘‘bspl4.4’’ ...
..- attr(*, ‘‘class’’)= chr ‘‘basisfd’’
$ fdnames:List of 3
..$ args: chr ‘‘time’’
..$ reps: chr [1:4] ‘‘reps 1’’ ‘‘reps 2’’ ‘‘reps 3’’ ‘‘reps 4’’
..$ funs: chr ‘‘values’’
- attr(*, ‘‘class’’)= chr ‘‘fd’’

R> encodingMat <- get_encoding(fmca, fdObject = FALSE, nx = 19)
R> encodingMat
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$x
[1] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17~18

$y
D C T S

[1,] 0.02986969 0.169492601 0.50380590 0.4559043
[2,] -0.06073672 0.163315622 0.35643506 0.4180230
[3,] -0.12970105 0.088328506 0.34225746 0.4126089
[4,] -0.16758420 0.020411074 0.34651825 0.4159033
[5,] -0.17812958 -0.007566828 0.31652186 0.4149973
[6,] -0.18096760 -0.014569119 0.27436391 0.4100582
[7,] -0.19348217 -0.020533054 0.24249695 0.4020949
[8,] -0.21335627 -0.032358522 0.21809774 0.3925044
[9,] -0.23081796 -0.051930578 0.18880144 0.3828197
[10,] -0.24069960 -0.077085840 0.15014660 0.3734934
[11,] -0.24597159 -0.098545473 0.11162958 0.3630747
[12,] -0.25009513 -0.107580629 0.08297660 0.3500902
[13,] -0.25321503 -0.107980977 0.06221397 0.3347482
[14,] -0.25359641 -0.110631333 0.04073503 0.3182122
[15,] -0.25084388 -0.121299335 0.01379572 0.3018281
[16,] -0.24813344 -0.132111070 -0.01301242 0.2873926
[17,] -0.24881502 -0.133707940 -0.03278505 0.2766485
[18,] -0.24943891 -0.128922501 -0.04469775 0.2692082
[19,] -0.24091335 -0.130703127 -0.05297104 0.2629170

3.3.3. Interpreting the Encoding Functions

First, look at the plot of the encoding functions associated with the first principal
component (harmonic 1, cf. Figure 9a).

R> plot(fmca, harm = 1)

At each time, the curve corresponding to state “D” is the lowest one, this indicates that
paths with a “large” negative value for principal component number 1 tend to spend more
time in this state, whereas those with large positive values will visit less this state. Similarly,
individuals with a large positive value tend to spend more time in the state “S”. To check
these statements, individuals with extreme values on the first component are plotted using
the plotData function with the group parameter. A group variable is created with two
different values: “min” for the individuals with the 5% lowest value and “max” for the
individuals with 5% highest value.

R> minpc1 <- names(which(fmca$pc[,1] <= quantile(fmca$pc[,1], 0.05)))
R> maxpc1 <- names(which(fmca$pc[,1] >= quantile(fmca$pc[,1], 0.95)))
R> ids <- unique(care2$id)
R> group <- factor(rep(NA, length(ids)), levels = c(‘‘min’’, ‘‘max’’))
R> group[ids %in% minpc1] = ‘‘min’’
R> group[ids %in% maxpc1] = "max"
R> plotData(care2, group = group, addId = FALSE, addBorder = FALSE,
+ sort = TRUE) +
+ ggplot2::labs(title = ‘‘Extreme individuals on component 1’’)

The result is visible in Figure 10 and confirms our interpretation. Clearly, patients in
the “min” group spend 18 months in the “D” state (without medical followup), whereas
patients in the “max” group spend most of their time in the state “S” (infection suppressed).
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Figure 10. Individuals with extreme negative value (min) and extreme positive value (max) on the
component 1.

3.3.4. Application to Clustering

The proposed method produces numerical encoding for categorical functional data.
This encoding can be used for statistical learning purposes such as regression or clustering.
In the following, we perform a hierarchical clustering to find hidden patterns (structure) in
the care dataset.

The clustering is performed with the first principal components explaining at least
90% of the variance. The associated tree is displayed in Figure 11.

R> nPc90 <- which(cumsum(prop.table(fmca$eigenvalues)) > 0.9)[1]
R> hc <- hclust(dist(fmca$pc[, 1:nPc90]), method = ‘‘ward.D2’’)
R> plot(hc, labels = FALSE)

We decided to keep four clusters regarding the heights of the tree. The resulting
clusters can be displayed using the plotData function with the group argument.

R> class <- cutree(hc, k = 4)
R> plotData(care2, group = class, addId = FALSE, addBorder = FALSE, +
+ sort = TRUE)

The different clusters are associated with the time spent in the different states after
leaving the state “D” (cf. Figure 12). For example, the cluster number 1 corresponds to
patients that have spent most of their time (after “D”) in the “C” state.

A ready-to-run R code implementing optimal encoding for the care dataset towards
clustering is presented in Appendix A.
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Figure 11. Hierarchical tree obtained using the principal components.
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Figure 12. Content of the different clusters.
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4. Simulation Study
4.1. Birth-and-Death Process

Data are simulated under the simple model of the birth-and-death process presented
in [11]. The process is defined on the interval time [0, 1] by

Xt =

{
0, if t < θ,
1, if t ≥ θ,

(31)

where θ is a random variable uniformly distributed on [0, 1].
In this case, K = 2, S = {s1 = 0, s2 = 1}, and

px(t) = P(Xt = x) =
{

t, if x = 1
1− t, if x = 0.

For t < s, we have

px,y(t, s) = P(Xt = x, Xs = y) =


1− s, if x = 0, y = 0,
s− t, if x = 0, y = 1,
0 if x = 1, y = 0,
t if x = 1, y = 1,

and for t > s,

px,y(t, s) = P(Xt = x, Xs = y) =


1− t, if x = 0, y = 0,
0 if x = 0, y = 1,
t− s if x = 1, y = 0,
s if x = 1, y = 1.

From (12) and (14), the authors in [11] provide explicit formulas for the eigenvalues
{λi}i≥1, the optimal encoding functions {ax

i }i≥1, x ∈ S , and the principal components
{zi}i≥1, as follows:

• the eigenvalues are given by:

λi =
1

i(i + 1)
, i ≥ 1. (32)

• if Pn(u) =
1

2nn!
dn

dun (u
2 − 1)n is the Legendre polynomials of order n, then the princi-

pal components zi corresponding to λi, are given, up to a constant, by:

zi = Pi(2θ − 1), i ≥ 1.

In particular, for i = 1, 2,

z1 =
√

6
(

θ − 1
2

)
is uniformly distributed on

[
−
√

3
2 ;
√

3
2

]
, and

z2 =
√

30
(

θ2 − θ +
1
6

)
.

Observe that z1 and z2 are linearly uncorrelated but related by

z2 =

√
5
6

(
z2

1 −
1
2

)
, (33)
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showing some regularity of the 2-D representation of data throughout the plot
{(z1(ω), z2(ω), ω ∈ Ω}.

• for i = 1, 2, the optimal encoding functions are given by:

ax
1(t) =


√

6t, if x = 0,

√
6(t− 1), if x = 1,

(34)

and

ax
2(t) =


√

120
(

t2 − t
2

)
, if x = 0,

√
120
(

t2 − 3
2

t +
1
2

)
, if x = 1.

(35)

4.2. Results

We simulate data from the above process with different numbers of trajectories (indi-
viduals), n = 50, 100, 200, 500, 1000 and a B-spline basis function of order 4 with different
numbers of basis functions m = 5, 10, 20 (equidistant knots). Simulation results are com-
pared to the theoretical results presented in Section 4.1 to ensure the good behaviour of the
implemented method.

4.2.1. Eigenvalues

The first five eigenvalues for the different settings are compared to the eigenvalues
from (32) in Table 1. The estimations are presented together with the associated standard
errors in order to measure the impact of the choice of the sample size (n) and the dimension
of the basis (m).

Table 1. True and estimated eigenvalues for the birth-and-death process. The estimated values are the mean over 100
samples. In brackets, the standard error is displayed.

m = 5

true n = 50 n = 100 n = 200 n = 500 n = 1000

1 0.5000 0.5117 (6.4× 10−4) 0.5013 (4.4× 10−4) 0.5000 (3.1× 10−4) 0.5009 (1.8× 10−4) 0.5018 (1.5× 10−4)
2 0.1667 0.1680 (3.3× 10−4) 0.1672 (2.0× 10−4) 0.1679 (1.5× 10−4) 0.1664 (0.9× 10−4) 0.1662 (0.8× 10−4)
3 0.0833 0.0824 (1.9× 10−4) 0.0835 (1.4× 10−4) 0.0834 (0.9× 10−4) 0.0835 (0.5× 10−4) 0.830 (0.4× 10−4)
4 0.0500 0.0455 (1.3× 10−4) 0.0490 (0.9× 10−4) 0.0494 (0.6× 10−4) 0.0492 (0.4× 10−4) 0.493 (0.3× 10−4)
5 0.0333 0.0184 (0.6× 10−4) 0.0205 (0.4× 10−4) 0.0211 (0.3× 10−4) 0.0215 (0.2× 10−4) 0.0216 (0.1× 10−4)

m = 10

true n = 50 n = 100 n = 200 n = 500 n = 1000

1 0.5000 0.5124 (6.4× 10−4) 0.5016 (4.3× 10−4) 0.5002 (3.1× 10−4) 0.5009 (1.8× 10−4) 0.5018 (1.5× 10−4)
2 0.1667 0.1692 (3.4× 10−4) 0.1677 (2.0× 10−4) 0.1682 (1.5× 10−4) 0.1665 (0.9× 10−4) 0.1663 (0.8× 10−4)
3 0.0833 0.0841 (2.0× 10−4) 0.0843 (1.4× 10−4) 0.0839 (0.9× 10−4) 0.0837 (0.5× 10−4) 0.831 (0.4× 10−4)
4 0.0500 0.0486 (1.3× 10−4) 0.0510 (0.9× 10−4) 0.0508 (0.7× 10−4) 0.0501 (0.4× 10−4) 0.0501 (0.3× 10−4)
5 0.0333 0.0317 (0.8× 10−4) 0.0335 (0.6× 10−4) 0.0334 (0.4× 10−4) 0.0336 (0.2× 10−4) 0.0335 (0.2× 10−4)

m = 20

true n = 50 n = 100 n = 200 n = 500 n = 1000

1 0.5000 0.5128 (6.4× 10−4) 0.5018 (4.4× 10−4) 0.5003 (3.1× 10−4) 0.5010 (1.8× 10−4) 0.5018 (1.5× 10−4)
2 0.1667 0.1699 (3.4× 10−4) 0.1681 (2.0× 10−4) 0.1683 (1.5× 10−4) 0.1666 (0.9× 10−4) 0.1663 (0.8× 10−4)
3 0.0833 0.0849 (2.0× 10−4) 0.0847 (1.4× 10−4) 0.0841 (0.9× 10−4) 0.0837 (0.5× 10−4) 0.0832 (0.4× 10−4)
4 0.0500 0.0495 (1.3× 10−4) 0.0514 (0.9× 10−4) 0.0510 (0.6× 10−4) 0.0502 (0.4× 10−4) 0.0501 (0.3× 10−4)
5 0.0333 0.0327 (0.8× 10−4) 0.0340 (0.6× 10−4) 0.0337 (0.5× 10−4) 0.0337 (0.2× 10−4) 0.0335 (0.2× 10−4)



Mathematics 2021, 9, 3074 26 of 31

4.2.2. Encoding Functions

Figure 13 shows the mean over 100 samples of the first and second encoding functions
for the state 0 for m = 5. The true encoding functions (34) and (35) are displayed in solid
black line. As for the eigenvalues, the best estimates are achieved with n = 200 and n = 500.
The same conclusion holds for m = 10 and m = 20, but the number of basis functions does
not seem to influence the accuracy.
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(d)
Figure 13. True (solid black) and estimated encoding functions for state 0 of the birth-and-death process. The estimated
encoding functions are the mean of 100 samples. (a) First encoding function for state 0 (m = 5); (b) Second encoding function
for state 0 (m = 5); (c) First encoding function for state 0 (n = 100); (d) Second encoding function for state 0 (n = 100).

4.2.3. Principal Components

In Figure 14, we check the relation between the first and second principal component (33).
The theoretical equation is displayed in black, whereas the computed principal components
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for a sample with n = 500 and m = 20 are in red. We note the closeness of the computed
components with the theoretical equation.
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p 
2
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Figure 14. In red, first and second principal components for every observation of the birth-and-death
process for n = 500 and m = 20. In solid black, the theoretical relation between these two components.

In Figure 15, the cumulative distribution functions (cdf) for the two first principal
components are displayed as well as their empiric equivalent for n = 500 and m = 20.

As described above, z1 follows a uniform distribution between−
√

3
2 and

√
3
2 , the empirical

cdf (in red) is close to the theoretical one. The same representation is made for z2.
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(b)
Figure 15. Empirical (resp. theoretical) cumulative distribution function for the first (z1) and second (z2) principal compo-
nents of the birth-and-death process for n = 500 and m = 20. (a) Cumulative distribution function for z1; (b) Cumulative
distribution function for z2.

The results in this paper were obtained using R 4.0.3 with the cfda 0.9.9 package. R
itself and all packages used are available from the Comprehensive R Archive Network
(CRAN) [4].
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5. Summary and Discussion

Categorical functional data are represented by paths of a continuous-time stochastic
process with values in a finite set of states. This is less popular than the real-valued
functional data, which are yet another kind of infinite dimensional object. The analysis
of categorical functional data is presented in this paper as an extension of the multiple
correspondence analysis for the finite dimensional setting. Principal components, optimal
encoding functions, and optimal representations are presented. A simulation study and a
real data application illustrate the methodology implemented in the cfda R package.

In future work, we propose to address the problem of missing and noisy data. More
specifically, timepoints are observed with noise or/and are missing.
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Appendix A
R Code: Care Application

R> library(cfda)

R> # load the dataset
R> data(care)

R> summary_cfd(care)

R> # visualize the dataset
R> plotData(care[care$id <= 100, ])
R> plotData(care, addId = FALSE, addBorder = FALSE, sort = TRUE)

R> duration <- compute_duration(care)
R> head(duration)
R> hist(duration)

R> ####### Select individuals for encoding
R> ## We keep individuals with at least 18 months of follow-up and works on the first 18 months
R> length(duration[duration >= 18])

R> idToKeep <- as.numeric(names(duration[duration >= 18]))
R> care2 <- cut_data(care[care$id %in% idToKeep, ], 18)

R> head(care2, 10)

R> summary_cfd(care2)

R> plotData(care2, addId = FALSE, addBorder = FALSE, sort = TRUE)

R> ####### Basic statistics
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R> timeSpent <- compute_time_spent(care2)
R> boxplot(timeSpent)

R> nJump <- compute_number_jumps(care2, countDuplicated = FALSE)
R> head(nJump)
R> hist(nJump)

R> statetable(care2, removeDiagonal = TRUE)

R> # individuals have not the same length and the last state is not necessarily an absorbing state,
so we use NAafterTmax = TRUE

R> proba <- estimate_pt(care2, NAafterTmax = TRUE)
R> plot(proba, ribbon = TRUE)
R> plot(proba)

R> mark <- estimate_Markov(care2)
R> plot(mark, main = ‘‘care: transition graph’’)

R> ####### Encoding
R> set.seed(42)
R> basis <- create.bspline.basis(c(0, 18), nbasis = 10, norder = 4)
R> fmca <- compute_optimal_encoding(care2, basis, nCores = 7)

R> plotEigenvalues(fmca, cumulative = TRUE, normalize = TRUE)
R> plot(fmca)
R> plot(fmca, addCI = TRUE)
R> plotComponent(fmca, addNames = FALSE)

R> encodingFd <- get_encoding(fmca, fdObject = TRUE)
R> encodingMat <- get_encoding(fmca, fdObject = FALSE, nx = 19)

R> ## interpreting the results
R> plot(fmca, harm = 1)

R> minpc1 <- names(which(fmca$pc[,1] <= quantile(fmca$pc[,1], 0.05)))
R> maxpc1 <- names(which(fmca$pc[,1] >= quantile(fmca$pc[,1], 0.95)))

R> group <- rep(NA, length(unique(care2$id)))
R> group[unique(care2$id) %in% minpc1] = "min"
R> group[unique(care2$id) %in% maxpc1] = "max"

R> plotData(care2, group = group, addId = FALSE, addBorder = FALSE, sort = TRUE) +
R> ggplot2::labs(title = ‘‘Extreme individuals on component 1’’)

R> plot(fmca, harm = 2)

R> minpc2 <- names(which(fmca$pc[,2] <= quantile(fmca$pc[,2], 0.05)))
R> maxpc2 <- names(which(fmca$pc[,2] >= quantile(fmca$pc[,2], 0.95)))

R> group <- rep(NA, length(unique(care2$id)))
R> group[unique(care2$id) %in% minpc1] = "min"
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R> group[unique(care2$id) %in% maxpc1] = "max"

R> plotData(care2, group = group, addId = FALSE, addBorder = FALSE, sort = FALSE) +
R> ggplot2::labs(title = ‘‘Extreme individuals on component 2’’)

R> ####### Clustering
R> nPc90 <- which(cumsum(prop.table(fmca$eigenvalues)) > 0.9)[1]
R> hc <- hclust(dist(fmca$pc[, 1:nPc90]), method = ‘‘ward.D2’’)

R> plot(hc, labels = FALSE)
R> barplot(rev(hc$height)[1:20])

R> cluster <- cutree(hc, k = 4)
R> plotData(care2, group = cluster, addId = FALSE, addBorder = FALSE, sort = TRUE)
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