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Abstract: Waves of electrical excitation rotating around an obstacle is one of the important mecha-
nisms of dangerous cardiac arrhythmias occurring in the heart damaged by a post-infarction scar.
Such a scar is also surrounded by the region of heterogeneity called a gray zone. In this paper, we
perform the first comprehensive numerical study of various regimes of wave rotation around an
obstacle surrounded by a gray zone. We use the TP06 cellular ionic model for human cardiomyocytes
and study how the period and the pattern of wave rotation depend on the radius of a circular
obstacle and the width of a circular gray zone. Our main conclusions are the following. The wave
rotation regimes can be subdivided into three main classes: (1) functional rotation, (2) scar rotation
and the newly found (3) gray zone rotation regimes. In the scar rotation regime, the wave rotates
around the obstacle, while in the gray zone regime, the wave rotates around the gray zone. As
a result, the period of rotation is determined by the perimeter of the scar, or gray zone perimeter
correspondingly. The transition from the scar to the gray rotation regimes can be determined from
the minimal period principle, formulated in this paper. We have also observed additional regimes
associated with two types of dynamical instabilities which may affect or not affect the period of rota-
tion. The results of this study can help to identify the factors determining the period of arrhythmias
in post-infarction patients.

Keywords: re-entry; myocardial heterogeneity; cardiac modeling; myocardial infarction; infarct
border zone; gray zone

1. Introduction

Propagating non-linear waves occur in various types of excitable media of a physi-
cal [1], chemical [2,3] and biological nature [4,5]. These waves can also form vortices which
organize spatial excitation patterns in the medium and their onset can have important
consequences [4,6,7]. For example, rotating waves in the heart are the main mechanisms
of dangerous cardiac arrhythmias [8,9] and the study of such regimes in the heart is an
important area of research in cardiac electrophysiology. In some patients, arrhythmias
may arise from myocardial infarction, i.e., a condition where due to poor blood supply,
a region of the heart is damaged. As a result, electrical waves propagating through the
heart break. The breaks can occur due to direct interaction of the propagating wave with a
heterogeneity, or due to dynamical instabilities [10]. Such breaks can form vortices, which
often rotate in/around the damaged area [11,12].

From a mathematical point of view, such regimes can be viewed as rotation of non-
linear waves around an obstacle [13]. This is one of the classical regimes studied in the
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theory of excitable media. Such regimes were described in cellular automata models as
early as in 1946 [14]. Later they were studied in reaction–diffusion models of excitable
media [15]. More recently, interest in such regimes, especially on rotation around an
obstacle of small size, was initiated by the concept of the anchoring of vortices proposed
by Davidenko and co-authors [7]. Such processes were also studied using theoretical
approaches [16,17].

Unfortunately, the direct application of such studies to arrhythmias which occur
around an infarcted area is difficult due to the following problem. A post-infarction region
in the heart contains a compact scar region, which is similar to an inexcitable obstacle [18].
Such a compact scar is surrounded by a border zone, which has properties that differ from
the rest of the normal cardiac tissue [19]. This zone is also called the gray zone (GZ) because
of its intermediate signal intensity in a clinical MRI [20]. In a mathematical sense, this
problem can be viewed as a wave rotation around an obstacle surrounded by a region of a
certain width in which the parameters of equations describing cardiac cells are different
from those at the rest of the tissue [13,21]. Such rotation regimes are poorly understood.

The main aim of this paper is to perform a generic numerical study of this problem. We
use a generic 2D representation of ventricular tissue with an infarction region, which is rep-
resented by a circular obstacle with a gray zone around it, defined by only two parameters:
obstacle radius and gray zone width. We assume that properties of cardiomyocytes in the
gray zone are different from those in the rest of the tissue and study the rotation of waves
in such 2D models. (The details about gray zone representation are given in Section 2.2).
We vary the size of the obstacle and gray zone to reveal their effects on the pattern of wave
rotation and its period, which is an important characteristic of cardiac arrhythmia. We
show that depending on the parameters, the wave can rotate either around the compact
scar, or other regimes occur where the wave rotates within the gray zone or on its border
with the normal tissue. We investigate the factors which determine the switching between
these regimes and propose a basic rule which can predict transitions in such a system: the
principle of minimal period. In addition, we show that the dependency of the period on
the size of the scar in the physiologically relevant range is determined by the slope of the
conduction velocity restitution curve, and can be estimated from a simple equation derived
in the paper. We also find an additional regime of dynamical instabilities, which occurs for
small scars and requires regional tissue heterogeneity. Overall, we provide classification
of excitation patterns and determine the main factors and principles which can affect the
period of the wave rotation in a generic model of the infarction scar. It can potentially
contribute to understanding the mechanisms and dynamics of cardiac arrhythmias which
occur in the hearts after a myocardial infarction.

2. Materials and Methods

In general, our numerical procedure is organized as follows. We first setup a 2D model
of normal cardiac tissue, which consists of two parts: models of cardiac cells represented by
18 variable TP06 models, and a spatial operator (generalized Laplacian), which describes
cell connections (Section 2.1). Then, we add to this 2D model an infarction scar surrounded
by the gray zone. The infarction scar is modeled via boundary conditions and the gray
zone as a heterogeneity, i.e., the gray zone is a domain in which the parameters of the
TP06 model are different form the parameters in normal tissue (Section 2.2). Finally, we
impose a special initial procedure (so-called S1-S2 protocol) in which we initiate a wave
rotating around the gray zone (Section 2.3). After the wave is initiated, we find the period
of rotation and study the spatial excitation patterns (Section 3).

2.1. Baseline Ventricular Myocardial Tissue Model. Numerical Approach and Software

To describe the propagation of the excitation wave in the ventricular myocardial tissue
from a human heart, we used a 2D monodomain approach [22] for isotropic medium:

Cm
∂V
∂t

= D∇2V − Iion, (1)
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where V is the transmembrane potential; D is a constant accounting for electrical call
coupling. Cm is the capacitance of the cell membrane. Iion is the sum of all transmembrane
ionic currents, described with a biophysically detailed cellular ionic TP06 model of human
ventricular cardiomyocytes [23]:

Iion = INa + IK1 + Ito + IKr + IKs + ICaL + INaCa + INaK + IpCa + IpK + IbNa + IbCa, (2)

where INa is the Na+ current, IK1 is the inward rectifier K+ current, Ito is the transient
outward current, IKr is the delayed rectifier current, IKs is the slow delayed rectifier cur-
rent, ICaLis the L-type Ca2+ current, INaK is the Na+/Ca2+ exchanger current, INaK is
the Na+/K+ ATPhase current, IpCa and IpK are plateau Ca2+ and K+ currents, and IbNa
and IbCa are background Na+ and Ca2+ currents. This cellular model provides a detailed
description of voltage, ionic currents and intracellular ion concentrations and is based on
a wide range of human electrophysiological data. The properties of all of these currents
are fitted to their experimentally measured values, and their dynamics are fitted using
additional differential equations. Each of the currents is typically directly proportional to
the corresponding constant G∗, called a maximal conductivity, and depends on the values
of time-dependent variable V and certain gating variables. To create heterogeneity, we
regionally modified values of G∗ for several currents (please see the next subsection).

Simulations were performed on grids of 500× 500 elements (140 mm ×140 mm) or
750× 750 elements (210 mm × 210 mm). Each tissue element can represent either excitable
myocardial tissue or inexcitable post-infarction scar. Grids with more elements were used
for modeling post-infarction scars with radius rIS > 16.8 mm.

Boundary conditions were formulated as the no flux through the boundaries:

~n∇V = 0 (3)

where ~n is the normal to the boundary. Infarction scar elements were simulated as non-
conducting inexcitable obstacles and considered as internal boundaries (no flux) for the
myocardial elements.

To solve the problem (1)–(3), we used a finite-difference method with a 9-point stencil
discretization scheme, as described in [24,25], with 0.28 mm for the spatial step and 0.02 ms
for the time step. Rush–Larsen formalism [26] was used for TP06 gating variables integra-
tion.

2.2. Representation of Post-Infarction Scar and Gray Zone

Post-infarction scar (IS) was modeled as a non-conducting inexcitable obstacle: we
imposed no-flux boundary conditions (3) at the boundary of this domain. In most of the
simulations, we used a circular obstacle at the center of the tissue (black area in Figure 1A).
It is surrounded by a gray zone (gray area in Figure 1A). For some simulations, we also
use the model of the IS with a realistic shape from [27] (Figure 1B). Because the period
of rotation around an obstacle with concavities is determined by the convex hull of the
obstacle [14], we determined the perimeter of a convex hull for the obstacle in Figure 1B,
which is 116.1 mm.

We used a TP06 cellular ionic model [23] with referent parameters for every cell in
the healthy myocardial tissue, and a model with modified parameters (Table 1) for every
cell in the gray zone reflecting cellular remodeling in myocardial tissue around the scar.
Modification of the TP06 ionic model for the description of cells in the gray zone was
taken from [28] and is similar to the properties of gray zone cells from [21]. In particular,
the maximal conductances of several ionic currents are changed against the reference values
as specified in Table 1. The difference in the model parameters result in the difference
in the action potential shape and duration between the cells from the gray zone and
healthy myocardium (Figure 1B). The action potential duration is longer in the gray zone.
The difference in the cellular activity between the border zone and the rest of the healthy
tissue provides the functional heterogeneity in myocardial tissue around the scar.
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Table 1. Maximal conductivity (G∗) of ionic currents in cellular model from the normal tissue (referent
values) and gray zone (modified values).

Current Normal Tissue Gray zone

Fast Na+ current (INa) 14.838 12.6123 ( 0.85× GNa)
L-type Ca2+ current (ICaL) 3.98× 10−5 3.03674× 10−5 (0.763× GCaL)
Rapid delayed rectifier current (IKr) 0.134 0.0938 (0.7× GKr)
Slow delayed rectifier current (IKs) 0.27 0.054 (0.2× GKs)
Inward rectifier K+ current (IK1) 5.405 1.621 (0.3× GK1)
Transient outward current (Ito) 0.29372972 0.029372972 (0.1× Gto)

Figure 1. (A) Schematic representation of the geometry of cardiac tissue with the post-infarction scar.
Normal tissue (pink), post-infarction scar (black) and gray zone around it (gray). (B) the shape of the
action potential vs. time in cells of healthy myocardium (pink) and gray zone (gray). (C,D) Models
of cardiac tissue with the post-infarction scar with a realistic shape. The gray zones of different sizes
(shades of gray) are shown.

2.3. Protocol of Numerical Experiments in 2D Tissue

A rotating wave in a 2D myocardial tissue slab with a post-infarction scar and gray
zone was initiated counterclockwise using a standard protocol S1–S2 (see Figure S1 in
the Supplementary Materials for a graphical description of the protocol). After the wave
rotation was stabilized, the period of rotation was determined as the time interval between
the subsequent moments of wave arrival to a given point in the healthy tissue.

We varied the size of the scar from rIS = 0 to rIS = 53.2 mm with a step of 2.8 mm,
and width of the gray zone from wGZ = 0 to wGZ = 42 mm, also with a step of 2.8 mm and
analyzed the wave rotation pattern and determined the rotation period.

Note, in this study, we assume that the properties of cardiac cells in the gray zone and
in normal tissue are spatially uniform and thus we use only one parameter set to describe
the normal tissue and one parameter set to describe the gray zone. As a result, after the
wave rotation was stabilized, we were obtaining only one value of the period of rotation
for each geometry. Thus, a single model run per each pair of (rIS, wGZ) was performed.
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All of the calculations were performed on a C program on clusters “URAN” (IMM,
Ural Branch of RAS) and “IIP” of the Institute of Immunology and Physiology (Ekaterin-
burg). The program uses CUDA for GPU parallelization and was compiled with a Nvidia
C Compiler “nvcc”. The computational nodes have graphical cards Tesla K40m0.

3. Results
3.1. Wave Rotation Regimes

Varying the radius of a post-infarction scar (rIS) and the gray zone width (wGZ) in our
2D tissue models, we observed several qualitatively different spatial patterns of the wave
rotation. Representative types of the wave patterns are shown in Figure 2.

Figure 2. Examples of waves rotating around post-infarction scars of different sizes (top to bottom: rIS = 2.8 mm; 19.6 mm;
42 mm) with a gray zone of different sizes (left to right: wGZ = 0 mm; 14 mm; 42 mm). Four rotation regimes are shown:
scar rotation (SR), functional rotation (FR, blue shading shows the effective obstacle around which the wave rotates), gray
zone rotation (GZR) and scar rotation 2 (SR2). See the text for the description of the rotation regimes. Left column: typical
view of the wave rotating around the scar in the absence of the gray zone (wGZ = 0 mm). Waves rotate in two regimes: FR
(A1) and SR (B1, C1). Middle column: waves rotate around the gray zone in a GZR (A2, B2) and SR2 (C2). Right column:
(wGZ = 42 mm) SR2 regime in all cases (A3–C3). Arrows show the direction of the wave rotation. Dashed arrows in A2
(rIS = 19.6 mm, wGZ = 14 mm) show wave direction inside the gray zone. Dashed circles show the border of the gray
zones. Movies of rotation of spiral waves in GZR and SR2 regimes can be found in the Supplementary Materials (movies S2
and S3).
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In the absence of the gray zone (Figure 2 B1,C1, wGZ = 0 mm), the rotation occurs with
the wavefront orthogonal to the boundary of the scar. Let us call this regime a scar rotation,
as here the radius or rotation is determined by the radius of the scar. However, for a small
scar in Figure 2A1, the situation is different. It looks as if the wave is rotating around an
effective obstacle of a larger radius: the point where displacement in the normal direction
coincides with the visible rotation around a center is located on a circle of a larger radius
than the scar (blue shaded circle). Let us call such regime a functional rotation. That means
that the radius of rotation here is determined by the wave itself and not by the obstacle.

For the gray zone of wGZ = 14 mm (Figure 2A2,B2), the rotation occurs with the
wavefront orthogonal to the boundary of the gray zone, as if it is non-excitable. Inside
the gray zone, we see an area in red-orange colors indicating that spatial duration of the
action potential here in prolonged. Let us call this regime a gray zone rotation, as here,
the radius or rotation is determined by the radius of the gray zone. For the largest scar in
Figure 2C2, the wavefront is attached and almost orthogonal to the scar and we observe
scar rotation, however, as the wave here moves inside the gray zone, let us call this regime
a scar rotation 2.

For the largest gray zones of wGZ = 42 mm (Figure 2B3,C3), we see the scar rotation 2
regime, except for in Figure 2A3, where we see some features of functional rotation inside
the gray zone.

Now let us analyze the period of rotation, which is one of the main characteristics of
cardiac arrhythmia.

3.2. Rotation Period Depending on Geometry of the Scar

We plotted dependencies of the rotation period on the radius of the scar for four values
of the gray zone width (Figure 3A) and dependencies of the rotation period on the width
of the gray zone for four values of the scar radius (Figure 3B).

Let us consider Figure 3A first. The black line shows the rotation period vs. rIS in the
absence of the gray zone (wGZ = 0). We see that for small rIS (rIS < 14 mm) the period is
almost constant and does not depend on the size of the scar, and then dependence becomes
linear with a slope of 6.95. Similarly, in the case where the entire tissue has the properties of
the gray zone, the dashed line (wGZ = ∞), we have a dependency with the region of almost
a constant period and then monotonically increasing dependency approaching linearly
with a slope of 5.45. (Here, the entire tissue has the properties of the gray zone.) We will
use this line later to explain the mechanisms of transitions between different wave rotation
regimes. For the gray zone with a width of wGZ = 8.4 mm (the blue line), we have a similar
dependency, with a linear slope = 6.32, however, the transition to the linear part here starts
for smaller infarct radius values of rIS > 2.8 mm. For the gray zone with wGZ = 30.8
and 36.4 mm (green and yellow lines, respectively), both lines approach the asymptotic
dashed line at large scars. For a smaller scar radius, the dependencies are linear before the
green and yellow lines approach the asymptotic dashed line. Their slopes here are 6.35 and
6.5, respectively.

Now, let us consider the dependence of the wave rotation period on the width of the
gray zone at constant rIS (Figure 3B). For all rIS, we have similar dependencies, which at
small wGZ are almost linearly increasing functions that for larger wGZ instantly switch to the
almost horizontal straight lines. We also see that for larger scars, the switch to the plateau
occurs at lower wGZ. In particular, for a small scar of rIS = 8.4 mm, the plateau phase
starts around wGZ = 36.0 mm, while for the largest scar of rIS = 36.4 mm, the plateau
is approached at around wGZ = 16.8 mm. We also performed simulations for the cases
of post-infarction scar with realistic shapes (Figure 3B, gray lines). To place points on the
graph, we calculated the effective radius corresponding to the perimeter of the scar defined
as described in the methods section. We see that periods of a wave rotating around a
realistic scar also linearly depends on width of the gray zone and are almost identical to
the periods of the corresponding scar of a circular shape.
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Figure 3. Dependence of the wave rotation period on the radius of the scar (rIS) and the width of
the gray zone (wGZ). (A) Dependence of the wave rotation period on the radius of the scar with the
gray zone of a different width. The black line shows cases in absence of the gray zone. The gray
dashed line represents periods of waves rotating around a scar in tissue with properties of the gray
zone (wGZ = ∞). (B) Dependence of the wave rotation period on the width of the gray zone in
experiments with different radius of infarction scars. Red line shows a case with smaller radius of
infarction scar (rIS = 8.4 mm), purple line—case with bigger infarction scar (rIS = 36.4 mm). Gray
dashed lines show cases of infarction scars with a realistic shape. Scar perimeter is 116.1 mm for a scar
with a realistic shape 1 (Figure 1C corresponds to the radius of ideal circular scar of rIS = 18.5 mm),
and 233.5 mm for scar with a realistic shape 2 (Figure 1D corresponds to the radius of an ideal circular
scar of rIS = 37.1 mm). Filled symbols (•) represent cases of the scar rotation regime. Open symbols
(◦) represent cases of the gray zone rotation regime. Marked dots (1)–(4) represent the same cases.

3.3. Period and Regimes of Rotation

Now, let us explain the observed dependencies and relate them to the rotation regimes
defined in Section 3.1. Let us first consider the orange line in Figure 3B. Here the line starts
at wGZ = 0 with the scar rotation regime and period of 276 ms. We illustrate this wave
pattern in Figure 2B1. When wGZ increases, the wave detaches from the obstacle and starts
rotating around the gray zone in the gray zone rotation regime. We illustrate this wave
pattern with the period of rotation of 379 ms in Figure 2B2. The reason for the onset of such
a regime is the following. It turns out that for a wave, it is faster to rotate around the gray
zone in the normal tissue than around a scar in the gray zone tissue, as the velocity of the
wave there is smaller due to longer action potential in the gray zone. Indeed, we found
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that the period of rotation inside the gray zone for a scar of this size is 460 ms. We can see it
from the dashed line in Figure 3A for rIS = 19.6 mm. This period is longer than the period
of 379 ms for rotation around the gray zone, and thus the wave chooses to rotate around
the gray zone.

We can also explain the transition from the gray zone to the scar rotation regime if
we further increase the size of the gray zone. Now, the period of rotation around the gray
zone increases with its size, and for the gray zone of wGZ = 30.8 mm it reaches a value
of 460 ms (see dot marked SR2 in Figure 3B). For further increase in wGZ, it will be faster
for the wave to rotate around the scar than around the gray zone, and we observe the scar
rotation 2 regime with a period of 460 ms (Figure 2, B3). Thus, a further increase in wGZ
will not change the wave rotation regime and the period will remain T = 460 ms, as we see
in Figure 3B.

Note that as both the gray zone and scar rotations occur in the normal tissue, these
regimes are closely related to each other. For example, in our case of rIS = 19.6 mm and
wGZ = 14 mm, the radius of the gray zone is rIS + wGZ = 33.6 mm. From Figure 3A, we
find that for a scar of rIS = 33.6 mm, the period of rotation is 362 ms, which is indeed close
to observed value of 379 ms.

Now, let us consider the dependencies in Figure 3A. For wGZ = 0 (the black line),
the linear part of the curve is associated with the scar rotation regime and increasing of the
period of the wave is caused by increasing scar radius rIS. However, the flat part of the
dependency for small rIS is associated with the functional rotation regime. Indeed, for small
rIS, the rotation effectively occurs around a circle with the radius larger than the size of
the scar, and thus the size of the scar does not affect the rotation period. An example of
such an effective rotation circle is shown in Figure 2A1 by shaded blue. Similar wave
patterns of the functional and scar rotation regimes are associated with the dashed curve
(wGZ = ∞). However, here we obviously have the scar rotation 2 regime for large scars and
the functional rotation regimes for small scars as the wave here propagates in the tissue
with the properties of the gray zone.

For the gray zone with a large width of wGZ = 30.8 mm (see green line in Figure 3A)
and large scars rIS >= 14, the curve coincides with the dashed line corresponding to the
scar rotation 2 regime. However, for rIS < 14 mm, we have the gray zone rotation regime as
the rotation around the gray zone, which is faster than scar rotation 2. For the gray zone
with the largest width of wGZ = 36.4 (yellow line in Figure 3A), we have scar rotation 2,
except smaller scars of rIS < 8.4 mm. Here, we have again the gray zone rotation. Compared
to the green curve, the scar rotation 2 here occurs at the smaller scar radius. This is also
logical, as for larger wGZ, the corresponding curve is closer to its asymptotic dashed curve.

Finally, let us consider the factors which determine the slopes of the dependencies of
the period of rotation on the scar geometry parameters.

3.4. Factors Affecting the Period of Rotation

To determine the factors responsible for the observed dependency of the period on
the size of the scar and the gray zone, let us consider the following simple equation. If we
assume that the velocity of wave (v) at the boundary of the obstacle is constant and the
perimeter of the obstacle is L, then the period T is given by: T = L/v, or L = T ∗ v. In turn,
the velocity of the wave depends on the period of excitation T (conduction velocity (CV)
restitution) and the curvature of the wave front [29,30]. If we neglect the dependency of
the velocity on the curvature, we get: L = T ∗ v(T). Thus, the slope of the dependency
of the period on the obstacle size (shown in Figure 3A) can be found from the following
simple calculation:

dL
dT

=
d(T ∗ v(T))

dT
= v(T) + T ∗ dv

dT
dT
dL

=
1

v(T) + T ∗ dv/dT
(4)

where dv/dT is the slope of the CV restitution curve.
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Thus, we see that the slope of the dependency of wave period T on the obstacle
perimeter L is determined not only by the velocity v itself but also by the slope of the CV
restitution curve.

We computed CV restitution curves for the normal tissue and tissue with properties
of the gray zone (Figure 4). We see that both curves are monotonically increasing functions
v(T) approaching some saturated values (vNT for healthy tissue, and vGZ for gray zone
tissue). Thus, for large pacing periods, dv/dT approaches a zero value, and according to
the formulae (4), the slope dT/dL would approach the value 1/vNT or 1/vGZ, respectively.
However, such saturation occurs for rather long pacing periods, which are mostly outside
of the physiologically relevant values. In our case, the rotation periods are in the range of
250 < T < 600, where v strongly depends on T for both the CV restitution curves. Let us
estimate which terms in Equation (4) primarily determine the slope of the dependencies in
Figure 3A, and explain why the curves with larger a gray zone have smaller slopes than the
curve without the gray zone. Let us use period T = 500, which is inside the region of linear
dependency in Figure 3A, for both curves: with and without the gray zone. For the case
of a scar without the gray zone (the black curve), at T = 500 ms we find that v = 0.678,
and dv/dT = 0.0003 is derived from the black curve in Figure 4. We use it as, in this case,
the wave rotates around the scar surrounded by the normal tissue. Thus, in Equation (4),
the second term T ∗ dv/dT = 0.15 is substantially smaller than the first term v. For a large
gray zone (green curve in Figure 3A), the rotation at T = 500 ms occurs inside the gray
zone, thus, we need to use the CV restitution curve for the border zone tissue (the gray
curve in Figure 4). Similarly, we find that for T = 500 ms v = 0.46, and dv/dT = 0.00195,
thus, in Equation (4) T ∗ dv/dT = 0.979 is higher than v. Thus, in this case, we see that
now the second term T ∗ dv/dT determines the slope of the dependency. Thus, we can
conclude that the lower slope of the dependency of T on L in the presence of the gray zone
is a result of CV restitution slope (dv/dT), where a larger derivative occurs due to ’shift’
of the CV restitution curve to the longer periods because of tissue remodeling in the gray
zone (Figure 4). Note, however, that linear dependencies which we see in Figure 3A for
large radii are actually just a coincidence for specific values of parameters. The slopes
will further change and for very large values of r, they approach the values of 1/vNT and
1/vGZ correspondingly. At that stage, the slope of the dashed line in Figure 3A will be
larger than that of the black line. However, it occurs far beyond the physiologically relevant
values for spiral waves.

Figure 4. Dependence of the wave speed on the activation period of the wave (restitution curve).
Wave speed in normal tissue (black) and tissue with properties of the gray zone (gray) are shown.
Black and gray dashed lines show the maximum speed of waves in normal tissue (vNT = 0.71 m/s)
and in the gray zone tissue (vGZ = 0.66 m/s), respectively.
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3.5. Additional Rotation Regimes

In addition to the regimes discussed above, for a few parameter values, we also
observed more complex rotation regimes. All of these regimes occur for small scars and
can be distinguished into two types: active and passive. Figure 5A shows an example of a
passive regime, where we periodically see a breakthrough of excitation into the gray zone,
however, they do not disturb the leading edge wave rotation. Figure 5B shows an example
of an active regime. Here, the wave comes outside the gray zone, actively interacts with
the leading edge of excitation and changes the trajectory of the wave rotation. As a result,
we observe a non-monotonical dependency of the period on the size of the scar. However,
the active regime was not frequently observed, we saw it only in 3 cases (out of 360) with
the perimeter of the gray zone neing 52.7 mm (rIS = 0 mm, wGZ = 8.4 mm; rIS = 2.8 mm,
wGZ = 5.6 mm; rIS = 5.6 mm, wGZ = 2.8 mm), thus, they may have limited importance
for the overall dynamics.

Figure 5. Examples of waves with dynamical instabilities. Border of the gray zone is depicted by the
dashed line. Arrows show the direction of the wave rotation. Dashed arrows show wave direction
inside the gray zone. (A) A passive regime. The breakthrough waves marked by dashed arrows do
not exit the gray zone (rIS = 11.2 mm, wGZ = 25.2 mm). (B) An active regime. The breakthrough
waves exit the gray zone and force the wave to rotate at some distance from the border of the
gray zone (rIS = 2.8 mm, wGZ = 5.6 mm.) An illustration of such dynamics can be found in the
Supplementary Materials (movies S4 and S5).
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4. Discussion

In this paper, we perform a detailed study of the dynamics of the waves rotating
around a region, which generically represents a post-infarction scar and includes a compact
inexcitable obstacle surrounded by a gray zone with modified properties of cardiac cells
as compared to the rest of cardiac tissue. We found that all of the observed dynamics
can be subdivided into several main classes. These classes naturally occur if we combine
properties of a wave rotating around an inexcitable obstacle and the effects of tissue
heterogeneity on the wave propagation.

In the absence of tissue heterogeneity, the period of the wave rotating around an obsta-
cle is mainly determined by the velocity of the wave and the perimeter of the obstacle [14].
This is a scar rotation regime, which was observed in previous studies. However, compared
to earlier studies [14], we show that one needs to take into account the dependency of the
velocity on the period (CV restitution), and explain its dependence on the size of the scar.
Another observed regime of functional rotation was found in early studies in the reaction
diffusion models [15]. It was shown that for small obstacles, the period of rotation does
not decrease anymore, wave detaches from the obstacle and rotates around a circle which
exceeds the obstacle size. In [15], it was also shown that detachment from the obstacle is
associated with a large increase in the period of rotation. We did not observe such a period
increase in our study. This probably occurred because in [15], a two variable model with
lower excitability was used. In our study, we used an ionic model with high excitability,
and thus the boundary effects of the obstacle on the wave propagation velocity in our case
are less pronounced.

In the presence of the gray zone, the situation is more complex and, as far as we
are aware, was not yet analyzed in details. Our study shows that here we can observe
additional rotation regimes, which we call gray zone rotation and scar rotation 2 regimes. We
show that dependencies of the period on the size of the scar and the gray zone are bound
by two asymptotic solutions for homogeneous tissue: rotation of the wave around a scar in
normal tissue and rotation of the wave around a scar in tissue with properties of the gray
zone. As we show in Figure 3A, all of the curves for different sizes of the gray zone are
located between these two asymptotic lines and the slopes of these lines are bound from
above and below the slopes of all of the other curves. In addition, we found a new regime,
gray zone rotation. In that case, the wave rotates as if the compact scar coincides with the
gray zone. In the gray zone rotation regime, the period of rotation depends on the perimeter
of the gray zone, and not on the size of the scar. We illustrate it in Figure 6, where we
show the dependence of the period on the perimeter of the gray zone for various sizes of
the scar. We see that all of the curves in a certain range of the parameters almost coincide,
which, one more time, confirms that, here, the perimeter of the gray zone, and not the scar
size, determines the period of rotation. However, we also see that these curves with the
gray zone are a little above the dashed line, representing the case of pure scar rotation. It
indicates that the leading edge of rotation for the gray zone rotation regime is a little outsize
the boundary of the gray zone, which maybe be a result of the electrotonic effects [31].

An important rule for transition between the gray zone and scar rotation regimes is
the minimal period principle proposed for such a situation in this paper. In fact, if the
rotation in normal tissue along the gray zone is faster than the rotation around the scar
in the gray zone, then the gray zone regime will occur. Such a transition is clearly seen in
Figure 3A,B where we see a change from one type of dependency to another one. Note, this
also implies that transitions between the regimes strongly depend on the relation of the
velocity of the wave inside and outside the gray zone. Here, we considered only one type
of cellular heterogeneity based on the data reported in [21,28], where action potentials are
longer in the gray zone than in the normal cardiac tissue. However, in [32], it was shows
that remodeling in the gray zone can also result in different changes in the properties
of cardiac tissue and can even result in shortening of the action potential. It would be
interesting to study similar regimes of wave rotation for different properties of cardiac
tissue in the gray zone. In addition, the gray zone can also include fibrosis and a reduced
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number of gap junctions. It also can decrease the propagation velocity and thus make the
gray zone rotation regime more essential.

Figure 6. Dependence of the wave rotation period on the perimeter of the gray zone for different radii
of an infarction scar. Red line shows the case with smallest radius of scar core, purple line—case with
the biggest scar core. The dashed line connects points where the gray zone is absent (wGZ = 0 mm).

The dynamics of rotating waves around an obstacle was studied in [17], where a gen-
eral theory for the dynamics and instability of pinned spirals was developed. In particular,
it was shown that the destabilization is better understood by the implementation of a
mapping rule and dimension reduction.

Moreover, the transition between scar and functional rotation when the radius of the
obstacle decreases was studied in [33]. There, a sequence of transitions, from periodic
motion to a modulated period-2 rhythm, and then to spiral wave breakup [34,35], were
observed. It would be interesting to study how such dynamical instabilities will manifest
themselves in the presence of tissue heterogeneity around a scar, as considered in our paper.

It would be also interesting to study such rotational activity in anatomical models of
the heart [21,36] and also include additional types of regional cellular heterogenety in the
normal tissue as considered in [37,38].

In our paper, the properties of the gray zone were represented via changes in cell-level
models. However, there are also changes in conductivity between the cells. In [39], it was
shown that in the gray zone, the muscle fibers were widely separated and disoriented
by the connective tissue. In [40], it was further shown that there was decreased side-to-
side coupling between myocytes in the gray zone, which results in increased anisotropy
because of decreased transverse conduction velocity. A direct way to account for this
change is to modify the diffusion coefficient in the term D∇2V in Equation (1) by reducing
its eigenvalue, accounting for the transverse propagation [21]. In our paper, we limited
our study to the isotropic case, and thus, adding such change is beyond the scope of this
research. However, in the presence of anisotropy, reduction in the transversal condition
will decrease the overall velocity of wave propagation and thus will be an additional factor
affecting the period of wave rotation. It will be interesting to extend our studies to the case
of anisotropic tissue and investigate the effects of decreasing of the transversal velocity on
the period of the arrhythmia. Form our analysis presented in this paper, especially from the
minimal period principle, we expect that a further decrease in the conduction velocity will
make rotation in normal tissue more preferable, and thus will further increase the range of
parameters where the gray zone rotation will be observed.

In this paper, we apply mathematical methods to study the factors which determine
the period of arrhythmia in a generic model of cardiac tissue. However, the applications
of mathematical methods in cardiac research are much more wide-ranging, for example,
for the analysis of population studies [41]. Moreover, currently in vitro cardiac models
from stem cells are of great interest [42,43]. Such a system can also be studied using
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corresponding mathematical models [44]. However, the models for such systems should be
based on the standards for recording, annotating and reporting experimental data reviewed
in [45].

Here, we study only one mechanism of arrhythmias associated with rotating waves.
Another important mechanisms is triggered activity, which occurs close to point of Hopf
bifurcation [46] and is associated with the onset of focal sources of excitation due to early
afterdepolarizations. Such conditions normally occur due to pathological elongation of the
action potential [47]. Because elongation of action potential occurs in the gray zone [48], it
would be interesting to study the manifestation of arrhythmias based on the mechanisms
of early afterdepoarizations, which can occur in the gray zone close to the infarction scar.

In conclusion, we found that the main dynamics of wave rotation around an obstacle
surrounded by heterogeneous ventricular myocardial tissue include functional, scar and
a newly identified gray zone rotation regimes. The transition between the regimes can
be understood and predicted from the proposed minimal period principle. The slopes of
dependencies of the period on the size of the obstacle can be quantitatively calculated from
the conduction velocity restitution.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.339
0/math9233090/s1, Figure S1: Graphical description of the protocol S1–S2. Video S2: Example
of wave rotating in gray zone rotation regime. Infarction scar size: rIS = 19.6 mm. Gray zone
width wGZ = 14 mm. Video S3: Example of wave rotating in scar rotation 2 regime. Infarction
scar size: rIS = 19.6 mm. Gray zone width wGZ = 42 mm. Video S4: Example of the wave with
passive dynamic instability in gray zone. Infarction scar size: rIS = 11.2 mm. Gray zone width
wGZ = 22.4 mm. Video S5: Example of the wave with active dynamic instability in gray zone.
Infarction scar size: rIS = 2.8 mm. Gray zone width wGZ = 5.6 mm.
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