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Abstract: The mixing process of liquid products is a crucial activity in the industry of essential
commodities like, medicine, pesticide, detergent, and so on. So, the mathematical study of the
mixing problem is very much important to formulate a production inventory model of such type
of items. In this work, the concept of the mixing problem is studied in the branch of production
inventory. Here, a production model of mixed liquids with price-dependent demand and a stock-
dependent production rate is formulated under preservation technology. In the formulation, first
of all, the mixing process is presented mathematically with the help of simultaneous differential
equations. Then, the mixed liquid produced in the mixing process is taken as a raw material of a
manufacturing system. Then, all the cost components and average profit of the system are calculated.
Now, the objective is to maximize the corresponding profit maximization problem along with the
highly nonlinear objective function. Because of this, the mentioned maximization problem is solved
numerically using MATHEMATICA software. In order to justify the validity of the model, two
numerical examples are worked out. Finally, to show the impact of inventory parameters on the
optimal policy, sensitivity analyses are performed and the obtained results are presented graphically.

Keywords: mixing process; simultaneous differential equations; variable production rate; simulated
annealing; differential evolution

1. Introduction

The mixing problem has a great impact on different sectors of business management,
viz. the medicine industry (Gautam et al. [1], Essi [2], Ploypetchara et al. [3]), cosmetics
industry (Bernardo and Saraiva [4], Kim et al. [5], Zhang et al. [6]), chemical industry
(Funt [7], Wu et al. [8], Jasikova et al. [9]), and so on, to produce essential commodities
in our daily life. Thus, in the area of inventory control, investigation of the production
inventory problem of a mixed product along with the mixing process is an intersecting
research area. In this connection, Nienow et al. [10], Cheng et al. [11], Fitschen et al. [12], and
many others have had a valuable influence in this area. As various inventory parameters
like production rate, demand rate, deterioration rate, and preservation technology play
a significant role to control a production inventory, researchers should take more care of
those inventory parameters in the studying of the production inventory problem with the
mixing process.

In production inventory, the production rate of the product is the key parameter
that may be constant or dependent on customers’ demand/stock level of the product,
among others. On the other hand, owing to the failure of machines, sometimes imperfect
production occurs during the production process. Thus, imperfect production is also an
important factor for production firm/manufacturing firm. Several researchers developed
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different production models by taking various production rates and imperfect production
processes. De [13] analyzed a production problem with a variable rate of production. Su
and Lin [14,15] investigated two production inventory models with a demand- as well as
inventory-level-dependent production rate. After that, Giri et al. [16] analyzed an unreliable
production system with variable production. Roy et al. [17] studied a production inventory
model for defective products with rework policy. Considering an imperfect production
process, Sana [18] formulated a production inventory model. A few years later, Sharmila
and Uthayakumar [19] established the optimal policy of a production problem with three
different production rates. Then, Patra and Maity [20] developed a production problem
for defective items with a variable production rate. Dey [21] investigated an imperfect
production model under an integrated system in an imprecise environment. Succeeding
them, Mishra et al. [22] studied the sustainability of a production system under controllable
carbon emission. Lu et al. [23] applied the Stackelberg gaming approach to determine the
optimal policy of an imperfect production inventory model with collaborative investment
policy for reducing emission. Recently, Öztürk et al. [24] studied an imperfect production
process with random breakdowns, rework, and inspection costs and Khara et al. [25]
formulated an imperfect production model considering advanced payment and trade
credit facilities. Beside these, the works of Malik et al. [26], Lin et al. [27], and Rizky
et al. [28] are valuable in this area.

Demand of customers is also an important factor in inventory control. It depends
on several factors, such as selling price of the product, inventory level, frequency of the
advertisements, time, and so on. In reality it is seen that, if the price of a commodity
increases, the demand for that commodity must decrease, i.e., the selling-price-dependent
demand rate is a decreasing function. On the other side, more customers are attracted
because of the large number of items in stock, i.e., the stock-dependent demand rate is
an increasing function of the stock level of the items. Sometimes, the customers’ demand
for a new product increases drastically owing to the advertisement of the product. Thus,
advertisement frequency has a great impact on the demand rate. Resh et al. [29] first
introduced the variable demand rate (selling-price-dependent) in the area of inventory
control and modified Harris’s EOQ model. Urban [30] analyzed an inventory model with
stock-linked demand. Chang [31] studied a model for optimal lot sizing with a nonlinear
stock-linked demand rate. Mukhopadhyay et al. [32] and You [33] studied different types
of EOQ models with price-dependent demand. After a few years, Khanra et al. [34]
constructed an inventory model with a time-dependent demand rate under trade credit
policy. Further, Bhunia and Shaikh [35] studied a deterministic inventory model with price-
dependent demand and a three-parameter Weibull distributed deterioration rate. Prasad
and Mukherjee [36] proposed an inventory model where the demand rate is connected to
stock and time, along with shortages. Manna et al. [37] investigated a production inventory
model with imperfect production and advertisement-dependent demand. Jain et al. [38]
investigated a fuzzy inventory model where the demand for an item is dependent on
time. Recently, the contributions of Alfares and Ghaithan [39], Shaikh et al. [40], Rahman
et al. [41], Cardenas-Barron et al. [42], Das et al. [43], Halim et al. [44], Rahman et al. [45],
and others on this topic are worth mentioning.

Deterioration is also important in the control of inventory. Most of the commodities in
our daily life deteriorate with the passing of time owing to the several factors. Thus, to study
an inventory problem for deteriorating items, we cannot avoid the effect of deterioration.
Naturally, the deterioration rate of an item cannot be predicted accurately. However, it
was taken as constant or time-dependent or probabilistic by several researchers. In their
work, for the first time, Ghare and Schrader [46] proposed the concept of deterioration
(constant). Then, Emmons [47] proposed the concept of stochastic deterioration with two-
parameter Weibull distribution. Since then, a number of research works have been reported
in the existing literature. Among those, the works of Datta and Pal [48], Wee [49], Ouyang
et al. [50], Min et al. [51], Dash et al. [52], Dutta and Kumar [53], Shah [54], Tiwari et al. [55],
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Shaw et al. [56], Mashud et al. [57], Khakzad and Gholamian et al. [58], Mishra et al. [59],
Khanna and Jaggi [60], and Naik and Shah [61] are worth mentioning.

On the other side, the economy of an industry is badly affected by reckless deteri-
oration. Thus, in the case of more deterioration, the control of deterioration is highly
required. Usually, to prevent more deterioration, some policies/techniques are adopted,
named preservation policies/technologies. For the first time, Hsu et al. [62] investigated
the concept of preservation technology in the area of inventory control. After that, Dye [63]
discussed the preservation investment effect on deterioration rate. Zhang et al. [64] solved
an inventory problem for perishable goods by considering stock-dependent demand and
investment in preservation technology. Yang et al. [65] proposed an inventory model under
preservation technology and trade-credit policy. Tayal et al. [66] studied an inventory prob-
lem for a perishable product with a permissible delay in payment along with investment
in preservation technology. Dhandapanin and Uthayakumar [67] analyzed the optimal
policy of a multi-item inventory model under preservation technology. Recently, Shaikh
et al. [68], Das et al. [69], Saha et al. [70], Mashud et al. [71], Sepehri et al. [72], and others
contributed through their works on preservation technology.

The organization of the paper is according to Figure 1. In this work, a production
problem for mixed liquid and price-dependent demand is formulated. In this formulation,
at first, the mixing process is presented mathematically by the simultaneous differential
equations under some restrictions. Then, the corresponding optimization problem related
to this model is obtained as the profit maximization problem. Because of the high non-
linearity of the objective function (average profit), the mentioned maximization problem is
solved by differential evolution and simulated annealing in Mathematica software. Then,
to investigate the validation of the model, two numerical examples are solved. Finally,
sensitivity analyses are performed graphically and this work is concluded with some future
scopes. A summary of some of the literature is presented in Table 1.

Figure 1. Organization of the paper.
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Table 1. Summary of the related literature.

Literature Simultaneous
Differential Equation Production Rate Demand Deterioration

Su and Lin [14] No Variable Variable _____

Kapuscinki and Tayur [73] No Constant Periodic _____

Sana et al. [74] No Constant Time varying Constant

Lo et al. [75] No Constant Constant Weibull distributed

Roy et al. [17] No Imprecise Imprecise Imprecise

Sarkar [76] No Constant Constant Probabilistic

Samanta [77] No Constant Constant Probabilistic

Bhunia et al. [78] No Constant Variable ______

Rastogi and Singh [79] No Demand-dependent Selling-price-
dependent Time-dependent

Ullah et al. [80] No Constant Constant Constant

Salas-Navarro et al. [81] No Constant Probabilistic ______

Das and Islam [82] No Time-dependent Time-dependent
and imprecise ______

Saren et al. [83] No Constant Selling-price- and
time-dependent Constant

Khanna and Jaggi [60] No ______ Price- and
stock-dependent

Preservation-
technology-dependent

Sepehri et al. [72] No Constant Selling-price-
dependent Constant

This Work Yes Variable Selling-price-
dependent

Preservation-
technology-dependent

2. Research Gap and Contributions

After a brief survey of the literature, it is conjectured that many works have been
accomplished on production inventory (Table 1) for different types of products, such as
food, electrical goods, garments, medicine, and so on, with various assumptions regarding
the production rate, demand rate, deterioration rate, and so forth. On the other hand, the
concepts of the mixing problem are essential in the production manufacturing of liquid
products (like, medicine, juice, cosmetics, and so on). To the best of our knowledge, few
works on the mixing process (viz. Essi [2], Ploypetchara et al. [3], Kim et al. [5], Jasikova
et al. [9], and Fitschen et al. [12], among others) are available in the literature. However,
very few researchers ([84,85]) considered the combination of the mixing process as well as
manufacturing process in his/her work. Though Su et al. [84] accomplished their work
on production inventory for mixed products, they did not consider the mathematical
formulation of the mixing process.

To fill this gap, a production inventory model for mixed liquid was formulated by
defining the mixing process mathematically. Here, the mixing process of liquids is consid-
ered as a part of the production process. The mixing process is presented mathematically by
simultaneous differential equations. Then, in the manufacturing part of this modelling, the
variable production rate (dependent on the stock level of mixed liquid) and preservation
technology are considered. The mentionable contributions of this study are as follows:

(i). Application of simultaneous linear differential equations (to the present mixing
process) in the production inventory system.

(ii). Linkage between the mixing process and manufacturing process.
(iii). Consideration of the variable production rate in the manufacturing process dependent

upon the stock level of mixed liquid.
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All of the above represent the novelty of this work.

3. Notation and Assumptions

The following notations and assumptions are used thought the manuscript.

3.1. Notation

The notations used in this paper are as follows:
x(t) Concentration of liquid at time t in container-I (%)
y(t) Concentration of liquid at time t in container-II (%)
q(t) Stock level of mixed liquid (L)
A Capacity of container-I (L)
B Capacity of container-II (L)
α Incoming rate of liquid with concentration k in container-I (L/unit time)
β Outgoing rate of liquid from container-I to container-II (L/unit time)
γ Incoming rate of liquid from container-II to container-I (L/unit time)
δ Outgoing rate of liquid 2 from container-II (L/unit time)
η Initial concentration of liquid in container-II (%)
k Concentration of liquid supplied from outside (%)
a, b Demand parameters
D(p) Demand of the customers
P Production rate (L/time unit)
θ1 Wastage rate during production without preservation
m Preservation controlling parameter
ξ Preservation investment ($)
cp Processing cost ($/L)
p Selling price per unit ($/L)
Co Set up cost ($/order)
h Carrying cost per unit per unit time ($/L/time unit)
t1 Duration of production (time unit)
T Cycle length (time unit)
TP(t1, p, ξ) Average profit ($/time unit)

3.2. Assumptions

(i). This work deals with a mixture of three different concentrations of a liquid.
(ii). The capacity of container-I filled with liquid with an initial concentration of zero

(container) is less than the capacity of container-II filled with liquid with an initial
concentration of k.

(iii). At first, the liquid with concentration η is sent to container-I at the rate α. Then,
the mixture of liquid is sent to container-II at the rate β, and the liquid is sent back
to container-I from container-II at the rate γ; this process continues to obtain the
best desirable mixture. After reaching the desired mixture, the mixed liquid from
container-II at the rate δ is used in the production process.

(iv). The production rate of the mixed product P(t) is proportional to the level of mixed
liquids (y(t)). The mathematical form of P(t) is P(t) = δ

B y(t).
(v). The wastage/deterioration rate θ during production is dependent on preservation

technology. The mathematical form of the deterioration rate is θ = θ1e−mξ , where ξ is
the preservation investment, m is the preservation controlling parameter, and θ1 is
the original deterioration rate.

(vi). The demand of an item is dependent on selling price and its mathematical form is
D(p) = a− bp, a, b, p > 0, such that p < a

b .
(vii). Shortages are not allowed.
(viii).Time horizon is infinite and lead time is constant.

4. Problem Description

The problem of the proposed model has two parts: (i) the mixing problem and (ii) the
production inventory problem. In the mixing problem, the process of mixing takes place
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on an instrument made by two containers (Figure 2). In this instrument, container-I is
connected to container-II by a pipe line so that the liquid can pass from container-I to
container-II, and vice versa. Initially, liquids of two different concentrations (η and k) are
taken to make the initial mixture. During mixing, the liquid with a concentration η is
passed through container-I at the rate α and then from container-I to container-II with the
rate β. Again, the mixed liquid is returned back from container-II to container-I with the
rate γ, and this process is continued to obtain the desired mixed liquid. Finally, the desired
mixed liquid exits from container-II at the rate δ. The entire process of mixing is presented
in Figure 2. Then, in the part of production process, the desired mixture is taken as a
raw material and a single product is produced at the production rate P(t)

(
P(t) = δ

B y(t)
)

.
During the production period, owing to the customers’ demand, the produced product is
stored with the rate (P− D) per unit time and the level of inventory reaches its pick level
at time t = t1. After that, the level of stock gradually decreases because of fulfilling the
demand of the customer and the stock level reaches zero at time t = T. The variation in the
level of inventory at any time t is shown in Figure 3.

Figure 2. Representation of the mixing procedure in the production process.
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Figure 3. Changes in inventory level with respect to time.

5. Mathematical Formulation

Here, we have discussed the mathematical formulation of mixing and the production
inventory system.

5.1. Mathematical Formulation of Mixing Problem

The mixing process described in the previous section is presented mathematically by
the following simultaneous differential equations:

.
x = ηα− β

A x + γ
B y

.
y = β

A x− γ+δ
B y

(1)

Subject to the initial conditions x(0) = 0, y(0) = kB, where δ < γ < β and 0 < k < 1.
Moreover, from the principle of flow, we get

β = α + γ = γ + δ (2)

Solving the system (1), one can obtain the concentrations of the liquids in container-I
and container-II as follows:

x(t) = exp
(
− k1

2
t
)
{c1 exp(k4t) + c2 exp(−k4t)}+ k3

k2
(3)

y(t) =
B
γ

[
c1

(
k4 −

k1

2
+

β

A

)
exp

{(
k4 −

k1

2

)
t
}
+ c2

(
−k4 −

k1

2
+

β

A

)
exp

{(
−k4 −

k1

2

)
t
}]
− η

γ
αB +

βBk3

γAk2
(4)

where
k1 = β

A + γ+δ
B ,

k2 = βδ
AB

k3 = η
α(γ+δ)

B

k4 =

√
k1

2−4k2
2

c1 = − k3
2k2

+ 1
2k4

[
kγ + ηα + k3

k2

(
β
A −

k1
2

)
− βk3

Ak2

]
and

c2 = − k3

2k2
− 1

2k4

[
kγ + ηα +

k3

k2

(
β

A
− k1

2

)
− βk3

Ak2

]
.
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5.2. Mathematical Formulation of the Production Problem

The inventory level of the problem at any time t satisfies the governing
differential equations

dq(t)
dt

+ θq(t) = P(t)− D for 0 ≤ t ≤ t1 (5)

dq(t)
dt

+ θq(t) = −D for t1 < t ≤ T (6)

with the conditions q(0) = 0, q(t1) = Q and q(T) = 0.
The solutions of Equations (5) and (6) are given by

q(t) =
(

βδk3
γθk2 A −

D
θ −

ηαδ
γθ

)
{1− exp(−θt)}

+ c1(
k4−

k1
2 +θ

){(k4 − k1
2

)
δ
γ + βδ

γA

}[
exp

{(
k4 − k1

2

)
t
}
− exp(−θt)

]
+ c2(

k4+
k1
2 −θ

){(k4 +
k1
2

)
δ
γ −

βδ
γA

}[
exp

{
−
(

k4 +
k1
2

)
t
}
− exp(−θt)

]
for 0 < t ≤ t1

(7)

and
q(t) =

D
θ
{exp(θ(T − t))− 1} for t1 < t ≤ T (8)

Again, using the continuity of q(t) at t = t1, we have

T = 1
θ log

[
θ
D

[(
βδk3

γθk2 A −
D
θ −

ηαδ
γθ

)
{1− exp(−θt1)}

+ c1(
k4−

k1
2 +θ

){(k4 − k1
2

)
δ
γ + βδ

γA

}[
exp

{(
k4 − k1

2

)
t1

}
− exp(−θt1)

]
+ c2(

k4+
k1
2 −θ

){(k4 +
k1
2

)
δ
γ −

βδ
γA

}[
exp

{
−
(

k4 +
k1
2

)
t1

}
− exp(−θt1)

]]
+ 1

]
+ t1

(9)

5.3. Various Components of the System

The various components of the system are calculated as follows:

(i). Sales revenue (SR):

SR = p
T∫

0

D dt = pDT

(ii). Ordering cost (Co):
(iii). Holding cost (HC):

HC = h
t1∫
0

q(t) dt + h
T∫

t1

q(t) dt

= h
(

βδk3
γθk2 A −

D
θ −

ηαδ
γθ

){
t1 − 1

θ (1− exp(−θt1))
}

+ hc1(
k4−

k1
2 +θ

){(k4 − k1
2

)
δ
γ + βδ

γA

}[ exp
{(

k4−
k1
2

)
t1

}
−1(

k4−
k1
2

) − 1
θ (1− exp(−θt1))

]

+ hc2(
k4+

k1
2 −θ

){(k4 +
k1
2

)
δ
γ −

βδ
γA

}[ 1−exp
{
−
(

k4+
k1
2

)
t1

}
(

k4+
k1
2

) − 1
θ (1− exp(−θt1))

]
+ hD

θ2 [exp{θ(T − t1)} − 1]− hD
θ (T − t1)

(iv). Production cost (PC):
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PC = cp

t1∫
0

P(t) dt

= cp
δ
B

t1∫
0

y(t) dt

= cp
δ
γ

[
c1

(
k4−

k1
2 +

β
A

)
(

k4−
k1
2

) (
exp

{(
k4 − k1

2

)
t1

}
− 1
)
+

c2

(
−k4−

k1
2 +

β
A

)
(

k4+
k1
2

) (
1− exp

{(
−k4 − k1

2

)
t1

})]
+ cp

δ
γ

(
βk3
Ak2
− ηα

)
t1

(v). Preservation cost: CP = ξT.

Therefore, the profit per unit time of the system is given by

TP(t1, p, ξ) =
1
T
[SR− PC− HC− Co − CP]

Now, the corresponding maximization problem of the system is given by

Maximize TP(t1, p, ξ)

subject to t1 > 0, 0 < p < a
b

(10)

6. Solution Methodology

The corresponding optimization problem (10) of the proposed production system
is clearly highly non-linear in nature with respect to the decision variables t1, p, ξ. It is
difficult to solve (10) by any analytical method, such as the gradient-based technique,
Lagrange’s multiplier method, Newton’s method, saddle point optimization techniques,
and so on. Thus, in order to solve the mentioned optimization problem (10), the following
algorithms built in MATHEMATICA software are used:

(i) Differential evolution (Price, 1996);
(ii) Simulated annealing (Marchesi, 1988).

The discussions of the above-mentioned algorithms are done based on the following
generalized optimization problem:

Maximize f (u)
subject to t ∈ S ⊆ Rn

where f : S→ R

(i) Differential Evolution (DE)
Differential evolution is one of the popular search techniques in the area of optimiza-

tion. The algorithm of this optimizer has the following attributes:

• The initial positions of the population of size m are {u1, u2, . . . , um}, m� n
• In the evaluation process for each iteration, the algorithm generates a new population

with m points. Using the three points uu, uv and uw, the algorithm generated the jth
new point randomly from the previous population.

• The mathematical form is us = uw + s(uu − uv), where s is a scaling parameter.
• The new point unew is created from uj and us with the help of the ith coordinate from

us along with probability ρ, otherwise it will take the coordinate from uj.
• If f (unew) > f

(
uj
)
, then unew replaces uj in the new population.

• The probability ρ is controlled by the “cross probability” option.

Generally, this process is converged if deviation in between the best functional values
in the new position and old population as well as the deviation between the new best point
and the old best point are less than the tolerances.

The values of parameters used in the Differential Evolution are given in Table 2.



Mathematics 2021, 9, 3166 10 of 19

Table 2. The values of parameters used in the Differential Evolution.

Operator Name Default Value Descriptions

“Cross Probability” 0.5 Probability of a gene taken from ti

“Random Seed” 0 It is a starting value of random number generator

“Scaling Factor” 0.6 Scale applied to the deviation vector in creating a mate

“Tolerance” 0.001 It is accepting constraint violations

(ii) Simulated Annealing (SA)
Simulated annealing is another random search-based meta-heuristic maximizer. The

algorithm of this maximizer is inspired by physical activity of annealing, in which a
metallic object is warmed up to an extreme temperature and allowed to cool gently. In
this process, the atomic structure of metal reaches the lower energy level from the upper,
and thus becomes a tougher metal. Exploring this concept in optimization, the algorithm
of simulated annealing allows to move away from a local minimizer, and to traverse and
settle on a better position and, ultimately, on the global maximizer.

During the iterative process, a new point unew is created in the neighboring point
u. Thus, the radius of the neighborhood is decreased from iteration to iteration. The
best-found point ubest obtained so far is tracked as follows:

If f (unew) > f (ubest),unew replaces ubest and u.
Otherwise, unew replaces u with a probability eb(i,∆ f , f0), where b is the Boltzmann

exponent, I is the current iteration, ∆ f is the change in the objective value, and f0 is the last
iteration objective function value.

The default function for b is taken as −∆ f log(i+1)
10 .

Simulated annealing is used for multi-initial points and obtains an optimizer among
them. In general, the default number of initial points is taken as min{2n, 50}.

The starting points is repeated until achieving of the maximum number of iterations
and this method converges to a point.

The values of the parameters of the Simulated annealing are given in Table 3.

Table 3. The values of parameters used in the Simulated annealing.

Option Name Default Value Descriptions

“Level Iterations” 50 Maximum number of iterations to stay at a given point

“Perturbation Scale” 1.0 Scale for the random jump

“Random Seed” 0 It is a starting value of random number generator

“Tolerance” 0.001 Tolerance for accepting constraint violations

Solution Procedure
To solve the optimization Problem (10), the following steps are followed:
Step 1: Set the initial values of all input inventory parameters.
Step 2: Define the objective Function (10) in MATHEMATICA.
Step 3: Use the following comments:
“NMaximize [objective, decision variables, Method→ “SimulatedAnnealing”]
“NMaximize [objective, decision variables, Method→ “DifferentialEvaluation”]
Step 4: Compile and execute.
Step 5: Check the result.
Step 6: If the program is convergent and the results are feasible, go to Step 8, otherwise

go to Step 7.
Step 7: Repeat Steps 1 to 6.
Step 8: Print the optimal results.
Step 9: Stop.
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7. Numerical Illustrations

Here, we have discussed validation of the proposed work. During the validation
process, two numerical examples of a hypothetical system are considered as follows:

Example 1: In this numerical example, the hypothetical data of input parameters are taken
in the following way:

A = 690, B = 700, α = 325, β = 690, γ = 365, δ = 325, θ1 = 0.22, η = 0.9, k = 0.2, a = 150, b = 0.5, Co = 450,
cp = 50, h = 0.5.

Example 2: Here, the values of preservation parameters are taken as m = 0.7 and the other
input parameters are taken to be the same as Example 1.

Example 1 and Example 2 are solved by DE and SA, which are codded in Mathematica
software, and the obtained results are displayed in Tables 4 and 5, respectively. Moreover,
to show the concavity of the objective function, the pictorial representations of the average
profit function versus independent variables taken two at a time w.r.t. Example 2 are
depicted in Figures 4–6.

Table 4. Best-found solution of Example 1.

Unknown Parameters Best-Found Result Obtained by DE Best-Found Result Obtained by SA

Production time (t1) (month) 1.9851 1.9851

Cycle length (T) (month) 2.2615 2.2615

Selling price (p) ($/L) 170.746 170.746

Average profit (TP) ($/month) 7591.65 7591.65

Table 5. Best-found solution of Example 2.

Unknown Parameters Best-Found Result Obtained by DE Best-Found Result Obtained by SA

Production time (t1) (month) 3.92474 3.92474

Cycle length (T) (month) 7.005 7.005

Selling price (p) ($/L) 174.89 174.89

Preservation investment (ξ) ($) 8.97837 8.97836

Average profit (TP) ($/month) 7703.15 7703.15

Discussion

From the solution of Examples 1 and 2 (cf. Tables 2 and 3), the following findings are
observed.

(i) The average profit of Example 2 (model with preservation technology) is higher than
that of the Example 1 (model without preservation technology). From this finding, it
may be concluded that the model with preservation technology is more economical
than the model without preservation technology.

(ii) The best-found results of both Examples 1 and 2 obtained by DE and SA are same up
to a certain degree of accuracy. Thus, from here, it can also be concluded that both of
the algorithms are equally efficient to solve the corresponding optimization problem
of the proposed model.

(iii) Figures 4–6 indicate pictorial evidence for the near optimality of the obtained results
for Examples 1 and 2.
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Figure 4. Profit function with respect to t1 and p.

Figure 5. Profit function with respect to t1 and ξ.

Figure 6. Profit function with respect to ξ and p.
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8. Sensitivity Analyses

To show the impact of various known inventory parameters on the average profit
(TP), production time (t1), selling price (p), and cycle length (T), sensitivity analyses are
performed with respect to Example 2 by changing the parameters from−20% to 20%. Then,
the obtained results of these analyses are depicted graphically in Figures 7–12.

Figure 7. Impact of Co on the optimal policy.

Figure 8. Impact of h on the optimal policy.

Figure 9. Impact of cp on the optimal policy.
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Figure 10. Impact of θ1 on the optimal policy.

Figure 11. Impact of m on the optimal policy.

Figure 12. Impact of b on the optimal policy.
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From Figures 7–12, the following observations can be made:

• The profit per unit (TP) is moderately sensitive with a reverse effect with respect to cp,
whereas it is insensitive with the change of θ1, m, h and Co, and highly sensitive with
a reverse effect with respect to b.

• The production time (t1) is less sensitive directly with respect to Co, cp, and slightly
sensitive with a reverse effect with respect to h. On the other hand, it is insensitive
with the changes in θ1, m & b.

• The selling price (p) is slightly sensitive with respect to cp, whereas it is insensitive
with the changes in Co, h, θ1 & m, and fairly sensitive with a reverse effect with respect
to b.

• The preservation investment (ξ) is slighter sensitive with respect to Co, cp, h & θ1,
whereas it is insensitive with the changes in b, and highly sensitive with a reverse
effect with respect to m.

• The cycle length (T) is slightly sensitive with respect to cp, and moderately sensitive
with a reverse effect with respect to h. On the other hand, it is insensitive with the
changes in b, θ1 and m and fairly sensitive with respect to Co.

9. Managerial Implications

From the numerical and sensitivity analyses, a few advisories or awareness may
be given to the manager of the manufacturing system of mixed products, which are
presented below:

(i). As the model with preservation technology is more economical than the model
without preservation technology, it will be a good choice for the manager to consider
the preservation facility during the manufacturing process of perishable products.

(ii). On the other hand, the manager should be careful about the preservation controlling
factor (m), which has a high reverse effect on the preservation investment, the igno-
rance of which may be the cause of higher compensation on preservation technology.

(iii). The average profit is highly sensitive with respect to the demand controlling param-
eter b and inventory cost components in the reverse sense, thus a manager/model
analyst should take more care about these parameters when making the optimal
decision.

10. Conclusions

In this work, the concept of the mixing problem is implemented in the production
inventory model for a liquid product with selling-price-dependent demand and a vari-
able production rate under preservation technology. The mixing process is formulated
mathematically by the system of differential equations. The non-linear average profit
is maximized numerically by the meta-heuristic optimizers: differential evaluation and
simulated annealing.

It may be concluded from the numerical result that, if the enterprise/organization
applies the preservation facility, it will be more beneficial for them. From the sensitivity
analyses, it can also be concluded that the demand parameters and different inventory
costs have a significant negative impact on average profit.

As a practical implication, the concept of this proposed model can be applied in
various industries, such as medicine, cosmetics, detergent, food industries, and so on.
Although the concept of this model can be implemented in the various fields mentioned
above, this work has some limitations. Firstly, there is no theoretical proof of the optimal
policy of the proposed model. Secondly, under uncertainty, this model cannot be directly
implemented in the such industrial sectors and, finally, the shortages case is not considered
in this model.

Keeping the above limitations of the proposed model in mind, in the future, the
concept of the mixing problem can be extended in other production inventory models,
such as models with shortages, a production model with an imperfect production process,
and a model with trade credit policy, among others. Finally, the concept of this work may
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be extended in an uncertain environment-fuzzy, stochastic, fuzzy-stochastic, and interval
environment, among others.
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