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Abstract: Parkinson’s disease (PD) is a progressive and long-term neurodegenerative disorder of
the central nervous system. It has been studied that 90% of the PD subjects have voice impairments
which are some of the vital characteristics of PD patients and have been widely used for diagnostic
purposes. However, the curse of dimensionality, high aliasing, redundancy, and small sample size
in PD speech data bring great challenges to classify PD objects. Feature reduction can efficiently
solve these issues. However, existing feature reduction algorithms ignore high aliasing, noise, and
the stability of algorithms, and thus fail to give substantial classification accuracy. To mitigate these
problems, this study proposes a weighted hybrid feature reduction embedded with ensemble learning
technique which comprises (1) hybrid feature reduction technique that increases inter-class variance,
reduces intra-class variance, preserves the neighborhood structure of data, and remove co-related
features that causes high aliasing and noise in classification. (2) Weighted-boosting method to train
the model precisely. (3) Furthermore, the stability of the algorithm is enhanced by introducing a
bagging strategy. The experiments were performed on three different datasets including two widely
used datasets and a dataset provided by Southwest Hospital (Army Military Medical University)
Chongqing, China. The experimental results indicated that compared with existing feature reduction
methods, the proposed algorithm always shows the highest accuracy, precision, recall, and G-mean
for speech data of PD. Moreover, the proposed algorithm not only shows excellent performance
for classification but also deals with imbalanced data precisely and achieved the highest AUC in
most of the cases. In addition, compared with state-of-the-art algorithms, the proposed method
shows improvement up to 4.53%. In the future, this algorithm can be used for early and differential
diagnoses, which are rated as challenging tasks.

Keywords: Parkinson’s disease; dimensionality reduction; ensemble learning; hybrid feature learning

1. Introduction

The use of machine learning techniques to control diseases is becoming popular
nowadays [1–3]. Parkinson’s disease damages the nerve cells that are responsible for body
movement [4]. As a symptom of Parkinson’s disease, speech plays an informative role in the
pathogenesis of Parkinson’s disease. The convenience of voice acquisition makes remote
monitoring of Parkinson’s disease possible. However, speech datasets often have noise
and high aliasing characteristics. This brings troublesomeness in the processing of speech
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data. How to extract efficient representational features from Parkinson’s speech dataset
has received much attention from researchers. Dimensionality reduction is a technique
wherein some of the features are alleviated from the original high dimensional data space
in such a way that new lower-dimensional data space can effectively represent the original
data space. Dimensionality reduction procedures are mainly divided into feature selection
and feature transformation [5].

In feature selection, a low dimensional subset of the features is searched from the
original high dimensional data space so as a selected subset of features can efficiently
describe the original data. Feature selection methods are divided into three groups: wrap-
per, filter, and embedded [6]. Some of the typical feature selection methods are Relief,
SVM-RFE (support vector machines recursive feature elimination), mRMR (minimum
redundancy maximum relevancy), p-value, and LASSO (least absolute shrinkage and selec-
tion operator). Feature selection methods are widely used for dimensionality reduction
of the PD dataset. Rovini E et al. [7] used p-value to select the subset of features. Sakar C
and Kurun O [8] developed a hybrid feature selection method by combining a feature
selection algorithm with an SVM-based classifier and the accuracy of 92% was calculated.
Peker M et al. [9] chose minimum redundancy maximum relevance for feature selection
and fed these subsets of attributes to the CVANN (complex-valued artificial neural net-
works). Benba A et al. [10] used a threshold for selecting the subset of features defined
by the MDVP (multi-dimensional voice program). Furthermore, selected features were
fed to KNN (k-nearest neighbors) and SVM for classification between pathological and
normal voices. Shirvan R et al. [11] combined the effects of generic algorithms and KNN
for feature selection. The key benefit of the feature selection method is that it retains only
those features that are useful for classification. However, feature selection methods are
unable to generate new dimensions with high quality. In addition, feature selection-based
algorithms lose some information, thereby eliminating some features from a dataset [12].

Feature transformation maps high dimensional data to low dimensional data with-
out eliminating features and retains the sample’s information as much as possible [13].
Some of the typical representations of feature extraction methods are LDA (linear dis-
criminant analysis), PCA (principal component analysis), LPP (locality preserving projec-
tion), LPDP (locality preserving discriminant projection), and LDPP (local discriminant
preservation projection). Chen H et al. [14] proposed a method using a fuzzy KNN ap-
proach combined with PCA for PD classification and the accuracy of 96% was calculated.
Hariharan M et al. [15] developed an algorithm using LDA and PCA for the recognition
of PD subjects. Although PCA and LDA show good performance, they are not reliable
for real-world problems. Most of the real-world problems are non-linear having complex
tendencies. Both the PCA and LDA are linear feature extraction methods that assume data
are in a linear subspace of high dimensional space, as a consequence, they are unable to
classify non-linear datasets appropriately [16]. To remove non-linearity problems, kernel
forms of PCA and LDA were developed where KPCA (kernelized principal component
analysis) and KLDA (kernelized linear discriminant analysis) are typical non-linear feature
extraction methods. However, during the process of data mapping, it is quite difficult
to find the appropriate kernel function. Manifold learning is another form of feature ex-
traction method which is more adaptable and does not have the limitation of choosing an
appropriate kernel function [17]. LPP is a particular example of manifold learning. LPP
optimally preserves the neighborhood structure of data and objective function of LPP and
minimizes the distance between data points that have a neighborhood relationship in data
space [18]. LPP also has some deficiencies. LPP is not only quite sensitive to the number of
neighborhood samples but also undergoes the problem of a small sample size. To deal with
these shortcomings, some improved versions of LPP were developed. However, developed
LPP approaches still have some issues. Most of the LPP based approaches pay more
attention to the variance between the classes without considering the large variance within
the classes. There is also a problem of instability while mapping the high-dimensional data.
It has been observed that if we do the partition of a dataset with a small sample size, there
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will be great randomness. It is only due to the difference in data distribution between test
datasets and training datasets [19].

In a recent study, researchers are trying to build hybrid systems by combining the
benefits of feature selection and feature extraction for the automatic assessment of Parkin-
son’s disease. Uzer M et al. [20] combined the effects of principal component analysis
(PCA) and sequential forward selection (SFS) with an artificial neural network classifier
for developing a hybrid system. A. Ul Haq et al. [21] developed a hybrid system by using
ant-colony optimization algorithms, and the relief filtering method. They used support
vector machine (SVM) as a classifier with the K-fold method for cross-validation.

From the above studies, it can be realized that the methods of PD speech feature
extraction can be divided into three categories: feature selection, feature extraction, and fea-
ture selection combined with feature extraction (FSFE) or feature extraction combined with
feature selection (FEFS). Feature selection and feature extraction have distinct strengths.
The former focuses on the relevance (interpretation) of features to PD, while the latter
focuses on the retention of PD data information. The FSFE or FEFS method combines the
advantages of FS and FE, compared to using the feature selection or feature extraction
algorithm alone, it can often achieve better classification results.

Besides, the methods that improve the remote diagnosis of PD not only include high-
quality features, but also the design of a good classification strategy. Ensemble learning is
an effective classification performance improvement strategy and has been widely used in
various fields of bioinformatics, including the diagnosis of PD. Kadam V et al. [22] selected
the attributes by using a genetic algorithm with 10-fold CV SVM and bagging approach
using a bootstrap aggregating method for selecting the ensembles of polynomial kernel
SVM classifier. Abuhasel K et al. [23] developed a hybrid algorithm that uses NEWFM as a
base classifier and integrates it with a standard adaptive boosting method to improve the
diagnosing accuracy of PD. Yongming L et al. [24] proposed an algorithm comprised of de-
cision tree-based instance selection and ensemble learning. The CART algorithm was used
for selecting the optimal speech samples and ensemble learning combined with random
forest (RF), ELM (extreme learning machine), and SVM for training the optimized training
samples. Finally, the trained method was applied to test samples. Lauraitis, A et al. [25]
investigated the speech impairments to the CNDS (central nervous system disorders) pa-
tients. The dataset used for experiments was collected by a neural impairment test suite
mobile app. Three domains of feature extraction methods including auditory spectrograms,
cestrum domain, and WST (wavelet time scattering, analytic Gabor) were used in this
study. For classification, BiLSTM (bidirectional recurrent neural network (RNN) with long
short-term memory) and support vector machine (SVM) with polynomial kernel methods
were used. They achieved an accuracy of 96.3% with WST-SVM and 94.50% with BiLSTM.
Matheus T et al. [26] developed an algorithm to detect Huntington’s disease from voice
recordings of patients reading Lithuanian poems. They estimated twelve new signal feature
extractors by open-SMILE (open source media interpretation by large feature-space extrac-
tion) and integrated with KNN (K-nearest neighbours), SVM, MLP (multilayer perceptron),
LDA, and QDA (quadratic discriminant analysis) models. Zhang H et al. [27] optimized
the samples by using MENN (multi-edit-nearest-neighbor) algorithm and applied a DENN
(deco-related-neural-network) ensemble to train those samples. Lastly, the trained model
was applied to test samples. However, another combination of hybrid feature learning
and hybrid ensemble learning is often overlooked by scholars. Therefore, if the ensemble
learning model is designed as a combination of weighted-boosting and bagging models,
and used with hybrid feature learning, it can significantly improve detection performance.

To the best of our knowledge, there is no public report about the hybrid feature
learning embedded with the ensemble-learning approach for remote monitoring of PD. To
develop a convenient and precise remote monitoring system for the identification of PD
subjects, this paper designs a weighted hybrid feature reduction embedded with ensemble-
learning model. The proposed algorithm first builds a hybrid feature learning method
by integrating feature extraction and feature selection techniques; furthermore, uses a
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weighted-boosting technique to train the base classifier effectively; and then, repeats the
above operations to obtain a series of base classifiers; finally, bagging is used to combine
all the output of the base classifier to obtain the final classifier. Therefore, the primary
contributions and innovations of this paper are as follows:

Proposed a hybrid system effectively integrates the benefits of feature extraction
and feature selection. Moreover, the proposed algorithm precisely reduces the intra-class
variance, increases the inter-class variance, preserves the neighborhood structure of data,
and eliminates the noisy features concurrently that helps to reduce the high aliasing
characteristics of PD speech data.

Furthermore, to improve the performance of PD remote diagnosis, the proposed
method builds and implements the projection matrix by weighted-boosting and bagging
strategies that not only train the model precisely but enhance the stability of the model
as well.

2. Material and Methods
2.1. Data

In this paper, three different representative datasets including Parkinson Speech
Dataset with Multiple Types of Sound Recording (PSDMTSR), a self-collected dataset
(named as SelfData), and PARKINSON were used to authenticate the effectiveness of the
proposed method.

The PSDMTSR dataset contains 20 healthy people and 20 PD patients. Among
the healthy people, half of them were male and the average age of healthy people was
62.55 years. Among the PD patients, 6 of them were female and the rest were male patients,
and the average age of PD patients was 64.86 years. More information can be found in [28].

The PARKINSON dataset contains 8 healthy people and 23 PD patients. Among the
healthy people, 5 were female and 3 were male with an average age of 58 and 64 years
respectively. Among the PD patients, 7 were female and 16 were male patients with an
average age of 68.71 and 67.38 years respectively. More information can be found in [29].

SelfData w collected by Army Medical University, Chongqing, China. The dataset
contains 21 (9 female, 12 male) healthy people (patients after medication) and 10 PD
(5 female, 5 male) patients (without medication). For each of the participants, 13 data
samples were recorded, and each sample consisted of 26 features that ended up a design
matrix of 1170*26. More information can be found in [30].

Brief detail about these datasets is shown in Table 1.

Table 1. Information about datasets.

Datasets
Attributes

Patients Healthy People Instances Features Classes References

PARKINSON 23 8 195 23 2 [29]

PSDMTSR 20 20 1040 26 2 [28]

SelfData 36 54 1170 26 2 −

For SelfData, patients indicate the patients before treatment, and healthy people
represent the patients after treatment.

2.2. The Proposed Method

The objective function of the proposed method minimizes the trace of the local within-
class scatter matrix and maximizes the trace of the between-class scatter matrix while
preserving the locality of the sample. Moreover, the proposed algorithm ranks the features
and selects top-ranked features, performs weighted-boosting to characterize the wrongly
categorized samples, and finally, ensemble mapping for constructing the final output by
using weight coefficients. In order to tune the parameters for best performance, hold-out-
cross-validation is used to validate the method.



Mathematics 2021, 9, 3172 5 of 19

In this study, the data matrix is represented as X = [x1, x2, x3, . . . , xN ]
T =[

X1, X2, X3, . . . , XC]T ∈ RN×F, where N = ∑C
i = 1 Ni denotes the number of data sam-

ples and Ni is the number of data samples in the dataset Xi, F represents the number
of dimensions of dataset X, C denotes the number of classes in dataset X and y =

[y1, y2, y3, . . . , yN ]
T ∈ RN represents the labels of each data sample. P =

(
p1, p2, p3, . . . , p f

)
∈ RF× f is the projection matrix that is used for mapping the high dimensional data from
RN×F to a low dimensional space RN× f , where F > f.

To make data samples with the same class label as close as possible, this algorithm
reduces the intra-class variance matrix as follows:

min
P

C

∑
c = 1

[
‖PTx′(c) − PTx′(c)‖2

]
x′(c)∈Xwc

= min
P

C

∑
c = 1

[
PT
(

x′(c) − x′(c)w

)(
x′(c) − x′(c)w

)T
P

]
x′(c)∈Xwc

= min
P

PTSW Pn (1)

where SW = ∑C
c = 1∑x′(c)∈Xwc

(
x′(c) − x′(c)w

)T(
x′(c) − x′(c)w

)
is the matrix of intra-class

variance, x′(c)w = 1
Nc ∑

Nc
i = 1x′(c)i is the center of cth class and x′(c)i is the ith sample of

class x′(c).

max
P

C

∑
c = 1

[
‖PTx′(c)w − PTX′‖2

]
X′∈X

= max
P

C

∑
c = 1

[
PT
(

x′(c)w − X′
)(

x′(c)w − X′
)T

P

]
X′∈X

(2)

where SB = ∑C
c = 1

(
x′(c)w − X′

)(
x′(c)w − X′

)T
means the matrix of inter-class variance,

X′ = 1
N ∑N

i = 1 xi is the center of X, and xi is the ith sample in X.

To preserve the neighborhood relationship means the sample structure would be
preserved after mapping which can be described as

C

∑
c = 1

N

∑
j = i

∑Nc

i=1
Ac

ij

[
‖PTx′(c)i − PTx′j‖

2
]

x′(c)i ,x′j ∈ Xtrain

=
C

∑
c = 1

PT

 Nc

∑
t = 1

x′(c)i Dcx′(c)
T

i −
N

∑
j = 1

Nc

∑
i = 1

x′(c)i Ac
ijx
′
j
T

P


x′j , x′(c)i ∈ Xtrain

= ∑C

c = 1

[
PTX′(c)(Dc

ii − Ac) X′trainP
]

X′(c)∈ Xtrain

= ∑C

c = 1

[
PTX′(c)(D− A) X′trainP

]
X′(c)∈ Xtrain

= PT XtrainZ XT
trainP

(3)

where Z = D− A is a Laplacian matrix, Dc
ii = ∑j Ac

ij is a diagonal matrix, and Aij is an
affinity matrix that can be calculated in two different ways

Heat kernel : Ac
ij =

 e−
‖xi−xj‖

2

t , i f xc
i Nk

(
xj
)
‖ xjεNk

(
xj

c)
0, otherwise

(4)

Simple−minded : Ac
ij =

{
1, i f xc

i Nk
(

xj
)
‖ xjεNk

(
xj

c)
0, otherwise

(5)
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where Nk is the set of samples nearest to sample x, and t is a heat kernel parameter.
Therefore, the objective function of the proposed algorithm can be expressed as follows

min
P

Tr
[

PTSW P− PTSBP + XtrainZ XT
trainP

]
This equation is equivalent to the Lagrange function

L(P, λ) = PT
(

SW − λ
[
µSB − γ

(
XtrainZ XT

train

)])
P (6)

Taking the derivative with respect to P

∂
∂Pn [L(P, λ)] = 0 ⇒ ∂{PT[SW−λ[µSB−γ( XtrainZ XT

train)]]P}
∂Pn = 0

⇒ 2SW P− 2λ
[
µSBP− γ

(
XtrainZ XT

train
)

P
]
= 0⇔ SW P

= λ
[
µSB − γ

(
XtrainZ XT

train
)]

P⇒ λP

= PSW
[
µSB − γ

(
XtrainZ XT

train
)]−1

(7)

where the penalty factors µ and γ give a trade-off between the manifold preservation term
and the local discrimination term that can be simply tuned via a substitute strategy.

After mapping data on P, the algorithm filters noisy and redundant features. The
proposed algorithm ranks each feature according to its weight. This weight would be the
approximation of the probability that a feature will be able to separate two classes in local
neighbors. The objective function for feature selection can be described as follows

W( fi) = P(di f f erent value o f fi|di f f ernet class)− P(di f f erent value o f fi|same class)

W( fi) = ∑
c 6=class(x′)

 P(x′)
1− P[class(x′)]

k

∑
j=1

di f f
[

fi, x′, Mj(x′)
]

mk


x′∈

−
k

∑
j=1

di f f
[

fi, x′, Hj(x′)
]

mk
(8)

where di f f
[

fi, x′, Mj
]

represents the difference of data sample x′ and Mj on feature fi,
Hj(x′) is the neighbor sample of the same class, and Mj(x′) is the neighbor data sample
of opposite classes. Initially, the weight for each feature is set to 0. After that sample x′

is randomly taken from the training set Xtrain, and then k nearest hits of x′ are found
from the sample set similar to x′, and k nearest misses are found from the sample set
of different classes of each x′, and then the weight of each feature is updated. Finally,
top W( fi) f∈F(i = 1, . . . , F) features of X′train with the highest weights will be selected for
training the model.

W( fi) = W( fi) + ∑
c 6=class(x′)

 P(x′)
1− P[class(x′)]

k

∑
j=1

di f f
[

fi, x′, Mj(x′)
]

mk

− k

∑
j=1

di f f
[

fi, x′, Hj(x′)
]

mk
(9)

In order to train the model effectively, the proposed algorithm contains a weighted-
boosting technique with cross-validation by validation dataset XV . This technique gives
higher weights to misclassified samples and lower weights to the classified samples and
the sum of all weights is 1.

The objective function of AdaBoost is as follows

sign

 S

∑
s=1

ρshs
(
x′s
)

where S is the number of samples, ρs = 1
2 ln
(

1−εs
εs

)
is the weight of the classifier hs(x′)

for sample s. Initially, equal weights
[
ω(x′s, ys)ys∈[−1,1] =

1
S , s = 1 . . . ., S

]
is assigned to

each of the training example s. The learning algorithm uses the training data set and x′
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to generate a base learner hs(x′s): x′s→ ys, hs(x′s) is validated by using the validation
dataset XV , and the weights for classified examples will be decreased and for the wrongly
classified examples will be amplified in such a way that the sum of all example’s weights is
equal to 1.

The weights for each example can be updated as follows

ωs
(
x′s, ys

)
=

ωs−1(x′s, ys).e−ρsyshs(x′s)

Rs
(10)

where Rs is a normalization factor to ensure that sum of all weights is equal to 1.
Finally, the proposed algorithm is used on n different randomly sampled subsets Xn

train
of XT , so n different classifiers (classi f ier1, . . . , classi f iern) will be obtained. Therefore, the
final classifier can be obtained as follows:

Classi f ierFinal = β1classi f ier1 + β2classi f ier2+, . . . ,+βnclassi f iern =

n

∑
i=1

βiclassi f ieri (11)

where β is a weight coefficient obtained by Bayesian fusion in which sample class is
determined based on maximum posterior probability. For instance, n number of classifiers
are obtained using n number of training datasets, and n number of predictions results
obtained by using validation dataset. The final probability matrix is obtained by joining
the prediction of n classifiers. The weight coefficient β can be calculated as

βi =
Ni

Nvalid
, (i = 1, 2, . . . , n) (12)

where Ni is the number of times ith classifier is nominated as prediction result, Nvalid is the
number of samples in the validation dataset.

Based on the above description, the complete process of the proposed algorithm is as
follows. The dataset X is divided into three parts; training XR, test XT , and validation XV
datasets. The training data XR is further randomly subdivided into n parts (n is the number
of networks and in each part, 80% of the whole training data is chosen randomly). Each of
the Xtn training datasets are processed separately. After that, the proposed algorithm is
used for feature reduction of each Xtn training datasets and the XV is used to validate each
classifier. Lastly, the final output is obtained by integrating all independent networks. The
flow chart and pseudo-code for the proposed method can be seen below.

Figure 1 shows the flowchart of the proposed algorithm and Figure 2 shows the
weight-Boosting process. The details of the pseudo-code of the proposed algorithm are
given in Algorithm 1 below.

2.3. Classifiers

The experiments were performed using three types of classifiers including RF (ran-
dom forest), SVM, and ELM (extreme learning machine). Random forest classifier uses
multiple trees for training and prediction, has been used for the classification of PD speech
data [31,32]. SVM finds the hyperplane in the sample space to maximize the classification
interval from different classes by using support vectors and is being used in various fields
including PD speech data classification [33,34]. ELM is a comprehensive feed-forward
network consists of the single-hidden layer which is used as a classifier in PD speech
classification [35,36].

2.4. Evaluation Criteria

In this study, five model evaluation criteria are used including precision (Pre), recall
(Rec), accuracy (Acc), G-mean, and Area under the ROC (AUC). These criteria are built
from a confusion matrix that contains classified and misclassified samples of each class.
G-mean is used to evaluate the results of imbalanced data samples, while AUC evaluates
the performance of the classifiers. AUC is a numerical value that can be calculated by
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the area under the ROC curve (AUC). In this study, the classification of PD is a two-class
problem, and the formation of the confusion matrix can be seen in Table 2.

The evaluation criteria can be constructed as follows

Accuracy (Acc %) =
TP + TN

TP + FP + FN + TN
× 100 (13)

Precision (Pre) =
TP

TP + FP
(14)

Recall (Rec) =
TP

TP + FN
(15)

G−mean =
√

Rec ∗ Spe =
√

TP
TP + FN

∗ TN
FP + TN

(16)

where Spe is specificity.
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2.5. Experimental Environment

Windows version 7 with a 64-bit operating system was used for the experiment and the
memory size was 8GB. The algorithm was executed in MATLAB version 2018a. Multiple
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experiments were carried out to evaluate the performance of the proposed PD diagnosis
system. All experiments were performed under the same experimental conditions and
each experiment was repeated 10 times and the average was recorded to mitigate the effect
of irregularity. To accomplish the optimal performance of the model, the parameters were
tuned according to Table 3. Moreover, 300 trees were used for random forest (RF), and 5000
hidden neurons were used for ELM.

Table 2. Confusion matrix for a two-class problem.

Label
Prediction

Positive Negative

Real
positive True Positive (TP) False Negative (FN)

negative False Positive (FP) True Negative (TN)

Algorithm 1. The pseudo-code of the proposed algorithm

Input: Data set X, labels Y
Output: Final Prediction labels Classi f ierFinal

Begin
1: Randomly divide dataset X into training data XR, test data XT, and validation data XV.
2: Randomly select training sets as ( rs ∗ ·XT) into Xt1, Xt2, Xt3, . . . Xtn where n is the

number of subspaces, and rs = 0.8
3: for i = 1 to n (where n is the number of stacks or networks)

Function = Hybrid-Feature-reduction (Xtn)
Feature extraction

Calculate SW (matrix of intra-class variance)
Calculate SB (matrix of inter-class variance)
Calculate Z (Laplacian matrix)
Calculate A (Affinity matrix)
Solve for Pn (The projection matrix)

Feature Selection
Initialize weight W( fi) = 0 for each of the features

Calculate di f f
[

fi, x′, Mj(x′)
]

(difference of sample x′ and neighbor sample of
the same class)

Calculate di f f
[

fi, x′, Hj(x′)
]
(difference of sample x′ and neighbor sample of

the different classes)
Calculate W( fi)
Select top f feature where f < F

Weighted-boosting
Assign equal weights

[
ω(x′s, ys)ys∈[−1,1] =

1
S , s = 1 . . . ., S

]
to each of the

training samples
Train model (Modeln)
Validate (Modeln)
Find Miss-classified samples

Calculated ρs =
1
2 ln
(

1−εs
εs

)
(Weights)

Update weights ωs(x′s, ys)

Apply weighted-boosting sign
[
∑S

s=1 ρshs(x′s)
]

end for
4: Ensemble mapping

Calculate βi =
Ni

Nvalid
, (i = 1, 2, . . . , n) (weight coefficient)

Calculate Classi f ierFinal =
n
∑

i=1
βnclassi f iern (Predicted output)

End
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Table 3. The parameters for the proposed algorithm.

Symbol Meaning Parameter Settings

rs Random sampling ratio 0.8

n Number of subspaces 5

γ Penalty factor for PnT
(

X′ntrainZ X′nT
train

)
Pn 10−4, 10−3, . . . , 104

λ Penalty factor for PnT
[
µSB − γ

(
X′ntrainZ X′nT

train

)]
Pn 10−4, 10−3, . . . , 104

µ Penalty factor for PnTSBPn 10−4, 10−3, . . . , 104

f Features after feature reduction 5, 10, 15, 20, . . . ..

k Nearest neighbor samples in affinity Matrix A 5

t Kernel parameter of affinity Matrix A 10−4, 10−3, . . . , 104

β Fusion weight coefficient Calculated by Bayesian fusion

3. Results

In this section, the results of the proposed algorithm are analyzed and compared with
feature selection, feature transformation, and some state-of-the-art algorithms which have
been extensively used for PD diagnosis. For validation purposes, hold-out-cross-validation
is used in which the dataset is randomly and equally divided into training (1/3), validation
(1/3) and test (1/3) sets. Since each subject contains multiple samples in the dataset, this
validation process can effectively avoid data overlapping.
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3.1. Comparison with Feature Extraction Methods

In this section, the results of proposed and various feature extraction methods were
compared. These feature extraction methods involved LDA [4,15,37], PCA [31,32,38,39],
KPCA [37], LPP [37,40] (simple-minded and heat kernel) LDPP (simple-minded and heat
kernel). The classification results can be seen in Table 4. The results in Table 4 shows
that the proposed algorithm achieved better performance on multiple evaluation criteria
irrespective of datasets and classifiers. It is worth noticing that for PSDMTSR datasets, the
proposed method always performed well compared with feature extraction methods. This
indicates that the proposed method not only achieves higher classification accuracy but
also can deal with imbalanced data samples effectively. Same as PSDMTSR, the proposed
algorithm performed better for the PARKINSONS dataset as well on the accuracy, precision,
recall, and G-mean which also shows the superiority of the proposed method. For the re-
sults using SelfData, although feature extraction methods help to improve the performance
as to compare to N_DR (results without dimension reduction), the improvement of the
proposed method is most noticeable. Compared with N_DR, the classification accuracy
was improved for ELM by 18.66% (from 0.4867–0.6733) and for SVM (linear) by 8.67%
(from 0.56–0.6467). Moreover, it is worth noticing that affinity matrix with simple-minded
offered lower classification accuracy than that of the heat kernel. It is because while making
the affinity matrix, the heat kernel provides weights to the neighbor samples according to
the distance from the sample under observation (greater weights are given to the closest
neighbor samples). However, simple-minded does not provide this functionality.

Table 4. Comparison with feature extraction methods.

Dataset\Classifier
Acc Pre Rec G-Mean

SVM
(linear)

SVM
(RBF) RF ELM SVM

(linear)
SVM
(RBF) RF ELM SVM

(linear)
SVM
(RBF) RF ELM SVM

(linear)
SVM
(RBF) RF ELM

PARKINSONS

N_DR 0.6833 0.7583 0.7583 0.7417 0.746 0.7463 0.7529 0.7647 0.8125 0.975 0.9625 0.9 0.5876 0.5629 0.5804 0.6185

PCA 0.75 0.75 0.75 0.7167 0.7515 0.7297 0.7398 0.7386 0.9375 1 0.975 0.9 0.5929 0.5 0.5408 0.5612

KPCA 0.7167 0.675 0.7583 0.6917 0.7061 0.6727 0.7453 0.7431 0.9875 1 0.975 0.825 0.4157 0.1581 0.5629 0.5921

LDA 0.7083 0.7167 0.7417 0.6667 0.748 0.7093 0.7629 0.7061 0.8625 0.9875 0.9125 0.8625 0.5874 0.4157 0.6042 0.487

LPP(S) 0.7667 0.75 0.725 0.75 0.7591 0.7297 0.7145 0.7954 0.975 1 0.9875 0.8625 0.5842 0.5 0.4444 0.6729

LPP(H) 0.7417 0.7833 0.7417 0.7083 0.7533 0.7723 0.7337 0.7639 0.925 0.9625 0.975 0.8125 0.589 0.6396 0.5178 0.6374

LDPP(S) 0.7583 0.75 0.75 0.6917 0.7686 0.7309 0.7393 0.7371 0.925 1 0.975 0.8375 0.627 0.5 0.5408 0.5788

LDPP(H) 0.7667 0.7667 0.7917 0.725 0.7657 0.756 0.7715 0.7571 0.95 0.975 0.9875 0.875 0.6164 0.5842 0.6285 0.6098

Proposed (S) 0.8167 0.7583 0.8167 0.85 0.7899 0.7382 0.7921 0.8396 1 1 0.9875 0.975 0.6708 0.5244 0.6849 0.7649

Proposed (H) 0.85 0.8083 0.85 0.8917 0.8356 0.781 0.8194 0.9069 0.975 1 1 0.95 0.7649 0.6519 0.7416 0.8581

PSDMTSR

N_DR 0.6125 0.575 0.5625 0.6188 0.6152 0.5721 0.5545 0.6458 0.65 0.6375 0.6 0.625 0.6114 0.5716 0.5612 0.6187

PCA 0.575 0.55 0.5813 0.575 0.5924 0.5561 0.5816 0.5914 0.6625 0.625 0.6625 0.5625 0.5683 0.5449 0.5755 0.5749

KPCA 0.5188 0.55 0.5688 0.5063 0.6633 0.6883 0.5655 0.496 0.35 0.4625 0.7 0.45 0.4905 0.543 0.5534 0.5031

LDA 0.6 0.5563 0.5938 0.55 0.6037 0.5515 0.592 0.5565 0.65 0.6125 0.6375 0.6 0.5979 0.5534 0.5921 0.5477

LPP(S) 0.5625 0.5625 0.5813 0.6 0.5828 0.5602 0.5891 0.6344 0.625 0.65 0.675 0.575 0.559 0.5557 0.5736 0.5995

LPP(H) 0.5438 0.5688 0.6063 0.5563 0.5486 0.5765 0.6068 0.5839 0.625 0.5875 0.625 0.575 0.5376 0.5684 0.606 0.5559

LDPP(S) 0.5688 0.5813 0.5 0.6 0.5618 0.5959 0.5082 0.6234 0.7125 0.65 0.5875 0.6125 0.5503 0.5772 0.4923 0.5999

LDPP(H) 0.5438 0.5 0.5438 0.5688 0.5943 0.5201 0.54 0.5819 0.5625 0.525 0.6 0.5375 0.5434 0.4994 0.5408 0.5679

Proposed (S) 0.7375 0.6625 0.6875 0.7563 0.7534 0.6628 0.6854 0.764 0.775 0.75 0.7375 0.7875 0.7365 0.6567 0.6857 0.7556

Proposed (H) 0.7125 0.6625 0.7063 0.7625 0.7219 0.6425 0.6773 0.8171 0.7375 0.7875 0.8375 0.7375 0.7121 0.6506 0.6939 0.7621

SelfData

N_DR 0.56 0.5433 0.5367 0.4867 0.3962 0.3305 0.3825 0.3687 0.3583 0.2417 0.2583 0.35 0.4988 0.4242 0.4319 0.4497

PCA 0.5733 0.5467 0.54 0.5267 0.3628 0.4588 0.3669 0.4339 0.2083 0.2667 0.25 0.4417 0.4125 0.4422 0.4282 0.5076

KPCA 0.5867 0.5967 0.5367 0.58 0.3917 0.4417 0.3791 0.4619 0.0667 0.075 0.3083 0.1667 0.2494 0.2661 0.4609 0.3776

LDA 0.5867 0.5667 0.5133 0.49 0.3288 0.1742 0.3455 0.3256 0.1583 0.0833 0.2833 0.3333 0.3716 0.2722 0.4346 0.4451

LPP(S) 0.56 0.5067 0.5633 0.5033 0.3468 0.3575 0.4558 0.4105 0.1833 0.225 0.2917 0.5083 0.3856 0.3953 0.466 0.5041

LPP(H) 0.5833 0.59 0.5333 0.4533 0.2171 0.1485 0.3181 0.3044 0.0833 0.075 0.15 0.3083 0.2764 0.2646 0.344 0.4118

LDPP(S) 0.5967 0.5867 0.55 0.4867 0.3329 0.2432 0.2744 0.3615 0.1917 0.1333 0.2 0.3583 0.4076 0.3443 0.3958 0.4528

LDPP(H) 0.5667 0.5967 0.5233 0.4767 0.3078 0.3219 0.3032 0.3564 0.1417 0.2083 0.1833 0.4083 0.347 0.4222 0.3708 0.4618

Proposed (S) 0.6467 0.6267 0.6733 0.6733 0.5808 0.3405 0.6807 0.6816 0.1833 0.1 0.375 0.525 0.4186 0.3127 0.5719 0.6367

Proposed (H) 0.6133 0.64 0.6567 0.6733 0.4511 0.5592 0.6585 0.5945 0.1833 0.1667 0.3417 0.5167 0.4062 0.3991 0.5442 0.6339

Note: H indicates heat kernel and S means the simple-minded method used to calculate the affinity matrix (Equation (4) and (5) respectively).
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3.2. Comparison with Feature Selection Methods

In this section, the proposed algorithm was compared with feature selection methods
included mRMR [9,41–43], p-value, ReliefF [41,44,45], SBS [46], SFS [15,37], and SVM_RFE.
The results can be seen in Table 5.

The results in Table 5 illustrate that irrespective of classifier and dataset, the proposed
algorithm performed well compared to feature selection algorithms in all evaluation indi-
cators. For PARKINSONS and PSDMTSR datasets, the proposed algorithm achieved better
results in terms of accuracy, precision, recall, and G-mean which shows the effectiveness of
the proposed algorithm. For the SelfDataset, the advantage of the proposed algorithm is
obvious for all classifiers in terms of accuracy and precision. Moreover, for recall and G-
mean, the proposed algorithm with RF and ELM classifiers outperformed feature selection
methods. The improvement of the proposed algorithm with ELM is most obvious which is
18.66% compared with N-DR and even 15% compared with top feature selection methods
(mRMR, ReliefF).

3.3. Significance Analysis

For further verification, significance analysis difference between proposed and fea-
ture reduction algorithms was performed, and the results were recorded in Table 6. The
results in Table 6 shows that no matter which classifier do we use, the proposed algo-
rithm shows significant improvement compared with most of the existing dimensionality
reduction methods.

Table 5. Comparison with feature selection methods.

Dataset\Classifier

Acc Pre Rec G-Mean

SVM
(Linear)

SVM
(RBF) RF ELM SVM

(Linear)
SVM
(RBF) RF ELM SVM

(Linear)
SVM
(RBF) RF ELM SVM

(Linear)
SVM
(RBF) RF ELM

PARKINSONS

N_DR 0.6833 0.7583 0.7583 0.7417 0.746 0.7463 0.7529 0.7647 0.8125 0.975 0.9625 0.9 0.5876 0.5629 0.5804 0.6185

mRMR 0.7167 0.6667 0.725 0.7417 0.7227 0.673 0.7198 0.761 0.95 0.975 0.975 0.9125 0.4873 0.2208 0.4684 0.6042

ReliefF 0.75 0.675 0.725 0.6917 0.7543 0.6758 0.728 0.7146 0.9375 0.9875 0.95 0.9125 0.5929 0.2222 0.5111 0.4776

Pvalue 0.7667 0.675 0.75 0.7167 0.7691 0.6758 0.7529 0.7505 0.95 0.9875 0.9625 0.8875 0.6164 0.2222 0.5593 0.5769

SBS 0.7583 0.675 0.725 0.7583 0.7691 0.6727 0.7279 0.7546 0.925 1 0.95 0.9625 0.627 0.1581 0.5111 0.5804

SFS 0.7917 0.675 0.7333 0.7333 0.7873 0.6727 0.7358 0.7602 0.95 1 0.95 0.9 0.6718 0.1581 0.5339 0.6

SVM_FRE 0.75 0.675 0.7333 0.6917 0.7396 0.6727 0.7265 0.7291 0.9875 1 0.975 0.85 0.5211 0.1581 0.4937 0.5646

Proposed (S) 0.8167 0.7583 0.8167 0.85 0.7899 0.7382 0.7921 0.8396 1 1 0.9875 0.975 0.6708 0.5244 0.6849 0.7649

Proposed (H) 0.85 0.8083 0.85 0.8917 0.8356 0.781 0.8194 0.9069 0.975 1 1 0.95 0.7649 0.6519 0.7416 0.8581

PSDMTSR

N_DR 0.6125 0.575 0.5625 0.6188 0.6152 0.5721 0.5545 0.6458 0.65 0.6375 0.6 0.625 0.6114 0.5716 0.5612 0.6187

mRMR 0.5688 0.5375 0.6188 0.5813 0.597 0.45 0.6032 0.5986 0.4 0.175 0.675 0.5875 0.5431 0.3969 0.6162 0.5812

ReliefF 0.5938 0.4875 0.5313 0.6188 0.5314 0.2551 0.5305 0.633 0.525 0.3875 0.6125 0.6375 0.5898 0.4771 0.525 0.6185

Pvalue 0.5688 0.475 0.5625 0.6313 0.6023 0.3851 0.5681 0.6309 0.6125 0.25 0.625 0.6875 0.5671 0.4183 0.559 0.6287

SBS 0.5688 0.4813 0.5313 0.6125 0.5828 0.3078 0.5236 0.6198 0.5 0.2875 0.5875 0.625 0.5646 0.4405 0.5283 0.6124

SFS 0.55 0.4938 0.5563 0.575 0.5754 0.4937 0.5686 0.5737 0.4625 0.2625 0.575 0.625 0.543 0.4362 0.5559 0.5728

SVM_FRE 0.5375 0.5313 0.5375 0.5313 0.4834 0.5 0.5383 0.5395 0.45 0.4125 0.5875 0.5875 0.5303 0.5178 0.5352 0.5283

Proposed (S) 0.7375 0.6625 0.6875 0.7563 0.7534 0.6628 0.6854 0.764 0.775 0.75 0.7375 0.7875 0.7365 0.6567 0.6857 0.7556

Proposed (H) 0.7125 0.6625 0.7063 0.7625 0.7219 0.6425 0.6773 0.8171 0.7375 0.7875 0.8375 0.7375 0.7121 0.6506 0.6939 0.7621

SelfData

N_DR 0.56 0.5433 0.5367 0.4867 0.3962 0.3305 0.3825 0.3687 0.3583 0.2417 0.2583 0.35 0.4988 0.4242 0.4319 0.4497

mRMR 0.5433 0.6 0.5267 0.5233 0.1642 0 0.3175 0.2822 0.1 0 0.1583 0.225 0.2896 0 0.3497 0.4031

ReliefF 0.5833 0.5933 0.5 0.5233 0.2722 0.025 0.3014 0.3798 0.1917 0.0083 0.2 0.2917 0.4023 0.0905 0.3742 0.4446

Pvalue 0.58 0.5933 0.5433 0.5 0.2889 0.075 0.3511 0.3865 0.25 0.0167 0.2167 0.35 0.4472 0.1277 0.4061 0.4583

SBS 0.5133 0.6 0.5067 0.5 0.2933 0 0.2931 0.3938 0.2917 0 0.25 0.4333 0.4391 0 0.4116 0.4857

SFS 0.5733 0.5967 0.5267 0.5033 0.2792 0.0333 0.3825 0.3697 0.1333 0.0083 0.2333 0.3417 0.3399 0.0908 0.4105 0.4569

SVM_FRE 0.5667 0.6 0.5433 0.52 0.1883 0 0.265 0.3789 0.175 0 0.1333 0.35 0.3806 0 0.33 0.4708

Proposed (S) 0.6467 0.6267 0.6733 0.6733 0.5808 0.3405 0.6807 0.6816 0.1833 0.1 0.375 0.525 0.4186 0.3127 0.5719 0.6367

Proposed (H) 0.6133 0.64 0.6567 0.6733 0.4511 0.5592 0.6585 0.594 0.1833 0.1667 0.3417 0.5167 0.4062 0.3991 0.5442 0.6339
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Table 6. p-values of significance analysis between proposed and other feature-reduction methods (α = 0.05).

Datasets Classifiers\Methods
Methods

N_DR mRMR ReliefF p-Value SBS SFS SVM_RFE PCA KPCA LDA LPP (S) LPP (H) LDPP (S) LDPP (H)

PARKINSONS

SVM
(linear)

Proposed (S) 0.045 0.013 0.07 0.168 0.242 0.52 0.087 0.196 0.009 0.051 0.279 0.041 0.111 0.111

Proposed (H) 0.008 0.002 0.013 0.074 0.012 0.01 0.018 0.003 <0.001 0.002 0.004 0.009 0.012 0.001

SVM
(RBF)

Proposed (S) 1 <0.001 0.023 0.015 0.004 0.004 0.004 0.758 0.004 0.052 0.726 0.394 0.343 0.798

Proposed (H) 0.111 <0.001 0.002 <0.001 <0.001 <0.001 <0.001 0.025 <0.001 0.012 0.01 0.193 0.066 0.052

RF
Proposed (S) 0.045 0.017 0.032 0.053 0.003 0.015 0.008 0.022 0.045 0.041 0.024 0.019 0.011 0.279

Proposed (H) 0.007 0.003 0.003 0.018 0.003 0.007 <0.001 0.003 0.003 0.006 0.005 0.002 <0.001 0.01

ELM
Proposed (S) 0.004 0.006 <0.001 0.008 0.032 0.004 <0.001 <0.001 0.006 <0.001 0.03 0.028 0.007 <0.001

Proposed (H) <0.001 0.004 <0.001 <0.001 0.003 0.007 0.003 <0.001 0.002 0.001 0.004 0.013 0.001 <0.001

PSDMTSR

SVM
(linear)

Proposed (S) 0.005 0.003 0.014 0.004 0.002 0 0.002 0 0 0.004 0.004 0.002 0 <0.001

Proposed (H) 0.008 0.004 0.035 0 0.005 <0.001 0.01 0.002 0 0.016 0.007 0.001 0.002 <0.001

SVM
(RBF)

Proposed (S) 0.007 0.003 <0.001 <0.001 <0.001 <0.001 0.007 0.005 0.041 <0.001 0.003 0.015 0.006 0.028

Proposed (H) 0.034 0.005 0.003 0.003 <0.001 <0.001 0.007 0.019 0.027 0.019 0.013 0.03 0.045 0.032

RF
Proposed (S) 0.008 0.017 0.002 <0.001 <0.001 <0.001 <0.001 0.028 0.002 0.009 0.009 0.022 <0.001 <0.001

Proposed (H) 0.002 0.013 <0.001 <0.001 <0.001 <0.001 <0.001 0.004 <0.001 0.003 <0.001 0.022 <0.001 <0.001

ELM
Proposed (S) 0.007 <0.001 0.007 0.032 0.036 <0.001 <0.001 0.006 <0.001 <0.001 0.008 <0.001 <0.001 0.002

Proposed (H) 0.019 <0.001 0.006 0.014 0.007 <0.001 <0.001 0.009 <0.001 <0.001 0.013 <0.001 0.006 <0.001

SelfData

SVM
(linear)

Proposed (S) 0.015 0.006 0.032 0.025 0.004 0.038 0.012 0.007 0.032 0.038 0.011 0.004 0.009 0.009

Proposed (H) 0.065 0.031 0.204 0.195 0.013 0.14 0.072 0.058 0.247 0.21 0.061 0.108 0.138 0.061

SVM
(RBF)

Proposed (S) 0.016 0.087 0.042 0.063 0.087 0.108 0.087 0.006 0.147 0.027 0.004 0.066 0.044 0.147

Proposed (H) 0.009 0.013 0.01 0.016 0.013 0.013 0.013 0.003 0.028 0.004 <0.001 0.003 0.045 0.057

RF
Proposed (S) <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Proposed (H) <0.001 <0.001 <0.001 <0.001 <0.001 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

ELM
Proposed (S) <0.001 <0.001 <0.001 0.003 <0.001 <0.001 <0.001 <0.001 0.002 <0.001 <0.001 <0.001 <0.001 <0.001

Proposed (H) <0.001 0.002 <0.001 0.003 <0.001 <0.001 <0.001 <0.001 0.002 <0.001 <0.001 <0.001 <0.001 <0.001

3.4. Performance on AUC and Results Visualization

For a more comprehensive performance evaluation of the proposed algorithm, the
performance of each algorithm on AUC was recorded by using the PSDMTSR dataset. The
results can be seen in Table 7.

Table 7. Performance of feature reduction methods on AUC.

Methods\Classifiers SVM (Linear) SVM (RBF) RF ELM

N_DR 0.5542 0.6109 0.5026 0.5835

Feature
Extraction

PCA 0.5207 0.5953 0.5243 0.5543

KPCA 0.549 0.5969 0.5163 0.4655

LDA 0.5429 0.6141 0.5408 0.5175

LPP(S) 0.5447 0.6281 0.5343 0.5841

LPP(H) 0.5498 0.5859 0.5131 0.5114

LDPP(S) 0.5557 0.6234 0.4722 0.55

LDPP(H) 0.5372 0.5422 0.5259 0.5137

Feature
Selection

mRMR 0.5421 0.6234 0.606 0.4998

ReliefF 0.5879 0.55 0.4775 0.5269

Pvalue 0.5474 0.5281 0.4719 0.5832

SBS 0.5534 0.5203 0.4739 0.5502

SFS 0.5793 0.5094 0.5218 0.5359

SVM_FRE 0.5422 0.6047 0.4864 0.4662

Proposed
Simple minded (S) 0.6655 0.6609 0.5401 0.6087

Heat kernel (H) 0.6082 0.6859 0.5603 0.6455
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It can be seen in Table 7 that the proposed method always has the highest AUC
compared with existing dimensionality reduction methods used for speech data of PD,
which shows that the proposed method can perform better in the classification of PD objects
from speech data. It can be seen that irrespective of classifier and dataset, the proposed
algorithm always gives the highest accuracy.

3.5. Comparison with State-of-the-Art Algorithms

In this section, the proposed algorithm was compared with some of the state-of-the-art
speech feature reduction algorithms. These methods include:

Relief-RF and Relief-SVM [41]: In this study, four feature reduction algorithms (LASSO,
mRMR, Relief, and LLBFS (local learning-based feature selection) were used. These selected
features were mapped to a binary classification response using RF and SVM classifiers
and the best performance was achieved on the relief feature selection method with an
SVM-linear classifier. The feature subsets were selected by using a cross-validation (CV)
approach (only the training set). The CV process was repeated a total of ten times and the
features which appeared most frequently were selected.
mRMR [43]: The primary objective of this study was to compare the efficiency of feature
reduction algorithms. The author used mRMR for feature selection with seven different
classifiers (multilayer Perceptron, SVMs with RBF and linear kernels, logistic regression,
naïve Bayes, K-nearest neighbor, and RF). Moreover, the results were combined using
stacking strategies.
LDA-NN-GA [4]: The author divides the dataset into test and training sets using the LOSO
technique. Afterward, the LDA feature extraction method was used for feature reduction
of the training dataset, and then the training dataset with reduced dimension was fed to the
GA-optimized BP neural network to train the model, and finally, evaluate the performance
using the test dataset.
ReliefF-FC-SVM(RBF) [37]: This technique ranks the features using Fisher criterion (FC)
based ReliefF algorithm. After that, top K features were selected for training and testing
the model using the SVM-RBF classifier.
SFFS-RF [42]: In this study, the author used the sequential floating feature selection (SFFS)
method for feature selection and RF as a classifier.
KPCA-SVM(RBF) [37]: For this study, a feature extraction method KPCA was used as a
feature reduction method and an SVM with RBF kernel was used as a classifier.

It can be seen in Table 8 that irrespective of dataset and classifier, the proposed al-
gorithm performed better compared with state-of-the-art algorithms. For SelfData and
PSDMTSR datasets, the proposed algorithm performed better in all cases. For the PARKIN-
SONS dataset, the proposed algorithm achieved higher accuracy in most of the cases. It was
noticed that the state-of-the-art algorithms did not achieve the same results as described
in corresponding papers. One probable reason might be the difference in experimental
conditions. For instance, since the method of splitting the dataset into training, test, and
validation sets were different, the number of samples used for training the model in this
study was significantly lower compared to the corresponding papers. Moreover, Table 9
describes the significant analysis between proposed and state of the art methods.

3.6. Influence of Parameter on Accuracy

In this section, the influence of penalty-factor and dimensionality on classification
accuracy is analyzed. The PARKINSONS dataset was used for this experiment with the
ELM classifier. The result can be seen in Figure 3.

It can be analyzed from Figure 3 that at the beginning, with the increase of dimension-
ality he classification accuracy increases first and then decreases. On the other hand, at any
fixed dimension, the classification accuracy reduces with the increase of penalty-factor γ.
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Table 8. Accuracy comparison with the state-of-the-art feature reduction methods.

Methods\Datasets PSDMTSR PARKINSONS SelfData

ReliefF
SVM (linear) 0.5938 0.75 0.5833

RF 0.5313 0.725 0.5

mRMR

SVM (linear) 0.5688 0.7167 0.5433

SVM (RBF) 0.5375 0.6667 0.6

RF 0.6188 0.725 0.5267

SFFS-RF 0.6063 0.8083 0.6

ReliefF-FC-SVM(RBF) 0.6138 0.8167 0.6267

LDA-NN-GA 0.6138 0.8083 0.63

KPCA-SVM(RBF) 0.55 0.675 0.5967

Proposed (S)

SVM (linear) 0.7375 0.8167 0.6467

SVM (RBF) 0.6625 0.7583 0.6267

RF 0.6875 0.8167 0.6733

ELM 0.7563 0.85 0.6733

Proposed (H)

SVM (linear) 0.7125 0.85 0.6133

SVM (RBF) 0.6625 0.8083 0.64

RF 0.7063 0.85 0.6567

ELM 0.7625 0.8917 0.6733
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Table 9. p-values of significance analysis between proposed and state-of-the-art feature-reduction methods (α = 0.05).

Dataset Classifiers\Methods
Methods

ReliefF-SVM
(Linear)

ReliefF-SVM
(RBF)

mRMR-SVM
(Linear)

mRMR-SVM
(RBF) mRMR-RF LDA-NN-GA ReliefF-FC-SVM

(EBF) SFFS-RF KPCA-SVM
(RBF)

PARKINSONS

SVM
(linear)

Proposed (S) 0.07 0.057 0.013 <0.001 0.032 0.84 0.07 0.057 0.013

Proposed (H) 0.013 0.002 0.002 <0.001 0.005 0.096 0.013 0.002 0.002

SVM (RBF)
Proposed (S) 0.78 0.309 0.052 <0.001 0.223 0.111 0.78 0.309 0.052

Proposed (H) 0.173 0.023 0.007 <0.001 0.015 1 0.173 0.023 0.007

RF
Proposed (S) 0.07 0.032 0.005 <0.001 0.017 0.678 0.07 0.032 0.005

Proposed (H) 0.013 0.003 <0.001 <0.001 0.003 0.052 0.013 0.003 <0.001

ELM
Proposed (S) 0.009 0.005 0.003 <0.001 0.003 0.138 0.009 0.005 0.003

Proposed (H) 0.003 0.004 <0.001 <0.001 0.001 0.023 0.003 0.004 <0.001

PSDMTSR

SVM
(linear)

Proposed (S) 0.014 <0.001 0.003 <0.001 0.004 0.003 0.024 0.027 0.003

Proposed (H) 0.035 <0.001 0.004 0.002 0.034 0.027 0.052 0.045 0.004

SVM (RBF)
Proposed (S) 0.137 0.011 0.067 0.003 0.111 0.09 0.309 0.235 0.041

Proposed (H) 0.259 0.027 0.034 0.005 0.226 0.177 0.177 0.31 0.027

RF
Proposed (S) 0.022 0.002 0.025 <0.001 0.017 0.01 0.075 0.045 0.016

Proposed (H) 0.014 <0.001 0.006 <0.001 0.013 0.007 0.044 0.029 0.005

ELM
Proposed (S) 0.001 <0.001 <0.001 <0.001 0.003 0.001 0.001 0.001 <0.001

Proposed (H) 0.004 <0.001 <0.001 <0.001 0.007 0.005 0.005 0.003 <0.001

SelfData

SVM
(linear)

Proposed (S) 0.032 <0.001 0.006 0.055 0.003 0.504 0.425 0.396 0.086

Proposed (H) 0.204 <0.001 0.031 0.509 0.01 0.475 0.565 0.8 0.44

SVM (RBF)
Proposed (S) 0.083 <0.001 0.005 0.087 0.011 0.343 1 0.485 0.147

Proposed (H) 0.035 <0.001 0.004 0.013 0.002 0.496 0.373 0.358 0.028

RF
Proposed (S) 0.002 <0.001 <0.001 <0.001 <0.001 0.006 0.003 0.087 0.002

Proposed (H) <0.001 <0.001 <0.001 <0.001 <0.001 0.137 0.095 0.23 <0.001

ELM
Proposed (S) 0.008 <0.001 0.003 <0.001 <0.001 0.083 0.066 0.099 0.002

Proposed (H) 0.006 <0.001 <0.001 0.003 <0.001 0.096 0.077 0.173 0.003

4. Discussion

Speech information processing has been widely used for the diagnosis of Parkinson’s
disease due to the convenience of the collection of speech data and rich information
contained in it. The feature reduction methods can help to improve classification accuracy.
However, since speech samples are affected by the emotional fluctuations of the speakers,
samples often contain high noise and aliasing characteristics which are usually overlooked
by the researchers. To alleviate these problems, we proposed a weighted hybrid feature
reduction embedded with an ensemble learning technique that fully considers the above-
mentioned characteristics.

The experimental results indicate that compared with existing feature reduction
algorithms, the proposed method offers the highest accuracy, precision, and recall which
shows the effectiveness of the proposed method. Moreover, the proposed algorithm also
offers the highest G-mean which shows that it can handle imbalanced data precisely.
The experiments on SelfData which evaluate the treatment of PD patients show that the
classification results of the proposed algorithm on the accuracy, precision, and recall are
better compared with existing feature reduction algorithms. This implies that the proposed
algorithm can effectively differentiate between PD patients with or without treatment.

5. Conclusions

In this study, we developed a weighted hybrid feature reduction embedded with
ensemble learning algorithm and proved its applicability for the detection of patients
suffering from Parkinson’s disease. Our findings acknowledge that compared with existing
feature reduction methods the proposed algorithm helps to attain the highest accuracy
(improved 19% compared with LDPP on SelfData), precision (improved 23% compared
with LDPP on SelfData using ELM), recall (improved 11% compared with LDPP on SelfData
using ELM), and G-mean (improved 17% compared with LDPP on SelfData using ELM).
Moreover, we believe that the proposed weighted hybrid feature reduction embedded
with ensemble learning technique is truly convenient for both the patients and health
organizations, whereas the clinical experts and their dedicated time are required for medical
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assessment. We consider these developments as a key technical milestone that would be a
step towards the computer-supported way out which enhance the convenience for voice
medical treatment of a larger PD population.

Overall, this study still has substantial space for future work. The introduction of
ensemble learning is a source of higher time consumption. For that reason, for the future
studies, we will work to improve the processing time of the proposed method. Moreover,
the comparatively limited data used in this research advises caution to generalize the
existing outcomes that require further verification using new samples before this system
would be used in clinical exercise.
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