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����������
�������

Citation: Li, Y.; Alkhaldi, A.H.; Ali,

A.; Laurian-Ioan, P. On the Topology

of Warped Product Pointwise

Semi-Slant Submanifolds with

Positive Curvature. Mathematics 2021,

9, 3156. https://doi.org/10.3390/

math9243156

Academic Editor: Cristina-Elena

Hretcanu

Received: 9 November 2021

Accepted: 29 November 2021

Published: 8 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Mathematics, Hangzhou Normal University, Hangzhou 311121, China; liyl@hznu.edu.cn
2 Department of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi Arabia;

ahalkhaldi@kku.edu.sa
3 Department of Mathematics and Computer Science, North University Center of Baia Mare,

Technical University of Cluj Napoca, 430122 Baia Mare, Romania; Laurian.PISCORAN@mi.utluj.ro
* Correspondence: akali@kku.edu.sa
† These authors contributed equally to this work.

Abstract: In this paper, we obtain some topological characterizations for the warping function of
a warped product pointwise semi-slant submanifold of the form Ωn = Nl

T × f Nk
φ in a complex

projective space CP2m(4). Additionally, we will find certain restrictions on the warping function f ,
Dirichlet energy function E( f ), and first non-zero eigenvalue λ1 to prove that stable l-currents do not
exist and also that the homology groups have vanished in Ωn. As an application of the non-existence
of the stable currents in Ωn, we show that the fundamental group π1(Ωn) is trivial and Ωn is simply
connected under the same extrinsic conditions. Further, some similar conclusions are provided for
CR-warped product submanifolds.

Keywords: warped product submanifolds; complex projective spaces; homology groups; homotopy;
sphere theorems; stable currents; kinetic energy

1. Introduction and Main Results

A classical challenge in Riemannian geometry is to discuss the geometrical and topo-
logical structures of submanifolds. The stable currents and homology groups are the most
important characterizations of the Riemannian submanifolds because they control the
behavior of the topology of submanifolds. The notion of non-existence stable current
and vanishing homology on pinching the second fundamental form was introduced by
Lawson-Simons [1]. Xin proved in [2] as the following important form:

Theorem 1 ([1,2]). Suppose Ωn is a compact n-dimensional submanifold in a space form Ω̃(c) of
curvature c ≥ 0. Suppose l, k is any positive integer, that is, l + k = n, and the inequality

l

∑
A=1

n

∑
B=l+1

{
2||h(eA, eB)||2 − g

(
h(eA, eA), h(eB, eB)

)}
< lkc (1)

holds for all orthonormal basis
{

ei, · · · , en} of the tangent space TΩn; then there are no stable
l-currents in Ωn and

Hl(Mn,G) = Hn−l=k(Ω
n,G) = 0,

where Hi(Ωn,G) stands for i integral homology groups of Ωn, while G is a finite abelian group
with integer coefficients.

The generalized Poincaré conjecture for dimension n ≥ 5 was proved by Smale [3]
by using the nonexistence for the stable currents over compact submanifolds on a sphere.
Then, Lawson and Simons obtained the striking sphere theorem in [1], in which they
showed that an n-dimensional compact-oriented submanifold Ωn in the unit sphere Sn+k
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is homeomorphic to the sphere Sn with n 6= 3, provided that the second fundamental form
was bounded above by a constant that depends on the dimension n. Additionally, it was
proved that Ω3 is homotopic to the sphere S3. Using Theorem 1, Leung [4] proved that for a
compact connected oriented submanifold Ωn in the unit sphere Sn+k with ‖h(X, X)‖2 < 1

3
thus Ωn is homeomorphic to the sphere Sn in the case n 6= 3, and also that Ω3 is homotopic
to a sphere S3. More recently, geometric, topological, and differentiable rigidity theorems
of the Riemannian submanifold connecting to parallel mean curvature in space forms such
that c + H2 > 0 have been obtained in terms of Ricci curvature in [5]. In some articles such
as [3,6–17], several results have been derived on topological and differentiable structures of
singular submanifolds and submanifolds with specific effective conditions for the second
fundamental form, sectional curvatures, and Ricci curvatures.

However, very few topological obstructions to warped product submanifolds with
positive sectional curvature are known; for example, Sahin et al. [13] verified some out-
comes for the non-existence of the stable current and vanishing homology groups into a
contact CR-warped product which immersed in a sphere with an odd dimension, by putting
suitable restrictions on the Laplacian and the gradient of the warping function. Taking
the benefits of the constant section curvature which could be zero or one, Sahin [13,14] ex-
tended this study on a class of CR-warped product in an Euclidean space and in the nearly
Kaehler six-sphere. By assuming negative constant section curvature, Ali et al. [18–20]
obtained various results on CR-warped product, especially on the complex hyperbolic
spaces, and many structures about this subject remain open.

Therefore, we shall study the warped product pointwise semi-slant submanifolds of
complex projective spaces where the constant sectional curvature c = 4 > 0 is positive.
More specifically, our motivation comes from the studies of Sahin [21]. In that paper,
Sahin investigated the warped product pointwise semi-slant submanifolds in a Kähler
manifold, and also showed that the warped product pointwise semi-slant of form Nl

T × f Nk
φ

is nontrivial. It was shown by the Ref. [21] that the warped product pointwise semi-slant
submanifold Nl

T × f Nk
φ of Kähler manifold generalized the CR-warped products [22]

and the angle φ is treated as a slant function. In this case, suppose C∗ = C− {0} and
Cm+1
∗ = Cm+1 − {0}. Additionally, assuming that the action C∗ on Cm+1

∗ can be expressed
using γ, which means (z0, z1, . . . , zm) = (γz0, γz1, . . . , γzm), then all equivalent classes
set are produced from this idea are represented using CPm. If we denote with π(z), the
equivalent classes which contains z, then Cm+1

∗ → CPm is a surjection, and it is well-known
that CPm endowed a complex structure derived by the complex construction of Cm+1 with
a Kähler metric such that the constant holomorphic sectional curvature is equal to 4 [23].
We can observe that the almost complex J on CPm(4) is determined by the almost complex
construction of Cm+1 via the Hopf fibration. Let us now recall introduce the following
Theorem 1.

Theorem 2. Let Ωn = Nl
T × f Nk

φ be a compact warped product pointwise semi-slant submanifold
with regard to the complex projective space CP2m(4), which satisfies the following condition

f ∆ f + (csc2 φ + cot2 φ + k)||∇ f ||2 <
(

3l −
‖hµ‖2

k

)
f 2, (2)

where ∇ f and ∆ f are the gradient and the Laplacian of the warped function f , respectively. Then
we have the following:

(a) The warped product submanifold Ωn does not exist for any stable integral l-currents.
(b) The i integral homology groups of Ωn with integer coefficients vanish; that is,

Hl(Ω
n,G) = Hk(Ω

n,G) = 0.

(c) The finite fundamental group π1(Ω) is null, that is, π1(Ω) = 0. Moreover, Ωn is a simply
connected warped product manifold.
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Remark 1. To apply Theorem 2, suppose the slant function φ becomes globally constant, setting
φ = π

2 from [24]. Then, the pointwise slant submanifold Nk
φ turns into a totally real submanifold

Nk
⊥. Thus, a warped product pointwise semi-slant submanifold Ωn = Nl

T × f Nk
φ turns to CR-

warped products within a Kähler manifold of the type Ωn = Nl
T × f Nk

⊥ such that Nl
T , as well as

Nk
⊥ are holomorphic and totally real submanifolds, respectively [22].

Therefore, we deduce the following result from Theorem 2 and Remark 1 for the non-
existence of stable integrable l-currents and homology groups in the CR-warped product
submanifolds of the complex projective space CP2m(4).

Corollary 1. Let Ωn = Nl
T × f Nq

⊥ be a compact CR-warped product submanifold of the complex
projective space CP2m(4). In this case, the following conditions occur:

f ∆ f + (1 + k)‖∇ f ‖2 <
(

3l −
‖hµ‖2

k

)
f 2. (3)

Then we have the following:

(a) For the CR-warped product submanifold, Ωn does not have any stable integral l-currents.
(b) The i integral homology groups of Ωn with integer coefficients vanish; that is,

Hl(Ω
n,G) = Hk(Ω

n,G) = 0.

(c) The finite fundamental group π1(Ω) is null, that is, π1(Ω) = 0. Moreover, Ωn is a simply
connected warped product manifold.

Other important motivation for our study comes from the Ref. [25], where some
geometric mechanics on Riemannian manifolds were studied. From that study, we found
that for a positive differentiable function ϕ ( ϕ ∈ F (Ωn) ) defined at a compact Riemannian
manifold Ω, the Dirichlet energy of that function ϕ is given as in see [25] (p. 41), as follows:

E(ϕ) =
1
2

∫
Ωn
||∇ϕ||2dV 0 < E(ϕ) < ∞. (4)

Using the Dirichlet energy Formula (4) for a compact manifold without a boundary,
as well as Theorem 2, we give the next theorem:

Theorem 3. Under similar suppositions as in Theorem 2 with satisfied pinching condition

E( f ) <
1

(4 csc2 φ + 2k)

∫
Ωn

(
3l −

‖hµ‖2

k

)
f 2dV. (5)

Thus, the following properties hold:

(a) For the warped product submanifold Ωn, there are no stable integral l-currents.
(b) The i integral homology groups of Ωn with integer coefficients vanished; that is,

Hl(Ω
n,G) = Hk(Ω

n,G) = 0,

(c) The finite fundamental group π1(Ω) is null, that is, π1(Ω) = 0. Moreover, Ωn is a simply
connected warped product manifold.

Using the result of Theorem 3, we can now recall the next sphere theorem for the
compact oriented CR-warped product submanifold of a complex projective space CP2m(4)
due to Chen [22], that is,
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Corollary 2. Let Mn = Np
T × f Nq

⊥ be a compact CR-warped product submanifold at a complex
projective space CP2m(4) satisfying

E( f ) <
( 1

2(2 + k)

) ∫
Ωn

(
3l −

‖hµ‖2

k

)
f 2dV. (6)

Then, the following properties are satisfied:

(a) For the warped product submanifold Ωn, there are no stable integral l-currents.
(b) The i integral homology groups of Ωn with integer coefficients vanished; that is,

Hl(Ω
n,G) = Hk(Ω

n,G) = 0.

(c) The finite fundamental group π1(Ω) is null, that is, π1(Ω) = 0. Moreover, Ωn is simply
connected warped product manifold.

Let Ωn be an n-dimensional compact Riemannian manifold, and therefore, the Lapla-
cian is a second-order quasilinear operator on Ωn, given as

∆ϕ = −div(∇ϕ). (7)

For such a Laplacian, we can found many applications in mathematics as well as
in physics, and this is possible due to the eigenvalue problem of ∆. The corresponding
Laplace eigenvalue equation is defined as follows: a real number λ is named eigenvalue if
it is a non-vanishing function ϕ, which satisfies the following equation:

∆ϕ = λϕ, on Ωn, (8)

with appropriate boundary conditions. Considering a Riemannian manifold Ωn with no
boundary, the first nonzero eigenvalue of ∆, defined as λ1, includes variational properties
(cf. [26]):

λ1 = inf

{∫
Ω ||∇ϕ||2dV∫

Ω ‖ϕ‖2dV
| ϕ ∈W1,2(Ωn)\{0},

∫
Ω

ϕdV = 0

}
. (9)

Inspired by the above characterization, using the first non-zero eigenvalue of the
Laplace operator and the maximum principle for the first non-zero eigenvalue λ1, we
deduce the following:

Theorem 4. Let Ωn = Nl
T × f Nk

φ be compact, oriented warped product pointwise semi-slant
submanifolds of the complex projective space CP2m(4); that is, f is a non-constant eigenfunction of
the first non-zero eigenvalue λ1. Assume that

λ1 <

( ∫
Ωn

(
3l − ‖hµ‖2

k

)
f 2dV

(2 csc2 φ + k)
∫

Ωn f 2dV

)
(10)

holds. Then the properties (a), (b), and (c) of Theorem 2 are satisfied.

Remark 2. Some important applications of this theory can be found for the singularity structure
in liquid crystals, in the system in statistical mechanics with low dimensions, and physical phase
transitions (see [27]). In addition, general relativity contains warped product manifolds as a
model of space-times. There are two famous warped product spaces. One is the generalization
of Robertson-Walker space-times, and the other is the standard static space-times [17,28–31].
General relativity depends heavily on the differential topological methods, especially in mathematical
physics, and particularly regarding the way that the space-time homology is used in in quantum
gravity [13,17]. On the other hand, the formulation of a theory which unifies quantum mechanics
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and the special theory of relativity, performed by Dirac nearly a century ago, required introduction
of new mathematical and physical concepts which led to models that, on one hand, have been very
successful in terms of the interpretation of physical reality but, on the other, still creates some
challenges, both conceptual and computational. A central notion of relativistic quantum mechanics
is a construct known as the Dirac operator. It may be defined as the result of factorization of a
second-order differential operator in the Minkowski space. The eigenvalues of the Dirac operator
on a curved spacetime are diffeomorphism-invariant functions of the geometry. They form an
innite set of observables for general relativity. Some recent work suggests that they can be taken as
variables for an invariant description of the gravitational field’s dynamics. Because this paper is
connected to both warped product manifold and homotopy-homology theory, its results can be used
as physical applications.

2. Some Important Background

This part includes some notations and definitions that is important to the work relay
essentially on [18,21,22]. Suppose CPm is a m-dimensional complex projective space among
the Fubini-Study metric gFS with J being its almost complex structure. In the case where
the Levi-Civita connection is defined using ∇̃, the Fubini-Study metric is Kähler, that is,
∇̃J = 0. A Kähler manifold Ω̃m for a positive constant sectional curvature c = 4 > 0 is
named a complex projective space CPm(4) and can be endowed with the Fubini-Study
metric gFS. Therefore, the curvature tensor R̃ of CPm(4) is given as:

R̃(U1, U2, V1, V2) =g(U1, V2)g(U2, V1)− g(U1, V1)g(U2, V2)

+ g(JU1, V2)g(JU2, V1)− g(JU2, V2)g(JU1, V1) (11)

+ 2g(U1, JU2)g(JV1, V2),

for all U1, U2, V1, V2 ∈ X(CPm(4)). Assume that Ωn is an isometrically immersed to an
almost Hermitian manifold Ω̃m among the induced metric g. The Gauss equation of the
submanifold Ωn is determined by:

R̃
(
U1, U2, V1, V2

)
=R(U1, U2, V1, V2) + g

(
h(U1, V1), h(U2, V2)

)
− g
(
h(U1, V2), h(U2, V1)

)
, (12)

where R̃ and R are curvature tensors at M̃m and Ωn, in the same order. The definition of
mean curvature vector H of the orthonormal frame {e1, e2, · · · en} of the tangent space TM
on Ωn is given as

H =
1
n

trace(h) =
1
n

n

∑
i=1

h
(
eA, eA

)
, (13)

where n = dim Ω.

hr
AB = g(h(eA, eB), er), ||h||2 =

n

∑
A,B=1

g(h(eA, eB), h(eA, eB)). (14)

The gradient positive function ϕ defined on Ωn and its squared norm is written as:

∇ϕ =
n

∑
i=1

ei(ϕ)ei, and ‖∇ϕ‖2 =
n

∑
i=1

(
(ϕ)ei

)2. (15)

We will provide some short definitions of different classes of submanifold Ωn accord-
ing to J conserves all tangent spaces of Ωn, such that

(i) Ωn is holomorphic submanifold if J(TxΩ) ⊆ TxΩ [22].
(ii) Ωn is named totally real submanifold in the case where J(TxΩ) ⊆ T⊥x Ω [22].
(iii) Combining (i) and (ii) such that TΩ = DT ⊕D⊥, then Ωn is a CR-submanifold [22].
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(iv) In the case where the angle φ(X) is enclosed by JX and the tangent space is TxΩ for
any vector field X of Ωn that is not equal to zero, it is a real-valued function such that
φ : Ω→ R, then Ωn is called a pointwise slant submanifold (more details in [24]). In
the same paper, the authors provided a necessary and sufficient condition for Ωn to
be a pointwise slant T2X = − cos2 φX, where T is tangential (1, 1) tensor field [24].

(v) If the tangent space TΩ is introduced as a decomposition in the form of
TΩ = DT ⊕ Dφ for J(DT) ⊆ DT and pointwise slant distribution Dφ, then Ωn is
classified as a pointwise semi-slant submanifold [21]. For some examples of pointwise
semi-slant submanifolds in a Kähler manifold, and related problems, we recommend
the Ref. [18,21].

Regarding the above study, we give some remarks as follows.

Remark 3. If we consider a slant function φ : Ωn → R that is globally constant on Ωn and
φ = π

2 , thus, Ωn is named a CR-submanifold.

Remark 4. In the case where a slant function is φ : Ωn → (0, π
2 ), then Ωn is called a proper

pointwise semi-slant submanifold.

Remark 5. The normal bundle T⊥Ω of Ω is expressed as T⊥Ω = FDφ ⊕ µ with respect to
invariant subspace µ, that is, J(µ) ⊆ µ.

2.1. Warped Product Submanifolds

Warped product manifolds Ωn = Nl
1 × f Nk

2 were originally initiated by Bishop and
O’Neill [28], where Nl

1 and Nk
2 are two Riemannian manifolds and their Riemannain metrics

are g1 and g2 in the same order. f is also a smooth function defined on Nl
1. The warped

product manifold Ωn = Nl
1 × f Nk

2 is the manifold Nl
1 × Nk

2 furnished by the Riemannian
metric g = g1 + f 2g2, and the function f is named a warping function of Ωn. The following
important consequences of the warped product manifolds are given in [28,29]. For all
U1, U2 ∈ X(TN1) and V1, V2 ∈ X(TN2), where we have

∇V1U1 = ∇U1 V1 =
(U1 f )

f
V1. (16)

R(U1, V1)U2 =
H f (U1, V1)

f
U2, (17)

whereH f is a Hessian tensor of f . Furthermore, we have

g(∇ ln f , X) = X(ln f ). (18)

2.2. The Non-Trivial Warped Product Pointwise Semi-Slant Submanifolds

Based on the pointwise semi-slant submanifold definition, it is possible to define the
warped product pointwise semi-slant submanifolds of a Kähler manifold as follows:

(i) Nk
φ × f Nl

T , and (ii) Nl
T × f Nk

φ.

We will consider the second type because the first type of Nk
φ × f Nl

T is trivial (see
Theorem 4.1 in [21]). Additionally for the non-trivial case Nl

T × f Nk
φ with examples, see the

Ref. [21]. This warped product pointwise semi-slant submanifold is interesting because it
is a generalized CR-warped product [22]. The proofs of the main results are ready to be
introduced as follows.
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3. Proof of the Main Results
3.1. Proof of Theorem 2

Let Ωn = Nl
T × f Nk

φ be an n = l + k−dimensional warped product pointwise semi-
slant submanifold with dimNl

T = l = 2A and dimNk
φ = k = 2B, where Nk

φ and Nl
T

are integral manifolds of Dφ and D, in the same order. Then, {e1, e2, · · · eA, eA+1 =
Je1, · · · e2A = JeA} and {e2A+1 = e∗1 , · · · e2A+B = e∗B, e2A+B+1 = e∗B+1 = sec φPe∗1 , · · · el+k =
e∗k = sec φPe∗B} will be orthonormal frames of TNT and TNφ, in the same order. There-
fore, the orthonormal basis of FDφ and µ are {en+1 = ē1 = csc φFe∗1 , · · · en+B = ēB =
csc φFe∗1 , en+B+1 = ēB+1 = csc φ sec φFPe∗1 , · · · en+2B = ē2B = csc φ sec φFPe∗B} and
{en+2B+1, · · · e2m}, respectively. Then, we arrange the terms

l

∑
A=1

k

∑
B=1

{
2||h(eA, eB)||2−g

(
h(eB, eB), h(eA, eA)

)}

=
2m

∑
r=n+1

l

∑
A=1

k

∑
B=1

g
(
h(eA, e∗B), er

)
+

l

∑
A=1

k

∑
B=1

{
||h(eA, eB)||2 − g

(
h(eB, eB), h(eA, eA)

)}
.

Then, from the Gauss Equation (12), we have

l

∑
A=1

k

∑
B=1

{
2||h(eA, eB)||2−g

(
h(eB, eB), h(eA, eA)

)}

=
l

∑
A=1

k

∑
B=1

g
(

R(eA, eB)eA, eB
)

(19)

−
l

∑
A=1

k

∑
B=1

g
(

R̃(eA, eB)eA, eB
)

+
2m

∑
r=n+1

l

∑
A=1

k

∑
B=1

g
(
h(eA, e∗B), er

)2,

Using the orthonormal frames
{

ei
}

1≤A≤p as well as
{

eB
}

1≤B≤q of Nl
T and Nk

φ, respec-
tively, in (17), we derive

R(eA, eB)eA =
eB
f
H f (eA, eA).

Summing up, with respect to the orthonormal frame
{

eB
}

1≤B≤q in addition to taking
into account the adoption of the opposite of the usual sign convention for the Laplacian,
one obtains:

l

∑
A=1

k

∑
B=1

g
(

R(eA, eB)eA, eB
)
= − k

f

l

∑
A=1

g
(
∇eA∇ f , eA

)
. (20)
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Thus, from Equations (19) and (20), we derive

l

∑
A=1

k

∑
B=1

{
2||h(eA, eB)||2−g

(
h(eB, eB), h(eA, eA)

)}

=
2m

∑
r=n+1

l

∑
A=1

k

∑
B=1

g
(
h(eA, e∗B), er

)2 (21)

−
l

∑
A=1

k

∑
B=1

g
(

R̃(eA, eB)eA, eB
)

− k
f

l

∑
A=1

k

∑
B=1

g
(
∇eA∇ f , eA

)
.

Firstly, the term ∆ f for Ωn is computed, which is originally the Laplacian of f .

∆ f =−
n

∑
i=1

g
(
∇ei grad f , ei

)
=−

l

∑
A=1

g
(
∇eA grad f , eA

)
−

k

∑
B=1

g
(
∇eB grad f , eB

)
.

The previous equation will be rewritten using components of Nk
φ for an adapted

orthonormal frame. One obtains:

∆ f =−
l

∑
A=1

g
(
∇eA grad f , eA

)
−

B

∑
j=1

g
(
∇ej grad f , ej

)
− sec2 φ

B

∑
j=1

g
(
∇Tej grad f , Tej

)
.

It is noted that ∇ is a Levi-Civita connection on Ωn, and Nl
T is also totally geodesic in

Mn. It leads to grad f ∈ X(TNT), and then we have

∆ f
f

= − k
f

l

∑
A=1

g
(
∇eA grad f , eA

)
− k||∇(ln f )||2.

It is clear that the next equation is satisfied

− 1
f

l

∑
A=1

g
(
∇eA grad f , eA

)
= ∆(ln f ) + (k− 1)||∇ ln f ||2. (22)

This result, combined with (21) yields

l

∑
A=1

k

∑
B=1

{
2||h(eA, eB)||2−g

(
h(eB, eB), h(eA, eA)

)}

=
2m

∑
r=n+1

l

∑
A=1

k

∑
B=1

g
(
h(eA, e∗B), er

)2 (23)

−
l

∑
A=1

k

∑
B=1

g
(

R̃(eA, eB)eA, eB
)

+ k∆(ln f ) + k(k− 1)||∇ ln f ||2.
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At this point, suppose X = eA and Z = eB for 1 ≤ A ≤ l and 1 ≤ B ≤ k, in the same
order. Thus, by the use of the bilinear form h definition according to an orthonormal basis,
we can write

2m

∑
r=n+1

l

∑
A=1

k

∑
B=1

g
(
h(eA, e∗B), er

)2
=

n+2B

∑
r=n+1

l

∑
A=1

k

∑
B=1

g
(
h(eA, e∗B), er

)
+ ‖hµ‖2.

In the previous equation, the first term at the right-hand side is a FDφ-component,
while the second term is a µ invariant subspace. From the viewpoint of an adapted
orthonormal basis, vector fields of Nl

T and Nk
φ are summed up over the vector fields of Nl

T

and Nk
φ. Then, using Lemma 5.2 from [21] and (Equation (5.8) of Lemma 5.3 in [21]), we

conclude that

2m

∑
r=n+1

l

∑
A=1

k

∑
B=1

g
(
h(eA, e∗B), er

)2
=2
(

cot2 φ + csc2 φ
) l

∑
A=1

k

∑
B=1

(
eA ln f )

)2g(e∗B, e∗B)
2

+ 2
(

cot2 φ + csc2 φ
) l

∑
A=1

k

∑
B=1

(
JeA ln f )

)2g(e∗B, e∗B)
2

+ ‖hµ‖2.

Using the squared norm definition of the gradient function f (15) (ii), one obtains:

2m

∑
r=n+1

l

∑
A=1

k

∑
B=1

g
(
h(eA, e∗B), er

)2
= k

(
cot2 φ + csc2 φ

)
||∇ ln f ||2 + ‖hµ‖2. (24)

From (23) and (24), we get:

l

∑
A=1

k

∑
B=1

{
2||h(eA, eB)||2−g

(
h(eB, eB), h(eA, eA)

)}
=k∆(ln f ) + k(k− 1)||∇(ln f )||2 (25)

+ k
(
1 + 2 cot2 φ

)
||∇(ln f )||2 + ‖hµ‖2

−
l

∑
A=1

k

∑
B=1

g
(

R̃(eA, eB)eA, eB
)
.

For the symmetry of the curvature tensor R, the following relation holds:

l

∑
A=1

k

∑
B=1

g
(

R̃(eA, eB)eA, eB
)
=

l

∑
A=1

k

∑
B=1

R̃
(
eA, eB, eA, eB

)
. (26)

Next, we remark that the curvature tensor Formula (11) for the complex projective
space CP2m(4) is easily given as

l

∑
A=1

k

∑
B=1

R̃
(
eA, eB, eA, eB

)
=

l

∑
A=1

k

∑
B=1

{
g(eA, eB)g(eB, eA)− g(eA, eA)g(eB, eB)

− g(JeA, eA)g(JeB, eB) (27)

+ 3g(JeA, eB)g(JeB, eA)

}
.

As we know, if eA ∈ X(TNT) and eB ∈ X(TNφ), then g(eA, eB) = 0, and g(JeA, eA) =
0(resp, g(JeB, eB) = 0), using JeA ⊥ eA(JeB ⊥ eB), respectively. Similarly, from
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(Equation (2.6) in [21]), we derive that g(JeA, eB) = g(TeA + FeA, eB) = 0 for TeA ∈ X(TNT)
and FeA ∈ X(FNφ). Thus, (27) implies that

l

∑
A=1

k

∑
B=1

R̃
(
eA, eB, eA, eB

)
= −

l

∑
A=1

k

∑
B=1

g(eA, eA)g(eB, eB) = −lk (28)

Therefore, using (26) and (28), we finally get

l

∑
A=1

k

∑
B=1

{
2||h(eA, eB)||2−g

(
h(eB, eB), h(eA, eA)

)}
= k∆(ln f ) + k(k− 1)‖∇(ln f )‖2 + ‖hµ‖2 (29)

+ k
(

cot2 φ + csc2 φ
)
‖∇(ln f )‖2 + lk.

Now, computing ∆ ln f , we get:

∆(ln f ) =− div(∇(ln f )) = −div
(∇ f

f

)
=− g(∇( 1

f
),∇ f ) +

1
f

∆ f (30)

=
1
f 2 ‖∇ f ‖2 +

1
f

∆ f .

Then, from (29) and (30), we find that

l

∑
A=1

k

∑
B=1

{
2||h(eA, eB)||2−g

(
h(eB, eB), h(eA, eA)

)}
=

k∆ f
f

+
k‖∇ f ‖2

f 2

(
cot2 φ + csc2 φ + k

)
(31)

+ lk + ‖hµ‖2.

Let the pinching condition (2) be satisfied. Then, from (31), we get

l

∑
A=1

k

∑
B=1

{
2||h(eA, eB)||2−g

(
h(eB, eB), h(eA, eA)

)}
< 4lk.

It well-known that constant sectional curvature for the complex projective spaces
CP2m(4) is equal to c = 4. Then, the last equation is implied:

l

∑
A=1

k

∑
B=1

{
2||h(eA, eB)||2−g

(
h(eB, eB), h(eA, eA)

)}
< lkc. (32)

Therefore, using Theorem 1, we reached our promised results (a) and (b). For the
third part, let us assume that π1(Ω) 6= 0. From the compactness of Ωn, it follows from
the classical theorem of Cartan and Hadamard that there is a minimal closed geodesic
in any non-trivial homotopy class in π1(Ω), which leads to a contradiction. Therefore,
π1(Ω) = 0. This is the third part of the theorem. If the finite fundamental group is null of
any Riemannian manifold, this Riemannian manifold is simply connected. As a result, Ωn

is simply connected.
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3.2. Proof of Theorem 3

In the case where Ωn is a compact Riemannian manifold with no boundary, ∂Ωn = ∅,
thus using [32], the divergence property

∫
Ωn(∆ f )dV = 0. Using this fact, we get

0 =
∫

Ωn
∆
(

f 2

2

)
dV

=−
∫

Ωn
div
(
∇
( f 2

2

))
dV

=−
∫

Ωn
div( f∇ f )dV = −

∫
Ωn

g(∇ f ,∇ f )dV +
∫

Ωn
f ∆ f dV,

which implies that ∫
Ωn

f ∆ f dV =
∫

Ωn
‖∇ f ‖2dV. (33)

Using (3) with inequality (6), then it can be rewritten as:

1
2

∫
Ωn
‖∇ f ‖2dV <

( 1
2(2 csc2 φ + k)

) ∫
Ωn

(
3l −

‖hµ‖2

k

)
f 2dV. (34)

By using the trigonometric identities 1+ cot2 φ = csc2 φ and (33) in the above equation,
we get

∫
Ωn

f ∆ f dV+
(

cot2 φ + csc2 φ + k)
∫

Ωn
‖∇ f ‖2dV <

∫
Ωn

(
3l −

‖hµ‖2

k

)
f 2dV.

It is equivalent to the following:

f ∆ f+
(

cot2 φ + csc2 φ + k)‖∇ f ‖2 <
(

3l −
‖hµ‖2

k

)
f 2. (35)

Hence, using Theorem 3, we get the required results. This completes the proof of
the Theorem.

3.3. Proof of Theorem 4

Assuming f is a non-constant warping function, by the use of the minimum principle
on the first eigenvalue λ1, one can obtain [26] (p. 186):

λ1

∫
Ωn

( f )2dV ≤
∫

Ωn
‖∇ f ‖2dV. (36)

The equality holds if, and only if ∆ f = λ1 f . On the other hand, if our assumption (10)
holds, then using the equality in (36), we get

(2 csc2 φ + k)
∫

Ωn
‖∇ f ‖2dV <

∫
Ωn

(
3l −

‖hµ‖2

k

)
f 2dV.

Utilizing (33) and rearranging this with trignometric functions, we have

(cot2 φ + csc2 φ + k)
∫

Ωn
‖∇ f ‖2dV +

∫
Ωn

f ∆ f dV <
∫

Ωn

(
3l −

‖hµ‖2

k

)
f 2dV. (37)

Hence, we get the inequality

(cot2 φ + csc2 φ + k)‖∇ f ‖2 + f ∆ f <
(

3l −
‖hµ‖2

k

)
f 2.
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Therefore, the assertion follows from Theorem 2. The proof is completed.
Hamiltonian at the point x ∈ Mn for the local orthonormal frame, is given as

(see [25]):

H(p, x) =
1
2

n

∑
i=1

p(ei)
2. (38)

Substituting p = dϕ into the previous equation, and since d is a differentiable operator,
we use (15) to have:

H(dϕ, x) =
1
2

n

∑
i=1

dϕ(ei)
2 =

1
2

n

∑
i=1

ei(ϕ)2 =
1
2
||∇ϕ||2. (39)

Using the previous equation leads to the next result from inequality (2), as the following:

Corollary 3. Under the same assumption in Theorem 2, it satisfies the following inequality:

H
(
d f , x

)
<

(3l − ‖hµ‖2) f 2

k(4 csc2 φ + 2k)
− f ∆ f

2
, (40)

where H(d f , x) is the Hamiltonian of the warping function f , so no stable integral l-currents exist
in Ωn and Hl(Ωn,G) = Hk(Ωn,G) = 0.

Proof. Combining the Hamiltonian formula (39) and inequality (2), we have the result.

3.4. Proof of the Corollarys 1 and 2

The proof of Corollarys 1 and 2 can be obtained directly from the Theorems 2 and 3 by
substituting φ = π

2 to derive a totally real submanifold from a pointwise slant submanifold.
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