
mathematics

Article

On Interval-Valued Fuzzy Soft Preordered Sets and Associated
Applications in Decision-Making

Mabruka Ali 1 and Adem Kılıçman 1,2,*

����������
�������

Citation: Ali, M.; Kılıçman, A. On

Interval-Valued Fuzzy Soft

Preordered Sets and Associated

Applications in Decision-Making.

Mathematics 2021, 9, 3142. https://

doi.org/10.3390/math9233142

Academic Editor: Esteban Indurain

Received: 18 October 2021

Accepted: 30 November 2021

Published: 6 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics and Statistics, Universiti Putra Malaysia UPM, Serdang 43400, Malaysia;
altwer2016@gmail.com

2 Institute for Mathematical Research, University Putra Malaysia UPM, Serdang 43400, Malaysia
* Correspondence: akilic@upm.edu.my

Abstract: Recently, using interval-valued fuzzy soft sets to rank alternatives has become an important
research area in decision-making because it provides decision-makers with the best option in a vague
and uncertain environment. The present study aims to give an extensive insight into decision-making
processes relying on a preference relationship of interval-valued fuzzy soft sets. Firstly, interval-
valued fuzzy soft preorderings and an interval-valued fuzzy soft equivalence are established based
on the interval-valued fuzzy soft topology. Then, two crisp preordering sets, namely lower crisp and
upper crisp preordering sets, are proposed. Next, a score function depending on comparison matrices
is expressed in solving multi-group decision-making problems. Finally, a numerical example is given
to illustrate the validity and efficacy of the proposed method.

Keywords: interval-valued fuzzy soft preorder; interval-valued fuzzy soft equivalence; preference
relationship; decision-making

1. Introduction

Decision-making is a common task associated with intelligent and complicated actions.
Here, humans face situations in which they must select between many options using
logic and mental processes. Depending on the nature of the circumstance, many sorts of
uncertainty may be present. Different strategies and techniques are used to cope with
uncertainty in decision-making difficulties. Researchers have introduced many theories and
tools—for example, fuzzy set theory [1], interval-valued fuzzy set theory [2], intuitionistic
fuzzy set theory [3], rough set theory [4], as well as soft set theory [5]. These theories were
created to address the problem of the lack of parameterization tools in classic uncertainty
theories. Soft set theory, in addition, is not an extension of earlier mathematical ideas. When
it comes to dealing with uncertainty, soft set theory differs drastically from traditional
models. Soft set theory has been claimed to have practical and prospective applications
in a variety of disciplines, including game theory, measurement theory, decision-making,
medical diagnostics, and others.

Recently, soft set theory and its extension to other mathematical approaches were
vigorously investigated by many authors. Soft set theory combined with a fuzzy set
theory introduced a new concept, namely fuzzy soft set theory [6], which has been applied
in decision-making [7–12]. Soft set theory can be combined with an intuitionistic fuzzy
set theory [13,14] and applied in decision-making [15,16]. Furthermore, Yang et al. [17]
developed a hybrid model known as interval-valued fuzzy soft sets and presented several
fundamental characteristics. The authors then utilized interval-valued fuzzy choice values
to address decision-making issues that constitute the sum of lower and upper objects’
membership with respect to each parameter. The number of parameters fulfilled by the
object may not be explained as the concept of interval-valued choice values. To address this
restriction, Feng et al. [18] utilized reduced fuzzy soft sets with a level soft set of interval-
valued fuzzy soft sets to gain a better understanding of the decision-making processes as
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described by Yang et al. [17]. Then, depending on (weighted) interval-valued fuzzy soft
sets, they introduced flexible methods for decision-making procedures. In addition, the
concept of interval-valued fuzzy topology was presented in [19] and was extended later
by [20] based on the interval-valued fuzzy topology.

The decision-making methods based on interval-valued fuzzy soft set were first used
by Yang et al. [17]. Moreover, Row and Maji [7] proposed the fuzzy soft sets concept, which
was then implemented to solve decision-making processes. In addition, Kong et al. [17]
modified the method of Row and Maji [7] by proposing a new fuzzy soft set based on multi-
criteria decision-making utilizing a level soft set. However, Basu et al. [9] discussed that
the procedure of selecting the level soft set is not unique. Moreover, Ma et al. [21] gave four
distinct types of parameter reduction for interval-valued fuzzy soft sets, which were then
contrasted concerning the computation complexity, the exact applicability, and reduction
findings level. Furthermore, Ref. [22] presented a new decision-making algorithm based
on two types of tables, namely the average table and the antitheses for interval-valued
fuzzy soft sets, while Me et al. [23] discussed two different methods. Here, the first
method was suggested by Yang et al. [17] and the other proposed by [24,25]. In particular,
Khameneh et al. [26,27] demonstrated the preference relationship of both intuitionistic
fuzzy soft sets and fuzzy soft sets, which were subsequently used to address group decision-
making issues. Moreover, Ali et al. [28] expanded Khameneh et al. [26]’s work on the
interval-valued fuzzy soft set preference relationship. This work concentrates on using
interval-valued fuzzy soft topology to generalize the equivalence and preorder of interval-
valued fuzzy soft sets. Depending on the preference relationship, this generalized technique
provides a deeper understanding of the decision-making process. This paper is outlined as
follows. In Section 2, we provide several definitions and theorems acquired for this paper.
In Section 3, we study interval-valued fuzzy preordered and interval-valued fuzzy soft
equivalences. Then, by using α, β cut, two different crisp preorders and equivalences are
defined. In Section 4, the interval-valued fuzzy soft data rank is formulated depending on
a new score function to solve the decision-making problem.

2. Preliminaries

This section reviews several fundamental properties and definitions acquired. Note
that, in this study, X denotes the set of objects, E denotes the set of parameters, IX denotes
the set of all fuzzy subsets, and [I]X, in which I = [0, 1] and [I] = {[a, b], a ≤ b, a, b ∈ I},
denotes the set of all interval-valued fuzzy subsets of X. Then, a fuzzy subset f over X is
the mapping f : X → I, where the value of f (x) denotes the membership degree of x ∈ X.

Definition 1 ([2]). An interval-valued fuzzy set (IVF) set of ( f , X) pair is a mapping expressed by
f : X → [I], provided that for any x ∈ X, f (x) = [ f−(x), f+(x)] represent a closed subinterval
of [0, 1], in which f+(x) and f−(x) denote the upper and lower degrees of membership x to f with
0 ≤ f−(x) ≤ f+(x) ≤ 1.

Molodtsov [5] introduced the soft sets (SS) concept for the first time in 1999 as a pair of
( f , E) or fE, in which E denotes a parameter set and f denotes the mapping f : E→ 2X , in
which for any e ∈ E, f (e) denotes a subset of X. A novel hybrid tool is defined as follows
by merging the soft sets concept with interval-valued fuzzy sets.

Definition 2 ([17]). An interval-valued fuzzy soft set IVFS set, as a pair of ( f , E), is the mapping
f given by f : E→ [I]X , in which for any x ∈ X and e ∈ E, f (e)(x) = [ f−(e)(x), f+(e)(x)].

Assume two IVFS sets fE, gE over the common universe X. Then, the union of fE
and gE, expressed by fE∨̃gE, is the IVFS set ( f ∨̃g)E, in which for any x ∈ X and ∀e ∈ E,
we obtain ( f ∨̃g)(e)(x) = [max{ f−e (x), g−e (x)}, max{ f+e (x), g+e (x)}]. The intersection of
fE and gE, expressed by fE∧̃gE, denotes the IVFS set ( f ∧̃g)E, in which ∀x ∈ X and ∀e ∈ E,
and we obtain ( f ∧̃g)(e)(x) = [min{ f−e (x), g−e (x)}, min{ f+e (x), g+e (x)}]. The complement
of fE is denoted by f c

E and is expressed by f c : E→ [I]X, in which ∀e ∈ E and any x ∈ X,
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f c(e)(x) = [1− f+e (x), 1− f−e (x)]. The null IVFS set, expressed by ∅E, is denoted as an
IVFS set over X in which f−e (x) = f+e (x) = 0 ∀ e ∈ E and any x ∈ X. Moreover, the
absolute IVFS set, expressed by XE, is denoted as an IVFS set over X, f−e (x) = f+e (x) = 1,
for any x ∈ X and ∀ e ∈ E.

By employing the matrix form of interval-valued fuzzy relations, researchers in [29,30]
assembled a finite IVFS fE set given by the following n×m matrix:

fE =
[
[ f−ij , f+ij ]

]
n×m

=

[ f−e1
(x1), f+e1

(x1)] . . . [ f−e1
(xm), f+e1

(xm)]
... . . .

...
[ f−en (x1), f+en (x1)] . . . [ f−en (xm), f+en (xm)]


n×m

,

in which |E| = n, |X| = m, f−ij = f−ei
(xj) and f+ij = f+ei

(xj) for i = 1, . . ., n and j = 1, . . ., m.
As a result, the properties of complement, intersection, union, and others may be

expressed in the finite case’s matrix format.

Definition 3 ([20]). The collection τ of an IVFS subset of X, which is closed under arbitrary union
with finite intersection and containing absolute and null IVFS sets, is known as the interval-valued
fuzzy soft topology.

Definition 4 ([28]). The α-upper and β-lower crisp concepts of all parameters e of f , in which
α = [α1, α2] and β = [β1, β2], are defined as

U.C.S f
α(e) = {x ∈ X : [ f−e (x), f+e (x)] > α, α ⊆ [0, 1)}

L.C.S f
β(e) = {x ∈ X : [ f−e (x), f+e (x)] < β, β ⊆ (0, 1]},

which is formulated into the two matrices given below

U.C.Sαe f
t = [u f

i (et, α)]1×m =

{
1 if f−et (xi) > α1, f+et (xi) > α2
0 if f−et (xi) ≤ α1, f+et (xi) ≤ α2

(1)

and

L.C.Sβe f
t = [l f

i (et, β)]1×m =

{
0 if f−et (xi) ≥ β1, f+et (xi) ≥ β2
1 if f−et (xi) < β1, f+et (xi) < β2,

(2)

in which α = [α1, α1] and β = [β1, β2] are the given threshold vectors.

Theorem 1 ([28]). The following collection form α-upper topology and β-lower topology over X,
in which α = [α1, α2] and β = [β1, β2] is given by

τu
e,α = {U.C.S f

α(e) : fE ∈ τ, e ∈ E, α ⊆ [0, 1)}

τl
e,β = {L.C.S f

β(e) : fE ∈ τ, e ∈ E, β ⊆ (0, 1]}.

Theorem 2 ([28]). The following binary relations are two preorder relations, in which α = [α1, α2]
and β = [β1, β2] such that

y �τ
e,α x ⇔ [∀V ∈ τu

e,α : x ∈ V ⇒ y ∈ V]

y �τ,β
e x ⇔ [∀U ∈ τl

e,β : x ∈ U ⇒ y ∈ U].

Definition 5 ([28]). Let the binary relations be %τ
et ,α and -τ,β

et and threshold intervals α =
[α1, α2], β = [β1, β2] ⊆ I. We then express

Gα(et) = [gα(et)ij]m×m : gα(et)ij =

{
1 if xi %τ

et ,α xj
0 otherwise

(3)
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as well as

Sβ(et) = [sβ(et)ij]m×m : sβ(et)ij =

{
1 if xi -

τ,β
et xj

0 otherwise.
(4)

3. Generating Preorder and Equivalence Relations from Interval-Valued Fuzzy
Soft Data

In this section, the interval-valued fuzzy soft preorder and the interval-valued fuzzy
soft equivalence are presented. We then provide upper crisp preorder and lower crisp
preorder by using α-cut.

Theorem 3. Let (X, E, τ) be an IVFS topological space and let x̃E and ỹE be two IVFS-points
with distinct support x and y with e-lower and e-upper values of λ−e , λ+

e and γ−e , γ+
e , accordingly.

1. The IVFS binary relation “ �τ” on X expressed by

x̃E �τ ỹE ⇐⇒ [∀ fE ∈ τ, x̃E∈̃ fE ⇒ ỹE∈̃ fE],

is an IVFS preorder on X, while the pair (X,�τ) is known as an IVFS preordered set.
2. The IVFS binary relation “ wτ” on X expressed by

x̃E wτ ỹE ⇐⇒ [x̃E �τ ỹE, ỹE �τ x̃E],

is an IVFS equivalence relation over X. If x̃E wτ ỹE, then x̃E and ỹE are IVFS equivalence.

Proof.

1. Firstly, if fE is a τ-IVFS open set containing x̃E, then for all e ∈ E, f (e) �τ f (e), where
x̃E �τ x̃E. Thus, “ �τ ” is IVFS reflexive. Now, assume x̃E �τ ỹE and ỹE �τ z̃E,
where x̃E, ỹE and z̃E are any IVFS-points. Then, if fE is a τ-IVFS open set containing
x̃E, then ỹE∈̃ fE and also z̃E∈̃ fE. Thus, x̃E �τ z̃E. Therefore, “ �τ ” is IVFS transitive.
Hence, in general, for any two IVFS-points x̃E and ỹE with distinct support x and
y with e-lower and e-upper values of λ−e , λ+

e and γ−e , γ+
e , accordingly. Here, we say

that x̃E �τ ỹE if and only if for each IVFS-open set fE we have x̃E∈̃ fE. Then, ỹE∈̃ fE
implies that ∀ e ∈ E and x, y ∈ X, and we obtain f−e (x) ≥ λ−e , f+e (x) ≥ λ+

e and
f−e (y) ≥ γ−e , f+e (y) ≥ γ+

e .
2. It is straightforward.

Definition 6. Let (X, E, τ) be an IVFS topological space and let fE be an IVFS set induced by
an IVFS preorder on X. The concepts of α-upper crisp “�τ

f ,α” and β-lower crisp “� f ,β
τ ” relations

on X, in which α = [α1, α2], β = [β1, β2] and fe = [ f−e , f+e ], and for all x, y ∈ X, are given
as follows:

�τ
f ,α = fe(x) > α⇒ fe(y) > α, α ⊆ [0, 1).

= [ f−e (x), f+e (x)] > α⇒ [ f−e (y), f+e (y)] > α, α ⊆ [0, 1).

� f ,β
τ = fe(x) < β⇒ fe(y) < β, β ⊆ (0, 1].

= [ f−e (x), f+e (x)] < β⇒ [ f−e (y), f+e (y)] < β, β ⊆ (0, 1]}.

It is obvious that for the IVFS open set fE induced by an IVFS preorder on X, the
α-upper crisp relation �τ

α and β-lower crisp relation �β
τ on X, in which fe = [ f−e , f+e ], are

given by fe(y) �τ
α fe(x)⇐⇒�τ

α= 1, or

[ f−e (y), f+e (y)] �τ
α [ f−e (x), f+e (x)]⇐⇒�τ

α= 1,
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as well as fe(y) �β
τ fe(x)⇐⇒�β

τ= 1, or

[ f−e (y), f+e (y)] �β
τ [ f−e (x), f+e (x)]⇐⇒�β

τ= 1,

are considered as α-upper preorder and β-lower preorder relations, respectively.

Definition 7. Let (X, E, τ) denote an IVFS topological space and let fE be an IVFS set induced
by an IVFS equivalence on X. The α-upper crisp “ 'τ

f ,α” and β-lower crisp “ ' f ,β
τ ” relation

concepts on X, in which α = [α1, α2], β = [β1, β2] and fe = [ f−e , f+e ], ∀ x, y ∈ X, are given
as follows:

'τ
f ,α = { fe(x) > α⇒ fe(y) > α} ⇐⇒ { fe(y) > α⇒ fe(x) > α}, α ⊆ [0, 1).

' f ,β
τ = { fe(x) < β⇒ fe(y) < β} ⇔ { fe(y) < β⇒ fe(x) < β}, β ⊆ (0, 1].

Similarly, the α-upper crisp relation 'τ
α and β-lower crisp relation 'β

τ on X given by

fe(y) 'τ
α fe(x)⇐⇒'τ

α= 1,

and
fe(y) 'β

τ fe(x)⇐⇒'β
τ= 1,

are defined as α-upper equivalence and β-lower equivalence relations, respectively, ∀ e ∈ E,
x, y ∈ X.

Proposition 1. Let (X, E, τ) denote an IVFS topological space and let fE and gE denote two IVFS
sets induced by an IVFS preorder on X. Then, for all the threshold intervals α, α1, α2 ⊂ [0, 1)
and β, β1, β2 ⊂ (0, 1], where α = [α−, α+], α1 = [α−1 , α+1 ], α2 = [α−2 , α+2 ], β = [β−, β+],
β1 = [β−1 , β+

1 ] and β2 = [β−2 , β+
2 ], the following hold.

1. If α1 ≤ α2, then �τ
f ,α2
⊆̃ �τ

f ,α1
and 'τ

f ,α2
⊆̃ 'τ

f ,α1
. Similarly, if β1 ≤ β2, then � f ,β1

τ

⊆̃ � f ,β2
τ and ' f ,β1

τ ⊆̃ ' f ,β2
τ .

2. If fE = XE, then �τ
f ,α= 1 and � f ,β

τ = 0. Similarly, if fE = XE, then 'τ
f ,α= 1 and ' f ,β

τ = 0.

3. If fE = ∅E, then �τ
f ,α= 0 and � f ,β

τ = 1. Similarly, if fE = ∅E, then �τ
f ,α= 0 and ' f ,β

τ = 1.

4. �τ
f ,α=�

f ,[1−α+ ,1−α− ]
τ and � f ,β

τ =�τ
f ,[1−β+ ,1−β− ] .

5. If fE≤̃gE, then �τ
f ,α ⊆̃ �

τ
g,α and 'τ

f ,α ⊆̃ '
τ
g,α . Similarly, if fE≤̃gE, then �g,β

τ ⊆̃ � f ,β
τ and

'g,β
τ ⊆̃ ' f ,β

τ .

Proof. The proof follows immediately thereafter.

Proposition 2. Let (X, E, τ) denote an IVFS topological space and let fE be an IVFS set induced
by an IVFS preorder on X. Then, for all the threshold interval α ⊂ [0, 1) and β ⊂ (0, 1], in which
α = [α1, α2] as well as β = [β1, β2], for x, y ∈ X, and fe = [ f−e , f+e ], we have

1. y %τ
e,α x≤̃ fe(y) %τ

α fe(x).

2. y -τ,β
e x≤̃ fe(y) -τ,β fe(x).

Proof. Let α = [α1, α2] and fe = [ f−e , f+e ]. Thus, we have

1.

fe(y) %τ
α fe(x) = fe(x) > α⇒ fe(y) > α, α ⊆ [0, 1)

fe(y) %τ
α fe(x) ≥̃ fe(x) = 1⇒ fe(y) = 1

fe(y) %τ
α fe(x) ≥̃ y %τ

e,α x.
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Therefore, y %τ
e,α x≤̃ fe(y) %τ

α fe(x).
2. For β = [β1, β2] and fe = [ f−e , f+e ], we have

fe(y) -τ,β fe(x) = fe(x) < β⇒ fe(y) < β, β ⊆ (0, 1]

fe(y) -τ,β fe(x) ≥̃ fe(x) = 1⇒ fe(y) = 1,

fe(y) -τ,β fe(x) ≥̃ y -τ,β
e x.

Hence, y -τ,β
e x≤̃ fe(y) -τ,β fe(x).

3.1. Comparison between Preorder Matrices

Let the finite set X = {x1, · · · , xm} denote the set of objects and E = {e1, · · · , en}
resemble the set of parameters. The matrix forms of the upper preorderings “�τ

α” and the
lower preorderings “�β

τ” on X are utilized to express two comparison matrices, G f
α(et) =

[g f
α(et)ij]m×m and Sβ

f (et) = [sβ
f (et)ij]m×m. These are two square matrices having columns

and rows labeled by objects of the universe X given below.

Definition 8. Consider the upper binary relations�τ
α and the lower binary relation�β

τ on X, while
fE is an IVFS set induced by an IVFS preordered set and threshold intervals α = [α1, α2] ⊆ I and
β = [β1, β2] ⊆ I. We then express

G f
α(et) = [g f

α(et)ij]m×m : g f
α(et)ij =

{
1 if [ f−e (xi), f+e (xi)] �τ

α [ f−e (xj), f+e (xj)]
0 otherwise

(5)

and

Sβ
f (et) = [sβ

f (et)ij]m×m : sβ
f (et)ij =

{
1 if [ f−e (xi), f+e (xi)] �

β
τ [ f−e (xj), f+e (xj)]

0 otherwise
(6)

where t = 1, · · · , n

Proposition 3. Assume that (X, E, τ) is an IVFS topological space and G f
α(et), Sβ

f (et) are two
matrices defined in Equations (5) and (6), where the threshold intervals α = [α1, α2] ⊆ I. Then, the
following hold.

1. For 1 ≤ i ≤ m, g f
α(et)ii = 1 and sα

f (et)ii = 1.

2. If g f
α(et)ij = g f

α(et)jk = 1, then g f
α(et)ik = 1. If sβ

f (et)ij = sβ
f (et)jk = 1, then sβ

f (et)ik = 1.

3. G f
α(et) and Sβ

f (et) resemble symmetric matrices.

in which i, j, k = 1, · · · , m.

Proof. We only prove part 2. The other parts are derived similarly.
Assume that g f

α(et)ij = g f
α(et)jk = 1, then, [ f−e (xi), f+e (xi)] �τ

α [ f−e (xj), f+e (xj)] and
[ f−e (xj), f+e (xj)] �τ

α [ f−e (xk), f+e (xk)]. Thus, [ f−e (xi), f+e (xi)] �τ
α [ f−e (xk), f+e (xk)]. Since�τ

α

is a transitive relation. Then, g f
α(et)ik = 1. Similarly, assume that sβ

f (et)ij = sβ
f (et)jk = 1,

then [ f−e (xi), f+e (xi)] �
β
τ [ f−e (xj), f+e (xj)] and [ f−e (xj), f+e (xj)] �

β
τ [ f−e (xk), f+e (xk)]. Thus,

[ f−e (xi), f+e (xi)] �
β
τ [ f−e (xk), f+e (xk)], sβ

f (et)ik = 1.

Proposition 4. Let (X, E, τ) denote an IVFS topological space and the threshold intervals α =
[α1, α2] as well as β = [β1, β2] are given, where α, β ⊆ I. Suppose that fE is an IVFS set induced
by an IVFS preorder on X. Then, the following hold:

1. G f
α(et)= Im if and only if ¬([ f−e (xi), f+e (xi)] �τ

α [ f−e (xj), f+e (xj)]), ∀ 1 ≤ i, j ≤ m and
i 6= j,
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2. Sβ
f (et)= Im if and only if ¬([ f−e (xi), f+e (xi)] �

β
τ [ f−e (xj), f+e (xj)]), ∀ 1 ≤ i, j ≤ m and

i 6= j,
3. G f

α(et) = Jm if and only if [ f−e (xi), f+e (xi)] �τ
α [ f−e (xj), f+e (xj)], ∀ 1 ≤ i, j ≤ m and i 6= j,

4. Sβ
f (et)) = Jm if and only if [ f−e (xi), f+e (xi)] �

β
τ [ f−e (xj), f+e (xj)], ∀ 1 ≤ i, j ≤ m and

i 6= j,

where Im, Jm are an identity and a unit matrix, respectively.

Proof. We prove parts 1 and 4. The other parts are derived similarly.
⇒) For part 1, assume that G f

α(et)= Im. Then, ∀ 1 ≤ i, j ≤ m and we have g f
α(et)ii =

1 and g f
α(et)ij = 0, if i 6= j. Hence, by Equation (5), we obtain [ f−e (xi), f+e (xi)] �τ

α

[ f−e (xi), f+e (xi)], while ¬([ f−e (xi), f+e (xi)] �τ
α [ f−e (xj), f+e (xj)]), if i 6= j.

⇐) Assume that ∀ 1 ≤ i, j ≤ m such that i 6= j and we have ¬([ f−e (xi), f+e (xi)] �τ
α

[ f−e (xj), f+e (xj)]). Thus, g f
α(et)ii = 0. However, by Proposition (1), we have g f

α(et)ii = 1 for

1 ≤ i ≤ m. Then, G f
α(et)= Im.

⇒) For part 4, assume that Sβ
f (et)) = Jm. Then, sβ

f (et)ij = 1, for all 1 ≤ i, j ≤ m.

Then, by Equation (6), we have [ f−e (xi), f+e (xi)] �
β
τ [ f−e (xj), f+e (xj)] for all 1 ≤ i, j ≤ m.

(⇐ Assume that ∀ 1 ≤ i, j ≤ m and [ f−e (xi), f+e (xi)] �
β
τ [ f−e (xj), f+e (xj)]. Hence, by

Equation (6), we obtain sβ
f (et)ij = 1 and Sβ

f (et)) = Jm.

Proposition 5. Let (X, E, τ) denote an IVFS topological space and fE denote an IVFS set induced
by an IVFS preorder on X, with α, β ⊆ I, in which α = [α1, α1], β = [β1, β2] are the threshold
intervals. Then,

1. G f
α(et) = IU

m if and only if [ f−e (x1), f+e (x1)] �τ
α · · · �τ

α [ f−e (xm) f+e (xm)],

2. Sβ
f (et) = IU

m if and only if [ f−e (x1), f+e (x1)] �
β
τ · · · �

β
τ [ f−e (xm) f+e (xm)],

3. G f
α(et) = IL

m if and only if [ f−e (xm), f+e (xm)] �τ
α · · · �τ

α [ f−e (x1) f+e (x1)],

4. Sβ
f (et) = IL

m if and only if [ f−e (xm), f+e (xm)] �β
τ · · · �

β
τ [ f−e (x1) f+e (x1)],

where IU
m , IL

m resemble the upper and lower triangular matrices, accordingly.

Proof. We prove parts 1 and 2. The other parts are derived similarly.

1. ⇒) Assume that G f
α(et) = IU

m . Then, ∀ 1 ≤ i, j ≤ m and we have g f
α(et)ij = 1 if j ≥ i

and g f
α(et)ij = 0 if j < i. By (Equation (5)) and ∀ j ≥ i, we have [ f−e (xi), f+e (xi)] �τ

α

[ f−e (xj), f+e (xj)], while for j < i we obtain ¬([ f−e (xi), f+e (xi)] �τ
α [ f−e (xj), f+e (xj)]).

Thus, [ f−e (x1), f+e (x1)] �τ
α [ f−e (xi), f+e (xi)], ∀ 1 ≥ i ≤ m, [ f−e (x2), f+e (x2)] �τ

α [ f−e (xi),
f+e (xi)], ∀ 2 ≥ i ≤ m, but ¬([ f−e (x2), f+e (x2)] �τ

α [ f−e (x1), f+e (x1)]), and finally
[ f−e (xm), f+e (xm)] �τ

α [ f−e (xm), f+e (xm)], but¬([ f−e (xm), f+e (xm)] �τ
α [ f−e (xi), f+e (xi)]),

for all 1 ≥ i ≤ m− 1. Then, [ f−e (x1), f+e (x1)] �τ
α · · · �τ

α [ f−e (xm) f+e (xm)] on X.
⇐) Assume that [ f−e (x1), f+e (x1)] �τ

α · · · �τ
α [ f−e (xm) f+e (xm)] on X. Then, ∀ 1 ≤ i, j ≤

m and we have [ f−e (xi), f+e (xi)] �τ
α [ f−e (xj), f+e (xj)] if j ≥ i and ¬([ f−e (xi), f+e (xi)] �τ

α

[ f−e (xj), f+e (xj)]) if j < i. By (Equation (5)), we obtain g f
α(et)ij = 1 if j ≥ i and

g f
α(et)ij = 0 if j < i. Therefore, G f

α(et) = IU
m .

2. ⇒) Assume that Sβ
f (et) = IU

m . Then, for all 1 ≤ i, j ≤ m, we have ∀1 ≤ i, j ≤ m; we

have sβ
f (et)ij = 1 if j ≥ i and sβ

f (et)ij = 0 if j < i. By Equation (6), we have{
[ f−e (xi), f+e (xi)] �

β
τ [ f−e (xj), f+e (xj)] for j ≥ i and

¬([ f−e (xi), f+e (xi)] �
β
τ [ f−e (xj), f+e (xj)]) for j < i.
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Thus, [ f−e (x1), f+e (x1)] �
β
τ [ f−e (xi), f+e (xi)] for all 1 ≤ i ≤ m, [ f−e (x2), f+e (x2)] �

β
τ

[ f−e (xi), f+e (xi)] for all 2 ≤ i ≤ m, but ¬([ f−e (x2), f+e (x2)] �
β
τ [ f−e (x1), f+e (x1)]), and

finally [ f−e (xm), f+e (xm)] �β
τ [ f−e (xm), f+e (xm)]) but ¬([ f−e (xm), f+e (xm)] �β

τ [ f−e (xi),
f+e (xi)]), for all 1 ≤ i ≤ m− 1.
Thus, [ f−e (x1), f+e (x1)] �

β
τ · · · �

β
τ [ f−e (xm) f+e (xm)] in X.

⇐) Assume that [ f−e (x1), f+e (x1)] �
β
τ · · · �

β
τ [ f−e (xm) f+e (xm)]. For all 1 ≤ i, j ≤ m, if

j ≥ i then [ f−e (xi), f+e (xi)] �
β
τ [ f−e (xj), f+e (xj)] and if j < i then ¬([ f−e (xi), f+e (xi)] �

β
τ

[ f−e (xj), f+e (xj)]). By Equation (6), we have sβ
f (et)ij = 1 if j ≥ i and sβ

f (et)ij = 0 if j < i.

Therefore, Sβ
f (et) = IU

m .

Proposition 6. Let (X, E, τ) denote an IVFS topological space and the threshold intervals α = [α1, α2]
as well as β = [β1, β2] are given, where α, β ⊆ I. Suppose that fE is an IVFS set induced by an IVFS
preorder on X. Then, the following hold:

1. %τ
et ,α xj, then [ f−e (xi), f+e (xi)] %τ

α [ f−e (xj), f+e (xj)].
2. xi �τ

et ,α xj, then [ f−e (xi), f+e (xi)] �τ
α [ f−e (xj), f+e (xj)],

3. If (∧̃k
s=1 �τ

fs ,α) is the maximal set, then fe(xa) �τ
α fe(xi).

4. If (∨̃k
s=1 �

fs ,β
τ ) is the minimal set, then fe(xi) �

β
τ fe(xj).

Proof. We prove part 1. The other parts are derived similarly.
For part 1, assume that xi %τ

et ,α xj. Then, by Equation (3), we have gα(et)ij = 1 if

i > j and gα(et)ij = 0 if i ≤ j. Thus, we have also by Equation (5) g f
α(et)ij = 1 if i > j and

g f
α(et)ij = 0 if i ≤ j. Therefore, [ f−e (xi), f+e (xi)] %τ

α [ f−e (xj), f+e (xj)].

3.2. Equivalence Matrices

Similarly, we can apply the upper equivalence relations 'τ
α and the lower equivalence

relations 'β
τ on X to compute two square matrices given by

E f
α(et) = [e f

α(et)ij]m×m and Eβ
f (et) = [eβ

f (et)ij]m×m, accordingly, in which α = [α1, α2] ⊆
I and β = [β1, β2] ⊆ I.

Definition 9. Consider the two binary relations 'τ
α and 'β

τ on X and fE is an IVFS set induced
by an IVFS equivalence on X with threshold intervals α = [α1, α2] ⊆ I and β = [β1, β2] ⊆ I.
Then, we express

E f
α(et) = [e f

α(et)ij]m×m : e f
α(et)ij =

{
1 if [ f−e (xi), f+e (xi)] 'τ

α [ f−e (xj), f+e (xj)]
0 otherwise,

(7)

and

Eβ
f (et)) = [eβ

f (et)ij]m×m : eβ
f (et)ij =

{
1 if [ f−e (xi), f+e (xi)] '

β
τ [ f−e (xj), f+e (xj)]

0 otherwise,
(8)

where t = 1, · · · , n

Proposition 7. Let (X, E, τ) denote an IVFS topological space with given threshold intervals
α = [α1, α2] and β = [β1, β2] where α, β ⊆ I. Then, the following hold:

1. e f
α(et)ii = 1 and eβ

f (et)ii = 1, for all 1 ≤ i ≤ m,

2. If e f
α(et)ik = e f

α(et)jk = 1, then e f
α(et)ij = e f

α(et)ji = 1. If eβ
f (et)ik = eβ

f (et)jk = 1, then

eβ
f (et)ij = eβ

f (et)ji = 1,



Mathematics 2021, 9, 3142 9 of 15

3. If e f
α(et)ki = e f

α(et)kj = 1, then e f
α(et)ij = e f

α(et)ji = 1. If e f
α(et)ki = e f

α(et)kj = 1, then

e f
α(et)ij = e f

α(et)ji = 1,

4. E f
α(et) and Eβ

f (et) resemble symmetric matrices,

in which i, j, k ∈ {1, · · · , m}.

Proof. The proof follows immediately thereafter.

Proposition 8. Let (X, E, τ) denote an IVFS topological space with given threshold intervals
α = [α1, α2] as well as β = [β1, β2], where α, β ⊆ I. Suppose that fE is an IVFS set induced by
an IVFS equivalence on X. Then, the following hold:

1. For any 1 ≤ i ≤ m: xi 'τ
et ,α xj, then [ f−e (xi), f+e (xi)] 'τ

α [ f−e (xj), f+e (xj)],
2. For any 1 ≤ i ≤ m: xi 'τ

et ,α xj, then [ f−e (xi), f+e (xi)] 'τ
α [ f−e (xj), f+e (xj)],

3. If ( ˜∧k
s=1 'τ

fs ,α) is the maximal set, then fe(y) 'τ
α fe(x),

4. If ( ˜∨k
s=1 '

fs ,β
τ ) is the minimal set, then fe(y) 'β

τ fe(x).

Proof. The proof follows immediately thereafter.

4. Application in Decision-Making

Decision-making is a common term in daily life and is associated with intelligent
and complicated procedures that humans might face. However, decision-making is also
a fundamental part of organization and management. In particular, correct and efficient
decision-making is the primary objective and goal for management. In fact, in any man-
agement structure, decision-making sub-consciously or consciously becomes an important
parameter in the role of organization. Thus, the decision-making will follow certain se-
quential steps, such as defining the problem; collection of information and data, and
determination of weighing options; selection of the best possible option; and performing
the execution and applications. Now, in these stages, if any uncertainties occur, then the
decision-making process will involve taking a decision in an uncertain environment, where
information can be handled by fuzzy sets and systems.

In real-world problems and applications, the sequential stages may be more compli-
cated due to complexities and uncertainties; thus, the decision-makers will adopt an alter-
native method, and it is also possible to prefer fuzzy methods rather than the crisp ones. In
this section, we present a new formula to compute the score function of each object based on
the preference relationship between two different upper�τ

α ,�τ
f ,α (see Equations (1) and (5))

and lower preorderings �β
τ ,� f ,β

τ (see Equations (2) and (6)), respectively.

Definition 10. Let X denote the universal set of objects, E denote the set of parameters, and let
the threshold intervals α, β ⊆ I be given, in which α = [α1, α1] and β = [β1, β2]. The mapping
S = X → R is expressed by

Si(xi) =
n

∑
t=1

([
m

∑
j=1

g f
α(et)ij −

m

∑
j=1

gα(et)ij

]
−
[

m

∑
j=1

sβ
f (et)ij −

m

∑
j=1

sβ(et)ij

])
, (9)

in which Si(xi) is the score function of object xi.

According to this flowchart (see Figure 1), the following algorithm is proposed.
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Figure 1. The flowchart for Algorithm 1.
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Algorithm 1: Ranking Assessments by Interval-Valued Fuzzy Soft Preorder
Relation.

Input: Interval-valued fuzzy soft matrixes fsE over X, where |X| = m, 1 ≤ s ≤ k,
and set of parameters E, such that |E| = n.

Threshold intervals α, β ⊆ I, α = [α1, α2], β = [β1, β2].
Output: Optimum solution and worst solution.
begin

for t = 1, 2, . . ., n, i = 1, 2, . . ., m, and s = 1, 2, . . ., k do
Step 1. Compute crisp set U.C.Sα fs(et), and L.C.Sβ fs(et) by
Equations (1) and (2);

Step 2. Compute topological (X, τu
et ,α), (X, τl

et ,β
);

Step 3. Compute G f
α(et), Sβ

f (et), Gα(et), and Sβ(et) ∀ t = 1, 2, . . ., n by
Equations (3)–(6);

if G f
α(et) = IU

m and S f
β(et) = IL

m, then
x1 resembles the best ones while xm denotes the worst ones;

else if G f
α(et) = IL

m and S f
β(et) = IU

m, then
xm resembles the optimum solution while x1 denotes the worst
solution;

else if Gα(et) = Sβ(et) = Im, then
there is not any best option over X;

else if Gα(et) = Sβ(et) = Jm, then
all objects of X may be chosen as the optimum solution;

else if Go to the step 4, then
Step 4. Compute the score function Si∀i (Equation (9);

end
Step 5. Rank all objects of X depending on the Si values ;
Step 6. The optimal alternative is Sh given that Sh = maxi Si.

end
The alternative is Sl given that Sl = mini Si must not be chosen.
Step 7. If the number of elements such that So is maximum is less than one,
thus any one of xo can be chosen.

end

Example 1. Let X = {x1, x2, x3, x4, x5} denote a set of five-star hotels for one customer and
E = {e1, . . ., e4} denote a set of parameters. Suppose that customers wish to choose the parameters
given by “chromatic exterior and interior design”, “cleanliness”, “facilities”, and “excellent service”,
respectively. We can assess the hotels as three IVFS matrices given in the following Tables 1–3.

Table 1. f1E.

f1E x1 x2 x3 x4 x5

e1 [0.2, 0.2] [0.1, 0.4] [0.1, 0.7] [0.0, 0.6] [0.0, 0.7]
e2 [0.1, 0.3] [0.3, 0.6] [0.0, 0.6] [0.2, 0.4] [0.0, 0.2]
e3 [0.4, 0.9] [0.8, 1.0] [0.6, 0.6] [0.2, 0.7] [0.1, 0.6]
e4 [0.4, 0.9] [0.1, 0.6] [0.4, 0.5] [0.6, 0.9] [0.3, 0.4]
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Table 2. f2E.

f2E x1 x2 x3 x4 x5

e1 [0.0, 1.0] [0.6, 0.8] [0.2, 0.2] [0.2, 0.7] [0.1, 0.7]
e2 [0.3, 0.4] [0.1, 0.2] [0.5, 0.8] [0.2, 0.4] [0.1, 0.8]
e3 [0.3, 0.3] [0.1, 0.9] [0.2, 0.9] [0.7, 0.8] [0.3, 1.0]
e4 [0.1, 0.8] [0.1, 0.8] [0.5, 0.7] [0.1, 0.2] [0.3, 0.6]

Table 3. f3E.

f3E x1 x2 x3 x4 x5

e1 [0.1, 0.5] [0.9, 1.0] [0.1, 0.3] [0.7, 1.0] [0.1, 0.5]
e2 [0.1, 0.4] [0.3, 0.8] [0.0, 0.4] [0.3, 0.5] [0.3, 0.4]
e3 [0.1, 0.3] [0.1, 1.0] [0.2, 0.6] [0.6, 0.9] [0.3, 0.9]
e4 [0.7, 1.0] [0.5, 0.6] [0.3, 1.0] [1.0, 1.0] [0.4, 0.5]

Assume that [α1, α2] = [0.3, 0.6] and [β, β2] = [0.2, 0.4].
Step 1. The upper and lower crisp matrices are given as:

f1 =


0 0 0 0 0
0 0 0 0 0
1 1 0 0 0
1 0 0 0 0

, f2 =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 1 0 0

, f3 =


0 1 0 1 0
0 0 0 0 0
0 0 0 1 0
1 0 0 1 0



f1 =


0 0 0 0 0
1 0 0 0 1
0 0 0 0 0
0 0 0 0 0

, f2 =


0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0

, f3 =


0 0 1 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 0 0


Step 2. The upper and lower topology are expressed in Tables 4 and 5, accordingly.

Table 4. α-Upper-et topology; α = [α1, α2], t = 1, . . ., 4.

τu
pt ,α

e1 {[0]1×5 [1]1×5 [0 1 0 0 0] [0 1 0 1 0]}

e2 {[0]1×5 [1]1×5 [0 0 1 0 0] }

e3 {[0]1×5 [1]1×5 [1 1 0 0 0] [0 0 0 1 0 ]
[1 1 0 1 0 ] }

e4 {[0]1×5 [1]1×5 [1 0 0 0 0] [0 0 1 0 0 ]
[1 0 0 1 0 ] [1 0 1 0 0 ]
[1 0 1 1 0 ] }

Table 5. β-Lower-et topology; β = [β1, β2], t = 1, . . ., 4.

τL
pt ,β

e1 {[0]1×5 [1]1×5 [0 0 1 0 0] }

e2 {[0]1×5 [1]1×5 [1 0 0 0 1] [0 1 0 0 0] [1 1 0 0 1]}

e3 {[0]1×5 [1]1×5 [1 0 0 0 0] }

e4 {[0]1×5 [1]1×5 [0 0 0 1 0]}
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Step 3. Compute matrices G f
α(et) and S f

β(et) by using Equations (5) and (6). Moreover,
matrices Gα(et) and Sβ(et) are computed using Equations (3) and (4) over X, in which
α = [α1, α2], β = [β1, β2], and t = 1, . . ., 4 given by:

G f
α(e1) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Sβ
f (e1) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



G f
α(e2) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Sβ
f (e2) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



G f
α(e3) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

Sβ
f (e3) =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



G f
α(e4) =


1 1 0 0 0
0 1 0 0 0
0 0 1 0 1
0 0 0 1 0
0 0 0 0 1

Sβ
f (e4) =


1 0 0 0 0
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



Gα(e1) =


1 0 1 0 1
1 1 1 1 1
1 0 1 0 1
1 0 1 1 1
1 0 1 0 1

Sβ(e1) =


1 1 0 1 1
1 1 0 1 1
1 1 1 1 1
1 1 0 1 1
1 1 0 1 1



Gα(e2) =


1 1 0 1 1
1 1 0 1 1
1 1 1 1 1
1 1 0 1 1
1 1 0 1 1

Sβ(e2) =


1 0 1 1 1
0 1 1 1 0
0 0 1 1 0
0 0 1 1 0
1 0 1 1 1



Gα(e3) =


1 1 1 0 1
0 1 1 0 1
0 0 1 0 1
0 1 1 1 1
0 0 1 0 1

Sβ(e3) =


1 1 1 1 1
0 1 1 1 1
0 1 1 1 1
0 1 1 1 1
0 1 1 1 1



Gα(e4) =


1 1 0 1 1
0 1 0 0 1
0 1 1 0 1
0 1 0 1 1
0 1 0 0 1

Sβ(e4) =


1 1 1 0 1
1 1 1 0 1
1 1 1 0 1
1 1 1 1 1
1 1 1 0 1


Step 4. By using Equation (9), in which α = [α1, α2] as well as β = [β1, β2], we have

S1 = r1(e1; α, β) + r1(e2, α, β) + r1(e3, α, β) + r1(e4, α, β) = 1 + 2 + 1 + 0 = 4,
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S2 = r2(e1; α, β) + r2(e2, α, β) + r2(e3, α, β) + r2(e4, α, β) = −1 + (−1) + 1 + 2 = 1,

S3 = r3(e1; α, β) + r3(e2, α, β) + r3(e3, α, β) + r3(e4, α, β) = 2− 3 + 2 + 1 = 2,

S4 = r4(e1; α, β) + r4(e2, α, β) + r4(e3, α, β) + r4(e4, α, β) = 0− 2 + 0 + 2 = 0,

S5 = r5(e1; α, β) + r5(e2, α, β) + r5(e3, α, β) + r5(e4, α, β) = 2− 1 + 2 + 2 = 5.

Step 5. Then, the ranking of the overall assessment is obtained as below:

x5 � x1 � x3 � x2 � x4.

Steps 6 and 7. Therefore, x5 is the best object, while x4 cannot be selected.

5. Conclusions

Fuzzy ordered structures on a universal set are an important research tool to model
uncertainty or fuzziness in the real world, which is closely related to fuzzy topology. This
paper introduced interval-valued fuzzy soft preorderings, and subsequently an interval-
valued fuzzy soft equivalence based on interval-valued fuzzy soft topology. We then
presented two different crisp preorderings and equivalence relations over the X-associated
interval-valued fuzzy soft topology. Employing a new method for ranking data, a score
function was defined to solve multi-group decision-making problems. Finally, a numerical
example was given. For future research, interval-valued fuzzy soft ordering is the most
powerful concept in system analysis. It can be implemented from the decision-making
methods in conflict handling, recommender systems, and practical evaluation systems.
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