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Abstract: The current article presents the entropy formation and heat transfer of the steady Prandtl-
Eyring nanofluids (P-ENF). Heat transfer and flow of P-ENF are analyzed when nanofluid is passed
to the hot and slippery surface. The study also investigates the effects of radiative heat flux, variable
thermal conductivity, the material’s porosity, and the morphologies of nano-solid particles. Flow
equations are defined utilizing partial differential equations (PDEs). Necessary transformations are
employed to convert the formulae into ordinary differential equations. The implicit finite difference
method (I-FDM) is used to find approximate solutions to ordinary differential equations. Two types
of nano-solid particles, aluminium oxide (Al2O3) and copper (Cu), are examined using engine oil
(EO) as working fluid. Graphical plots are used to depict the crucial outcomes regarding drag force,
entropy measurement, temperature, Nusselt number, and flow. According to the study, there is a
solid and aggressive increase in the heat transfer rate of P-ENF Cu-EO than Al2O3-EO. An increment
in the size of nanoparticles resulted in enhancing the entropy of the model. The Prandtl-Eyring
parameter and modified radiative flow show the same impact on the radiative field.

Keywords: steady flow; Tiwari and Das model; Prandtl-Eyring nanofluid; entropy generation;
implicit finite difference method

1. Introduction

Nanofluids, including nanomaterial dispersed in a pure fluid, are becoming applica-
ble fluids in various systems due to their proved superior specification [1]. Augmented
thermal conductivity is a remarkable property induced from nanofluid as compared with
conventional fluids [2]. On the other hand, the viscosity of nanofluids is significantly varied
depending on the type of nanoparticles, base fluid, and their interaction [3]. Some authors
have observed Newtonian behaviour of nanofluids, while a non-Newtonian one has been
widely revealed [4]. The non-Newtonian behaviours have practical implementations in
wire and blade coating, molten plastic, dyeing of textile, some petroleum fluids, biological
fluids movement, and food and slurries processing. In this regard, various kinds of rhe-
ological behaviours can be expected, defined by models such as power law, micropolar,
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Reiner–Philippoff, viscoelastic, Casson, Carreau, Giesekus, Prandtl, Prandtl–Eyring, and
Powell–Eyring [5]. These models introduce special impendence on the momentum conser-
vation equations to be compatible with the targeted behaviour. Indeed, in mathematical
language, the relationship between shear stress and deformation rate is described by each
model. Prandtl and Prandtl–Eyring are a function of sine inverse and sine hyperbolic,
respectively [6,7]. The power law model characterizes the relation as nonlinear [8]. Sajid
et al. [9] studied a micropolar Prandtl fluid for a porous stretching sheet situation. They as-
sumed that the heat source is related to temperature and a chemical reaction occurs into the
medium. Maleki et al. [10] performed numerical research on power law nanofluid, which
flows on a porous plate. They found that using Newtonian nanofluid has no improvement
effect on heat transfer.

In contrast, the non-Newtonian one had an essential role in boosting heat transfer.
Shankar and Naduvinamani [11] worked on the transport phenomena of a Prandtl–Eyring
fluid through a sensor surface under magnetic force conditions. The observation showed
that magnetic parameter augmentation causes a velocity field increment and temperature
profile reduction. At the same time, heat transfer diminished by the Prandtl number
rose. Temperature and concentration variations on Prandtl–Eyring fluid heat transfer
were investigated by Al-Kaabi and Al-Khafajy [12] in a porous medium. Finally, Hayat
et al. [13] evaluated the efficacy of Prandtl–Eyring nanofluid on gyrotactic microorganisms
in a stretching sheet. The results indicated that higher melting parameters hike the velocity
and pull down the temperature.

Stretching surface is a well-known and habitual process in industrial situations, i.e.,
extrusion, fiberglass, cooling of the metallic plate, glass blowing, hot rolling, etc. Bound-
ary layer flow and heat transfer is the theory that helps better understand the scientific
phenomena underlying it [14]. Nonlinear equations are expected from practical problems
which are experienced in engineering applications. The Keller box method is an implicit
finite difference method used to solve these types of equations [15]. Munjam et al. [16]
proposed a new technique to solve the fluid flow of a Prandtl–Eyring fluid on a stretched
sheet and compared their results with the Keller box method. The analytical outcomes
indicated that as the fluid parameter rises, velocity enhances. In addition, they found that
the Prandtl–Eyring fluid induces a grosser velocity value as compared to the viscous one.

Jamshed et al. [17] explored the entropy generation of Casson nanofluid by considering
the Tiwari and Das model and the Keller box method to solve ODEs. Two methanol-based
nanofluids were used by introducing Cu and TiO2 nanoparticles; Cu nanofluids showed a
better performance. In [18], they also used the same models and techniques for the same
nanoparticles for engine oil base fluid. They concluded that entropy generation would
enhance by Reynolds number and Brinkman numbers. Moreover, increasing nanofluid
concentration led to shear rate enhancement. Abdelmalek et al. [19] discussed a Prandtl–
Eyring nanofluid which influences Brownian motion and thermophoretic force through a
stretched surface. It was proved that magnetic force is undesirable for the momentum. In
contrast, Brownian motion and thermophoretic force raised the thermal energy.

In the viewpoint of heat transfer, thermal conductivity is a determinant parameter
that is generally assumed to be unchanged. However, extensive studies emphasized that
the efficacy of temperature changing the thermal conductivity would vary. Particularly,
nanofluids have an intimate relation with temperature, which can considerably affect the
heat transfer due to the higher aspect ratio that nanoparticles provide within the base fluid.
It is proved that at higher temperatures, the thermal conductivity is typically more elevated.
Thus, in a range of temperatures, the thermal conductivity is variable. Maleki et al. [20]
studied the efficacy of different kinds of nanofluids on the heat transfer of a porous system.
They claimed that the results are opposite with other researchers, i.e., adding more nanopar-
ticles dwindled the heat transfer because it can alter radiation, viscous dissipation, and
heat generation. In [21], they also surveyed the non-Newtonian nanofluids by considering
the mixture of CMC and water as a base fluid. It was revealed that using non-Newtonian
nanofluid in injection mode has a higher heat transfer efficiency as compared to the Newto-
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nian one. Jamshed et al. [22] investigated Casson nanofluid in a stretching sheet system that
included variable thermal conductivity. Keller box was the technique that solved ODEs.
In this method, differential equations are solved numerically to reduce them into the 1st
order differential equations. They used TiO2 and Cu as nanoparticles in water. Cu/water
nanofluid had better heat conduction performance. Carreau–Yasuda nanofluid was re-
searched by Waqas et al. [5] by considering gyrotactic motile microorganisms. Velocity,
thermal, and temperature fields were amended by decreasing the bioconvection Rayleigh
number, increasing the thermal Biot number, and decreasing the Prandtl number. In ad-
dition, the concentration field improved by reducing Brownian motion. Xiong et al. [23]
explained that variable thermal conductivity has a determinant role in field quantities.
They scrutinized a fibre-reinforced generalized thermoelasticity system by considering
temperature-dependent thermal conductivity. Ibrahim and Negera [24] inspected an MHD
Williamson nanofluid effect within a stretching cylinder by considering chemical reaction
conditions. They asserted that the higher the parameter of variable thermal conductivity,
the higher the Sherwood number and skin friction, while the lower the Nusselt number.
Dada and Onwubuoya [25] analysed an MHD Williamson fluid over a stretchable sur-
face of variable thickness and thermal conductivity. The conclusion indicated that rising
changeable thermal conductivity improves temperature. Hasona et al. [26] described the
variable thermal conductivity of a non-Newtonian nanofluid in a special geometry channel.
They reported that rising thermal and electrical conductivities enhance the temperature
of working fluid, which in turn augments heat transfer performance within the system.
Fatunmbi and Okoya [27] presented an investigation on hydromagnetic Casson nanofluid
at the attendance of thermophoresis, ohmic heating, and a nonuniform heat source with
variable thermal conductivity for a stretching sheet system. They demonstrated that driv-
ing up the Casson fluid parameter dwindled the fluid flow velocity, albeit, it augmented
the viscous drag.

After a glance into the erstwhile studies, since most industrial fluids include non-
Newtonian fluids in a situation like stretching surface, the significant concerns of the
current project are to discuss the Prandtl–Eyring nanofluid flow over a stretching sheet
under three conditions of variable thermal conductivity, thermal radiative flow, and porous
material. In addition, their effects on the entropy formation were elaborated by considering
the Tiwari and Das model. In this way, Al2O3/EO and Cu/EO nanofluids were analysed
at volume concentrations of 3% to 20%. Furthermore, this study implemented the implicit
finite difference method to solve the boundary layer equations nicely. Therefore, it can be
said that the valuable outcomes of this research can be a guideline for practical applications
because it was conducted to select parameters close to actual industrial conditions.

2. Flow Model Formulations

A nonregular stretching velocity was used in the flow analysis to characterize hori-
zontal surface movement (for instance, Reference [28]):

Uw(x, 0) = mx, (1)

where m is a pilot spreading ratio. The temperature at the surface is Uw(x, 0) = U∞ + m∗x.
For the sake of adaptability, it was fabricated as a perpetual at x = 0. m*, Uw and U∞ provided
the temperature variation rate, thermal disparity rate, and ambient temperature congruently.

2.1. Prandtl–Eyring Fluid Stress Tensor

Prandtl–Eyring fluid stress tensor can be expressed as follows (Qureshi [29]),

τ =

Ap Sin−1

{
1
C

⌈(
∂G1
∂y

)2
+
(

∂G2
∂x

)2
⌉ 1

2
}

⌈(
∂G1
∂y

)2
+
(

∂G2
∂x

)2
⌉ 1

2

(
∂G1

∂y

)
. (2)
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Here, τ signify extra stress tensor and
←
G = [G1(x, y, 0), G2(x, y, 0), 0] indicates the flow

velocity vector. Aw and C are fluid parameters. The complete derivation of this specific
stress tensor and velocity field can found in Becker [30].

2.2. Model Assumptions and Restraints

The mathematical model was taken into account in the following presumptions and
requirements:

X 2D laminar flow
X Boundary layer estimation
X Tiwari and Das nanofluid model
X Non-Newtonian Prandtl–Eyring nanofluid
X Copper (Cu) and aluminium oxide (Al2O3) nanoparticles
X Base fluid is engine oil (EO)
X Variable thermal conductivity
X Thermal radiation
X Permeable stretching surface
X Convective and slippery velocity conditions.

2.3. Geometry for Single-Phase Flow Model

Following is the geometric flow model: the flow goes over the sheet. Thermal leap
was used to transfer heat from the fluid’s surface to the fluid’s inside as the velocity
at the surface underwent the flow slip event. Alumina oxide nanoparticles and copper
nanoparticles were mixed into the engine oil (see Figure 1).
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Figure 1. Diagram of the single-phase flow model.

2.4. Classical Equations

The flow formulae of viscous and steady Prandtl–Eyring nanofluid (P-ENF) in combi-
nation with variant thermal conductivity, radiation, and porous material are [31–33].
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∂G1

∂x
+

∂G2

∂y
= 0, (3)

G1
∂G1

∂x
+ G2

∂G1

∂y
=

Ap

Cρn f

(
∂2G1

∂y2

)
−

Ap

2C3ρn f

∂2G1

∂y2

[(
∂G1

∂y

)2
]
−

µn f

ρn f k
G1, (4)

G1
∂U
∂x

+ G2
∂U
∂y

=
1(

ρCp
)
κn f

[
∂

∂y

(
κ∗hn f (U)

∂U
∂y

)]
− 1

(ρCp)n f

[
∂qr

∂y

]
, (5)

the appropriate connection conditions were as follows (Aziz et al. [34]):

G1(x, 0) = Uw + NL

(
∂G1

∂y

)
, G2(x, 0) = Vπ , −kπ

(
∂U
∂y

)
= hπ(Uw −U), (6)

G1 → 0, U → U∞ as y→ ∞. (7)

U is the temperature of the nanofluid.
Other crucial parameters involved fluid parameters Ap, C, slip length NL, surface

permeability Vπ , heat transfer coefficient hπ , and porosity (k), along with heat conductivity
of firm kπ . It considered physical elements such as the thermal loss from a conventionally
heated surface due to conduction and velocity at the surface as a function of the shear stress
applied to it (slip condition). Because of the thickness of non-Newtonian P-ENF, just a
short distance was covered by the radiative flow. Therefore, radiation heat flux estimation
obtained through Rosseland [35] was applied in Equation (5).

qr = −
4σ∗

3k∗
∂U4

∂y
, (8)

herein, σ∗ represents the Stefan–Boltzmann constant. Table 1 summarizes the equations of
P-ENF material variables [36,37]:

Table 1. Formulae used for studied nanofluids [36,37].

Characteristics Nanofluid

Dynamical viscosity (µ) µn f = µ f (1− φ)−2.5

Density (ρ) ρn f = (1− φ)ρ f − φρs

Heat capacity
(
ρCp

)
(ρCp)n f = (1− φ)(ρCp) f − φ(ρCp)s

Thermal conductivity (κ) κn f
κ f

=

[
(κs+2κ f )−2φ(κ f−κs)
(κs+2κ f )+φ(κ f−κs)

]
Variable thermal

conductivity (κ∗n f (U)) κ∗n f (U) = kn f

[
1 + υ∗ U−U∞

Uw−U∞

]
φ represents the volume fraction coefficient of nanofluid. µ f , ρ f , κ f and (Cp) f show dynamic viscosity, density,
thermal conductivity, and functional heat capacity regarding the ideal fluid, respectively. The indice of “s”
represents the solid nanoparticles. (κ∗n f (U)) represents the temperature-reliant heat conductance of nanofluid.

The thermophysical properties of engine oil and studied nanoparticles are shown in
Table 2 [38,39].

Table 2. Materials thermophysical properties [38,39].

Thermophysical ρ (kg/m3) cp (J/kgK) k (W/mK)

Copper (Cu) 8933 385.0 401.00
Engine oil (EO) 884 1910 0.144

Aluminium oxide (Al2O3) 3970 765 40
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3. Dimensionless Formulations Model

Similarity transformations that convert the governing PDEs into ODEs, and the BVP
formulae (3)–(7) are modified. Familiarizing stream function ψ in the equation [28]

G1 =
∂ψ

∂y
, G2 = −∂ψ

∂x
. (9)

The specified similarity quantities are ([28])

γ∗(x, y) =

√
m
ν f

y, ψ(x, y) =
√

ν f mx f (γ∗), θ(γ∗) =
U−U∞

Uw −U∞
. (10)

into Equations (3)–(7). We get

τ∗ f
′′′(

1− ς∗ f
′′2
)
+ φΫ2

[
f f ′′ − f ′2

]
− 1

φΫ1

Fπ f ′ = 0, (11)

θ′′

(
1 + υ∗θ +

1
φΫ4

Pr Nπ

)
+ υ∗θ′2 + Pr

φΫ3

φΫ4

[
f θ′ − f ′θ

]
= 0. (12)

with
f (0) = S, f ′(0) = 1 + Λπ f ′′ (0), θ′(0) = −Bπ(1− θ(0))
f ′( γ∗)→ 0, θ( γ∗)→ 0, as γ∗ → ∞

}
(13)

where φ′Ϋi
is 1 ≤ i ≤ 4 in formulae (11)–(12) signify the subsequent thermophysical

structures for P-ENF [29].

φΫ1
= (1− φ)2.5, φΫ2

=
(

1− φ + φ
ρs
ρ f

)
, φΫ3

=

(
1− φ + φ

(ρCp)s
(ρCp) f

)
φΫ4

=

(
(ks+2k f )−2φ(k f−ks)
(ks+2k f )+φ(k f−ks)

)
.

 (14)

Equation (2) is clearly shown to be valid. Table 3 shows the needed derivatives.

Table 3. Entrenched Control Constraints.

Symbols Name Default Value

τ∗
Prandtl–Eyring

parameter-I τ∗ =
Ap
µ f C

1.3

ς∗
Prandtl–Eyring

parameter-II ς∗ = m3x2

2C2ν f
0.3

Pr Prandtl number Pr = ν f
α f

6450

φ
Volume fraction

coefficient - 0.18

Fπ Porosity parameter Fπ =
ν f
mk 0.6

S Suction/Injection
parameter S = −Vπ

√
1

ν f m
0.5

Nπ
Thermal radiation

parameter Nπ = 16
3

σ∗U3
∞

κ∗ν f (ρCp) f

0.3

Bπ Biot number Bπ = hπ
kπ

√
ν f
g

0.2

Λπ Velocity slip Λπ =
√

m
ν f

NL 0.3
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Other parameters like skin friction (C f ), Nusselt number (Nux) and entropy genera-
tion (NG) can be expressed as [31,32]:

C f Re
1
2
x = τ∗ f

′′
(0)− 1

3 τ∗ς∗
(

f
′′
(0)
)3

,

NuxRe−
1
2

x = − kn f
k f

(1 + Nπ)θ′(0),

NG = Rπ

[
φΫ4

(1 + Nπ)θ′2 +
1

φΫ4

BΓ
Ω

(
f
′′2 + Pξ f ′2

)]
.

 (15)

4. Implicit Finite Difference Method

The implicit finite difference method (I-FDM) [40] was utilized to obtain the numerical
solution for the equation set of models. I-FDM has an advantage as it has fast convergence.
It is 2nd order convergent and inherently stable. I-FDM satisfies the Von Neumann stability
test, which has the criterion of a real numerical solution for PDEs with the help of the
stability and consistency of a numerical solution. I-FDM is employed to obtain the solution
of Equations (11) and (12) using boundary conditions (13). This is a suitable method to
obtain the approximated solution of boundary layer problems. I-FDM is widely applicable
in the flow problems of the laminar boundary layer, and the obtained results are more
effective than others.

To apply the implicit finite difference method [41], Equations (11) and (12) were
written in the form of 1st order differential equations utilizing newly employed variables.
Reduced equations are as follows [32]:

L1 = f ′, (16)

L2 = L′1, (17)

z3 = θ′, (18)

τ∗L′2
(

1− ς∗L2
2
)
+ φΫ2

[
f L2 − L2

1

]
− 1

φΫ1

Fπ L1 = 0, (19)

L′3

(
1 + υ∗θ +

1
φΫ4

Pr Nπ

)
+ υ∗L2

3 + Pr
φΫ3

φΫ4

[ f L3 − L1θ] = 0. (20)

With the presence of newly employed variables, boundary conditions eventually
changed to [31]

f (0) = S, L1(0) = 1 + Λπ L2(0), L3(0) = −Bπ(1− θ(0)), L1(∞)→ 0, θ(∞)→ 0. (21)

The different formulae were calculated using central differencing, and average func-
tions were replaced. Thus, the 1st ODEs (16) and (20) order decreases to the next series of
nonlinear algebraic formulae.

(L1)j + (L1)j−1

2
=

f j − f j−1

h
, (22)

(L2)j + (L2)j−1

2
=

(L1)j − (L1)j−1

h
, (23)

(L3)j + (L3)j−1

2
=

θj − θj−1

h
, (24)
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τ∗
(

(L2)j−(L2)j−1
h

)(
1− ς∗

(
(L2)j+(L2)j−1

2

)2
)

+

[
φΫ2

(( f j+ f j−1
2

)(
(L2)j+(L2)j−1

2

)
−
(

(L1)j+(L1)j−1
2

)2
)
− Fπ

1
φΫ1

(
(L1)j+(L1)j−1

2

)]
,

(25)

(
(L3)j−(L3)j−1

h

)(
1 + υ∗

(
θj+θj−1

2

)
+ 1

φΫ4
Pr Nπ

)
+ υ∗

(
(L3)j+(L3)j−1

2

)2

+Pr
φΫ3
φΫ4

[( f j+ f j−1
2

)(
(L3)j+(L3)j−1

2

)
−
(

(L1)j+(L1)j−1
2

)(
θj+θj−1

2

)]
= 0.

(26)

To linearize the resulting equations, Newton’s technique was used. As an example,
consider iteration (i + 1)th

()
(i+1)
j = ()

(i)
j + Ö()

(i)
j . (27)

under the substitutition of the linear tridiagonal equational system into Equations (22)–(26),
disregarding the elevated Öi

j components.

Ö f j − Ö f j−1 −
1
2

h(Ö(L1)j + Ö
(

L1)j−1
)
= (d1)j− 1

2
, (28)

Ö(L1)j − Ö(L1)j−1 −
1
2

h(Ö(L2)j + Ö
(

L2)j−1
)
= (d2)j− 1

2
, (29)

Öθj − Öθj−1 −
1
2

h(Ö(L3)j + Ö
(

L3)j−1
)
= (d3)j− 1

2
, (30)

(a1)jÖ f j + (a2)jÖ f j−1 + (a3)jÖL1 j + (a4)jÖLj−1 + (a5)jÖL2 j + (a6)jÖL2 j−1

+(a7)jÖθj + (a8)jÖθj−1 + (a9)jÖ(L3)j + (a10)jÖ(L3)j−1 = (d4)j− 1
2
, (31)

(b1)jÖ f j + (b2)jÖ f j−1 + (b3)jÖL1 j + (b4)jÖL1 j−1 + (b5)jÖL2 j + (b6)jÖL2 j−1

+(b7)jÖθj + (b8)jÖθj−1 + (b9)jÖ(L3)j + (b10)jÖ(L3)j−1 = (d5)j− 1
2
. (32)

where
(d1)j− 1

2
= − f j + f j−1 +

h
2
(L1)j + (

(
L1)j−1

)
, (33)

(d2)j− 1
2
= −(L1)j + (L1)j−1 +

h
2
((L2)j +

(
L2)j−1

)
, (34)

(d3)j− 1
2
= −θj + θj−1 +

h
2
((L3)j +

(
L3)j−1

)
, (35)

(d4)j− 1
2
= −h

τ∗
(
(L2)j − (L2)j−1

h

)1− ς∗
(
(L2)j + (L2)j−1

2

)2
− h

φb

( f j + f j−1

2

)( (L2)j + (L2)j−1

2

)
−
(
(L1)j + (L1)j−1

2

)2
− Fπ

1
φa

(
(L1)j + (L1)j−1

2

), (36)

(d5)j− 1
2
= −h

[ (
(L3)j−(L3)j−1

)
h

(
1 + υ∗

(
θj+θj−1

2

)
+ 1

φΫ4
Pr Nπ

)]
− h

[
υ∗
(

(L3)j+(L3)j−1
2

)2
]

−hPr
φΫ3
φΫ4

[(
( f j+ f j−1)((L3)j+(L3)j−1)

4

)]
+ hPr

φΫ3
φΫ4

[(
(θj+θj−1)((L1)j+(L1)j−1)

4

)] (37)

The boundary conditions become

Ö f0 = 0, Ö(z1)0 = 0, Ö(z3)0 = 0, Ö(z1)J = 0, ÖθJ = 0. (38)

The following are the formulae (33)–(37) that produce the bulk tridiagonal array,

RÖ = p, (39)
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where

H =



v1 v1
ϕ2 v2 ε2

. . . . . . . . .
. . . . . . . . .

ϕJ−1 vJ−1 ε J−1
ϕJ vJ


, Ö =


Ö1
Ö2
...
Öj−1
Ö

, p =



(d1)j− 1
2

(d2)j− 1
2

...
(dJ−1)j− 1

2
(dJ)j− 1

2


. (40)

This matrix, H, resembles the generalized size of J × J, whereas the Ö and p indicate
the column vectors order of J × 1. Afterward, a unique LU factorization approach was
employed to get the solution for Ö.

5. Code Validity

The technique’s authenticity was assessed by comparing the thermal conveyance rate
fallouts between the recent scheme and the previous results [42–45]. Table 4 summarises
the consistency relationship found in all of the studies. Therefore, the findings of the
present study are agreeable with previously published results and verified.

Table 4. Comparison of −θ′(0) with Pr, whenever φ = 0, Nπ = 0, υ∗ = 0, Λπ = 0, S = 0, and
Bπ → ∞ .

Pr Wang [41] Gorla and
Sidawi [42]

Khan and
Pop [43]

Makinde and
Aziz [44] This Study

0.2 0.1691 0.1691 0.1691 0.1691 0.169
0.7 0.4539 0.4539 0.4539 0.4539 0.4537
2 0.9114 0.9114 0.9114 0.9114 0.9113
7 1.8954 1.8954 1.8954 1.8954 1.8958

6. Results and Discussion

The section discusses the numerical outcomes obtained on the model in consideration.
The parameters involved in the results are φ, Nπ , υ∗, Bπ , τ∗, ς∗, Fπ , S, Λπ , Rπ , and BΓ.
Figures 2–21 display the physical behavior of the mentioned parameters regarding energy,
entropy formation, and velocity on the nondimensional entities of the model. Results for
non-Newtonian Al2O3-EO and Cu-EO P-ENFs were obtained. Temperature differences
and coefficient of skin fraction are detailed in Table 5. The values used for the parameters
are φ = 0.18, Nπ = 0.3, υ∗ = 0.2, Bπ = 0.3, τ∗ = 1.0, ς∗ = 0.2, Fπ = 0.6, S = 0.5,
Λπ = 0.3, Rπ = 5, and BΓ = 5. The power of Al2O3-EO and Cu-EO were decided with the
fractional size of nanoparticles used in the working fluid. Flow stability of nanoparticles
decreased when nanoparticles had a higher amount of fractional range. Al2O3-EO was
favored more by fractional improvement than Cu-EO nanofluid. Figure 2 shows a lower
flow of Cu-EO nanofluid than Al2O3-EO. As Al2O3 has a high heat transfer property, its
primary purpose is to combine with EO. When the fractional volume of both fluids flows
increases, thermal distribution transported to the domain from the surface is high, as shown
in Figure 3. The increasing fractional volume also resulted in enhancing the fluctuations of
the system entropy. Figure 4 shows the leading fluctuations of Cu-EO nanofluid, which
settled down midway and increased further towards Al2O3-EO nanofluid. The thermal
radiation parameter (Nπ) models the radiation procedure used in enhancing the entropy
rate and heat regarding induced temperature, as shown in Figures 5 and 6. Radiations
had a negligible effect on the entropy variations caused by the prominent influence of
flow conditions. Cu-EO had more control than the Al2O3-EO nanofluid. Regarding heat
capability of Al2O3 and Cu-EO nanofluids, there was a dominant effect on entropy and
thermal aspects of individual variations in υ∗, i.e., thermal conductivity. Figures 7 and 8
represent these effects. When the variation parameter tries to increase the ranges of entropy
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and heat, the nominal impact of υ∗ is proved by close variations of entropy and thin
layers of heat. In both behaviors of parameters, Al2O3-EO underestimated the Cu-EO
nanofluid. Figures 9 and 10 clearly show the increment in convective heat on thermal as
well as entropy states from lower surfaces in the domain. Parametric values of Biot number
represent the ordinary heating procedure Bπ . An increase in Bπ resulted in enhancing the
thermal state in the flow domain, but this only had a negligible impact on the entropy
generation. The entropy profile is smaller than the thermal boundary layer, which proves
the above statement. According to the study, Al2O3-EO is better than Cu-EO nanofluid.
Figures 11–13 demonstrate the impact on the power, entropy, and velocity distributions
of Prandtl–Eyring nanofluid τ∗. Figure 11 shows the speed ( f ′) corresponding to τ∗. The
velocity of both fluids increased with amplification in τ∗. However, the velocity of Al2O3-
EO velocity was more incredible as compared to Cu-EO. Figure 12 shows the temperature
curve concerning the Prandtl–Eyring parameter τ∗. An increment in τ∗ resulted in reducing
the temperatures of both fluids. However, the temperature profile of Cu-EO nanofluid is
more critical than Al2O3-EO nanofluid. Figure 13 represents the entropy fluctuation of
P-ENF caused by τ∗. An increase of τ∗ resulted in lowering the entropy formation. The
lower value of entropy of the Al2O3-EO fluid was used to represent Cu-EO nanofluid
when both nanofluids were at the end of the graph. τ∗ is strongly related to the profile of
P-ENF. However, an increase of τ∗ resulted in decreasing the entropy and temperature.
Figures 14–16 illustrate the efficacy of the Prandtl–Eyring parameter ς∗ on the profiles
of temperature, velocity, and entropy formation. The velocity change regarding ς∗ was
displayed in Figure 16. A decrease in the velocity profile was the result of an increment in
Cu-EO while increasing Al2O3-EO and a high rate in ς∗. Figure 15 shows the fluctuations
in the profile of temperature concerning ς∗. The temperature grows as ς∗ is increased,
and Cu-EO obtains a quick temperature. Figure 16 highlights the difference in entropy
caused by the Prandtl–Eyring parameter ς∗. An increment in entropy is obtained with
increasing ς∗. Results obtained from modifying the slip conditions on the nature of the
flow, heat, and generation of entropy, respectively, are shown in Figures 17–19. Viscous
behavior was focused on the flow conditions in the combinations of the Prandtle-Eyring
fluid. Variations in velocity, entropy formation, and thermal distributions have an essential
role in slip conditions. The situation for fluidity becomes difficult when slip conditions of
Prandtl–Eyring fluid flow are increased. Fluidity was reduced for Cu-EO than Al2O3-EO
P-ENF. Such hierarchy mainly occurs in thermal distributions, i.e., Cu-EO has a higher
thermal state than Al2O3-EO nanofluid, as depicted in Figure 18. Greater values of slip
parameter Λπ resulted in decreasing the entropy generation. It was caused by slip flow,
which acted opposite to entropy generation, as shown in Figure 19. Figure 20 shows the
performed estimations for Fπ = 0.6, 1.6, and 2.6; meanwhile, parametric values of ς∗ are 0.2,
0.4, and 0.6. An increment in the material parameter resulted in enhancing the coefficient
of skin friction. Flow velocity was decreased due to an increase in skin friction as resistance
in fluid increased. In Figure 21, calculations for Nπ = 0.1, 0.3, and 0.5 were employed
while Prandtl number Pr was kept fixed on 1.0, 6.2, and 7.38. The convective heat transfer
rate rose whenever the radiation parameter Nπ , is increased. The heat transfer rate was
augmented when heat flux was increased.
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Table 5. Values of C f Re1/2
x and NuxRe−1/2

x for Pr = 6450.

τ∗τ* ς∗ς* Fπ φ Λπ S Nπ υ* Bπ
CfRe

1
2
x

Cu-EO
CfRe

1
2
x

Al2O3-EO
NuRe

−1
2

x
Cu-EO

NuRe
−1
2

x
Al2O3-EO

1 0.2 0.6 0.18 0.3 0.5 0.3 0.2 0.3 5.5179 4.2061 3.5457 3.1859
1.3 5.5322 4.234 3.5785 3.216
1.6 5.5716 4.2695 3.6018 3.2474

0.2 5.5179 4.2061 3.5457 3.1859
0.4 5.4921 4.1875 3.5014 3.1522
0.6 5.4513 4.1645 3.4787 3.139

0.6 5.5179 4.2061 3.5457 3.1859
1.6 5.5415 4.2431 3.5251 3.1633
2.6 5.5823 4.2789 3.5075 3.141

0.09 5.4565 4.1331 3.4865 3.1236
0.15 5.484 4.1702 3.5186 3.1542
0.18 5.5179 4.2061 3.5457 3.1859

0.1 5.592 4.2609 3.5972 3.2328
0.2 5.5405 4.2337 3.5649 3.2011
0.3 5.5179 4.2061 3.5457 3.1859

0.3 5.4932 4.1722 3.5143 3.1598
0.5 5.5179 4.2061 3.5457 3.1859
0.7 5.5416 4.2334 3.5766 3.2145

0.1 5.5179 4.2061 5.5271 3.1604
0.3 5.5179 4.2061 3.5457 3.1859
0.5 5.5179 4.2061 3.5637 3.2194

0.1 5.5179 4.2061 3.5950 3.2239
0.2 5.5179 4.2061 3.5457 3.1859
0.3 5.5179 4.2061 3.5121 3.1565

0.1 5.5179 4.2061 3.5109 3.1718
0.3 5.5179 4.2061 3.5457 3.1859
0.5 5.5179 4.2061 3.5735 3.2274

7. Final Remarks

Investigations were made on HT properties and the entropy formation of P-ENF using
a stretchable sheet. The single-phase method was employed to construct a computational
model. Various physical parameters extract the results with the variations in energy,
entropy, and velocity. The impacts of the thermal conductivity parameter υ∗, the thermal
radiative parameter Nπ , Prandtl–Eyring parameters τ∗ and ς∗, the velocity slip parameter
Λπ , Biot number Bπ , BΓ, and Rπ , as well as nanomolecular size φ and porous media
parameter Fπ were examined in the study. Some of the main developments from the study
were: The increment in the size of nanoparticles resulted in amplifying the heat transfer rate
in engine oil. According to the analysis, copper nanofluid is a better heat conductor than
aluminium oxide nanofluid. Increasing the porous media parameter Fπ , thermal radiative
flow Nπ , size parameter φ, and Brinkman number BΓ, the entropy was also enhanced.
However, entropy was diminished with a rise in velocity slip parameter Λπ . An increment
in the porous media parameter resulted in increasing the velocity. At the same time, it
decreased with the nanoparticles’ size augmentation.

The results obtained from the present study can help future researchers improve the
heat effect. Heating systems can be formed using various non-Newtonian nanofluids,
including Casson, Carreau, second-grade, Maxwell, micropolar, etc. The efficacy of time-
dependent porosity and viscosity along with magneto slip flow can be represented by
expanding the study.
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