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Abstract: Passive power filters (PPFs) are most effective in mitigating harmonic pollution from power
systems; however, the design of PPFs involves several objectives, which makes them a complex
multiple-objective optimization problem. This study proposes a method to achieve an optimal design
of PPFs. We have developed a new multi-objective optimization method based on an artificial bee
colony (ABC) algorithm with a minimum Manhattan distance. Four different types of PPFs, namely,
single-tuned, second-order damped, third-order damped, and C-type damped order filters, and their
characteristics were considered in this study. A series of case studies have been presented to prove
the efficiency and better performance of the proposed method over previous well-known algorithms.

Keywords: artificial bee colony algorithm; harmonic; Pareto front; passive power filters; minimum
Manhattan distance

1. Introduction
1.1. Background

Nonlinear loads such as rectifiers, power converters, computers, televisions, and a mul-
titude of others have become indispensable in the modern world. However, they have some
disadvantages owing to their application, and harmonics are one of them [1,2]. Harmonics
in power systems is a major and typical problem that occurs because of the distortion in the
current and voltage waveforms that use nonlinear loads [1,3–5]. These harmonics cannot
be ignored because of their harmful effects on the system, that is, power loss, equipment
malfunctioning, device deterioration, and other damages [6–12]. Various mitigation tech-
niques have been proposed by researchers to eliminate or reduce these harmonics, some
of which are reactors and chokes, power filters (PF), and higher pulse number converters.
However, PF is still considered as the first choice among them. Generally, three types
of PF are available in the applications for reducing harmonic pollution from the system.
These are passive power filters (PPFs), active power filters (APFs), and hybrid power
filters (HPFs). Some related studies have demonstrated the usefulness of PFs in reducing
harmonics. Among all power filters, passive filters are commonly used because of their
simple circuit structure, low cost, and flexibility [13–15].

The optimization algorithms are not only used for calculating the parameters of PPFs,
but also for evaluating the sizing, sitting, type, number of PPFs [16–19], minimizing the
initial investment costs [20], minimizing the harmonic distortion [21], and maximizing
the reactive power compensation [22]. Therefore, the design of PPF problems involves
multiple objectives with multiple constraints. Several methods have been proposed to
design PFFs over the past two decades. J. C. Das developed a conventional trial-and-error-
based method for designing PPFs [13]. When using the conventional trial-and-error-based
method, it is difficult to obtain optimal solutions with time-consuming tasks. In recent
years, heuristic optimization algorithms such as the genetic algorithm (GA) [16,23,24],

Mathematics 2021, 9, 3187. https://doi.org/10.3390/math9243187 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math9243187
https://doi.org/10.3390/math9243187
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9243187
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9243187?type=check_update&version=1


Mathematics 2021, 9, 3187 2 of 19

particle swarm optimization (PSO) [17,19], and simulated annealing (SA) [25] have been
used for PPF designs.

Other methods have been recently employed, and their results were investigated to
design PPFs [26–31]. Badugu R. et al. developed a class topper optimization (CTO) for
PPF design [26]. The detuning mechanisms that were employed were complex, which in
turn made it difficult to achieve an optimal solution. Wang Y. et al. employed a tuning
filtering method to achieve good results [27]. However, thorough an examination, tuning
was still a limitation for the PPF design. A more advanced tuning method was used via
a dynamic tuning passive filter (DTPF) and it is listed in [28]. Even though this method
offers an efficient harmonic suppression, the need for value-range setting of the harmonic
current coefficient cannot be ignored. In [29,30], research on harmonic mitigation was
conducted using PSO. However, an unbalanced power system is a possibility, owing to the
use of the weight sum method. In [31], a more recent method that uses teaching-learning-
based optimization (TLBO) with Pareto optimality was developed. Although this method
can perform well, the deployment of TLBO and Pareto to obtain the desired PPF design
requires good integration practices between the external archive and fuzzy system for
decision making.

1.2. Aim and Contributions

This study proposes a new multi-objective algorithm, based on the famous artificial
bee colony (ABC) algorithm. ABC is a recently developed meta-heuristic algorithm that
uses the foraging behavior of honey bees, that is, searching for a food source and selecting
the best on the basis of nectar amount. The ABC algorithm was first introduced by Karaboga
in 2005 [32] and its performance was evaluated in 2008 [33]. Although this algorithm has
been applied to several optimization problems [34–41], no research focusing on the PPF
design using the ABC algorithm either in a single-objective or multi-objective optimization
domain is available in the literature. Therefore, a new multi-objective artificial bee colony
(MOABC) algorithm has been proposed to solve the multi-objective problem as a PPF
design. The weight sum method was used to simplify a multi-objective optimization
problem into a single-objective optimization problem [18,19,23]. However, the weight sum
method may cause an imbalance between objective functions. Therefore, Pareto optimality
is introduced with MOABC to make the design of PPFs more efficient. Some research has
shown the use of Pareto optimality to solve multi-objective problems [18,19,42]. In addition,
an external archive was used to store all possible solutions [43–48]. In the experimental
work, a series of case studies are presented to prove the efficiency and superiority of
the proposed method. At first, the proposed method was compared with a previously
well-known SA for three different cases. Secondly, the proposed method was compared
with two other well-known algorithms, namely, the PSO and bat algorithm (BA), in terms
of minimum Manhattan distance (MMD) results [49]. In each case, the results were in favor
of the proposed method, demonstrating better performance and superiority over all the
other methods mentioned previously.

1.3. Paper Organization

This remainder of this paper is organized as follows: Section 2 introduces the PPF
design problem with their objectives and constraints; Section 3 explains the multiple
objectives of the PPF design; Section 4 discusses the proposed algorithm, which is an
original ABC algorithm, MOABC, and the implementation of the proposed method to
the PPFs problem; Section 5 presents the experimental results; and Section 6 presents
the conclusion.

2. Passive Power Filters and Their Characteristics

Power filters are considered most effective in distribution systems for reducing har-
monic pollution, owing to their low cost and simple design. Resistors, inductors, and
capacitors are the passive elements of PPFs. Here, four types of PPFs were used, including
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a single-tuned (ST) filter, second-order damped (SD) filter, third-order damped (TD) filter,
and C-type damped (CD) filter, as depicted in Figure 1. The harmonic impedances of the
PPFs used in this study are listed in Table 1.
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3. Problem Formulation

With the rapid development of new technology, new methods are being developed
to improve power quality, and PPFs are one of them. Different types of PPFs are used to
repress critical harmonics from the power system. From Figure 2a, we can see that the
one-line diagram of a simple system is composed of PPFs, a power supply, and a nonlinear
load. The point of common coupling (PCC) is the point where the generating facility is
connected to the distribution system, and PPFs prevent it from generating harmonics. The
simple system is composed of a power supply, passive filters, and nonlinear loads. Among
them, the nonlinear load can be assumed as the harmonic source; the system network and
the passive filter are regarded as the equivalent impedances, and the remaining linear loads
can be ignored, owing to their large impedances. According to Figure 2b, the relationship
between the system voltage and current can be obtained as follows:

VSh =
ZFh·ZSh

ZFh + Zsh
Ih, (1)

ISh =
ZFh

ZFh + ZSh
Ih, (2)

IFh =
ZSh

ZFh + ZSh
Ih, (3)

where h is the harmonic order; Ih is assumed to be the harmonic current source; IFh and ISh
are the harmonic currents through the filter and power supply terminal, respectively; ZSh
and ZFh are the system impedance and filter impedance, respectively.



Mathematics 2021, 9, 3187 4 of 19

Mathematics 2021, 9, x FOR PEER REVIEW 4 of 19 
 

 

𝐼𝐹ℎ =
𝑍𝑆ℎ

𝑍𝐹ℎ+𝑍𝑆ℎ
𝐼ℎ, (3) 

where h is the harmonic order; 𝐼ℎ is assumed to be the harmonic current source; 𝐼𝐹ℎ and 

𝐼𝑆ℎ  are the harmonic currents through the filter and power supply terminal, 

respectively; 𝑍𝑆ℎ and 𝑍𝐹ℎ are the system impedance and filter impedance, respectively. 

Passive 

Power 

Filters

Non-linear 

Loads

11.4 kV, 60 Hz

PCC

ShI

FhI
hI

 

hI FhZ

FhI

ShV

ShI

ShZ

 

(a) (b) 

Figure 2. Harmonic circuit of a simple system with a nonlinear load and a set of passive power filters 

(a) one-line diagram and (b) equivalent harmonic circuit model. 

3.1. Objective Functions 

The design of PPFs involves several objectives such as minimizing the total harmonic 

distortion of voltage and current, installation cost, and maximizing fundamental reactive 

power compensation. Therefore, the design of PPFs is considered as a multi-objective op-

timization problem. The objectives of this study are discussed below: 

3.1.1. Minimizing Total Harmonic Distortion of Current 

The total harmonic distortion of the current is defined as, 

𝐹1 = 𝑇𝐻𝐷𝐼 =
√(∑ |𝐼ℎ|2𝐻

ℎ=2 )

|𝐼1|
, (4) 

where ℎ  is the harmonic, 𝐻  is the highest harmonic order, |𝐼1|  is the rms of the 

fundamental current, and |𝐼ℎ| is the rms of the harmonic current with integer order. 

3.1.2. Minimizing Total Harmonic Distortion of Voltage 

The total harmonic distortion of the voltage is defined as follows: 

𝐹2 = 𝑇𝐻𝐷𝑉 =
√(∑ |𝑉ℎ|2𝐻

ℎ=2 )

|𝑉1|
, (5) 

where ℎ is the harmonic, 𝐻 is assumed to be the highest harmonic order, |𝑉1| indicates 

the rms of the fundamental part of the voltage, and |𝑉ℎ| is regarded as the rms value of 

the harmonic voltage with integer order. 

3.1.3. Minimizing Initial Investment Cost 

The overall investment cost of a PPF includes the installation cost, power loss, mate-

rials, and maintenance costs. The cost is evaluated through the linear combination of each 

element (R, L, and C), which is used in designing the PPF with a weighting coefficient for 

each element. The initial investment cost can be expressed as follows: 

𝐹3 = 𝐼𝐶 = ∑ 𝛼𝑚
4
𝑚=1 ∑ (𝑘1𝑅𝑚𝑛 + 𝑘2𝐿𝑚𝑛 + 𝑘3𝐶𝑚𝑛)𝑋𝑚

𝑛=1 , (6) 

Figure 2. Harmonic circuit of a simple system with a nonlinear load and a set of passive power filters (a) one-line diagram
and (b) equivalent harmonic circuit model.

3.1. Objective Functions

The design of PPFs involves several objectives such as minimizing the total harmonic
distortion of voltage and current, installation cost, and maximizing fundamental reactive
power compensation. Therefore, the design of PPFs is considered as a multi-objective
optimization problem. The objectives of this study are discussed below:

3.1.1. Minimizing Total Harmonic Distortion of Current

The total harmonic distortion of the current is defined as,

F1 = THDI =

√(
∑H

h=2|Ih|2
)

|I1|
, (4)

where h is the harmonic, H is the highest harmonic order, |I1| is the rms of the fundamental
current, and |Ih| is the rms of the harmonic current with integer order.

3.1.2. Minimizing Total Harmonic Distortion of Voltage

The total harmonic distortion of the voltage is defined as follows:

F2 = THDV =

√(
∑H

h=2|Vh|2
)

|V1|
, (5)

where h is the harmonic, H is assumed to be the highest harmonic order, |V1| indicates the
rms of the fundamental part of the voltage, and |Vh| is regarded as the rms value of the
harmonic voltage with integer order.

3.1.3. Minimizing Initial Investment Cost

The overall investment cost of a PPF includes the installation cost, power loss, materi-
als, and maintenance costs. The cost is evaluated through the linear combination of each
element (R, L, and C), which is used in designing the PPF with a weighting coefficient for
each element. The initial investment cost can be expressed as follows:

F3 = IC =
4

∑
m=1

αm

Xm

∑
n=1

(k1Rmn + k2Lmn + k3Cmn), (6)
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where m is the type of filter and Xm is the number of filters of type m. Rmn, Lmn, and Cmn
are the resistance, inductance, and capacitance of the n-th filter of type m, respectively; k1,
k2, and k3 are the cost-weighting coefficients; αm is considered as the set number coefficient
for the m-type filter [25].

3.1.4. Maximizing Total Fundamental Reactive Power Compensation

PPFs are not only used to solve the problems of harmonic pollution, but also to
compensate for the power factor. The total fundamental reactive power produced by the
filters is expressed as,

QF =
4

∑
m=1

Xm

∑
n=1

QFmn , (7)

where QFmn is the fundamental reactive power produced by the n-th filter of the m-th type.
Because all of the abovementioned objectives concern finding the minimum value, the
objective function can be rewritten as,

F4 = Qmax −QF, (8)

where Qmax is the maximum reactive power compensation.

3.2. Constraints

In constraint optimization problems, every objective has some limitations, called
constraints. The four main objectives have been discussed so far, and their constraints are
provided below.

3.2.1. Total Harmonic Distortion

The total harmonic distortions of currents and voltages are restricted by

g1 = THDI ≤ THDI,max, (9)

g2 = THDV ≤ THDV,max, (10)

where THDI,max and THDV,max are the maximum restriction values for the total harmonic
distortions of the currents and voltages, respectively.

3.2.2. Individual Harmonic Distortion

The individual harmonic distortions for each order harmonic component are re-
stricted by

g3 = HDIh ,
|ISh|
|IS1|

≤ HDIh,max, (11)

g4 = HDVh ,
|VSh|
|VS1|

≤ HDVh,max, (12)

where HDIh,max and HDVh,max are the maximum restriction values for the harmonic current
and voltage at the h-th order, respectively.

3.2.3. Total Fundamental Reactive Power Compensation

PPFs can effectively improve the power factor of the system. However, overcompen-
sation may cause voltage instability and increases the power loss. Therefore, the limitation
of the total fundamental reactive power can be expressed as follows:

g5 = Qmin ≤ QF ≤ Qmax, (13)

where Qmin and Qmax are the minimum and maximum reactive power compensations,
respectively.
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4. Proposed Algorithm
4.1. Single-Objective Artificial Bee Colony Algorithm

ABC is a heuristic optimization algorithm. The original ABC algorithm was first
developed by Karaboga in 2005 [32]. Initially, it was proposed to handle unconstrained
problems [33] but it was later modified to solve the constrained optimization problem [37].
The foraging behavior of honey bees was used to solve optimization problems. ABC is
a straightforward and fast-converging algorithm with fewer parameters required, which
constitutes its unique nature.

ABC is composed of the following three classes of bees: employed, onlooker, and
scout bees. In the first class, the employed bees travel to search for food source positions
randomly. After reaching the food source, it produces a new solution and compares it with
the old one using the greedy selection procedure. Thereafter, they exchange information
regarding the food source, such as path, profitability, and nectar quantity, to the onlooker
bees in the dance area of the hive by waggle dancing. Therefore, the onlooker bees are
assigned to choose the food source position based on the probability proportionate to the
quality of the food source and to update the new one. The higher the fitness, the greater
the chances to be selected. Furthermore, the greedy selection procedure is performed for
the onlooker bees, indicating new and old food sources to maintain a better food source
with high nectar quantity for the next generation.

Consequently, a good quality food source is provided rather than a bad one with low
nectar quantity. After a certain number of trials, if the food source cannot be improved,
it will be rejected and replaced by a randomly selected food source. The employed bee
associated with that food position abandons it and become a scout bee. The scout bee then
starts its food-source search cycle randomly. The possible solution represents the food
source position, and the fitness function addresses the nectar amount of that particular
food position. The number of employed bees (or onlooker bees) is proportional to the
position of the food source.

Three steps are involved in each cycle of the ABC algorithm. First, the possible food-
source positions and their nectar amounts are determined by the employed bee, who shares
their knowledge with the onlooker bee. Second, onlookers select a food source using a
probabilistic approach. Third, the scout bees are initialized and sent to the entirety of the
new food-source positions. During the search process, the best solution obtained is stored
in the external archive.

The main steps of the ABC algorithm are listed below:

1. Initialization: Initialization is the first step in which the population denoted by P
of NS solution (food source position) is initialized. Moreover, each solution xmn
(m = 1, 2, 3, . . . , NS; n = 1, 2, 3, . . . , D) is supposed to be a D-dimensional vector,
where NS is denoted as the number of onlookers/employed bees and D is the number
of parameters for optimization.

2. Employed bee phase: In the starting phase, the employed bees are sent to identify the
positions of food sources and update the feasible food sources in the memory. The
memory is updated to produce a feasible candidate using (14) [32].

vmn = xmn +∅mn(xmn − xkn),n ∈ {1, 2, 3, . . . , D}, k ∈ {1, 2, 3, . . . , NS} ∧ k 6= i, (14)

where vmn is considered as the new optimal position of the food source produced by
the employed bee and ∅mn is supposed to be a random number within the range of
[−1, 1] to modify the production of neighboring food sources near xmn and compare
the positions of the two food sources.

3. Onlooker bee phase: After evaluating the quality (fitness) of the food source position
in the memory using (15), the onlooker bee chooses the best position of the food
source, based on the probability proportional to the quality of food source through
(16) [33]. Update the feasible candidate by the onlooker bees using (14).
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f itm =

{
1/(1 + Fm) i f (Fm ≥ 0)
1 + abs(Fm) i f (Fm < 0)

, (15)

pm =
f itm

∑NS
i=1 f iti

, (16)

where Fm is considered as the objective function value, f itm is supposed to be the
measure of the fitness value of the solution m proportional to the nectar quantity of
the food source, and NS is the number of employed/onlooker bees.

4. Scout bee phase: If the food source cannot be improved via a limited number of trials,
then the food source is discarded. In addition, the associated employed bee becomes
a scout bee to randomly search for a new source of food using (17) [32,33].

xn
m = xn

min + rand[0 , 1](xn
max − xn

min), (17)

where xn
min and xn

max are the lower and upper bounds of each variable for the search
scope, respectively. Here, in every xn

m vector, the range [xmin, xmax] is the boundary of
each component so that the scout bee does not leave the search space.

5. Memory update: Save the best position of food source found so far.
6. Termination check: Finally, a check is performed as to whether the termination

condition is reached; if yes, the algorithm is terminated, and the final solutions
are reported; otherwise, return to the starting search phase, that is, the employed
bee phase.

4.2. Multi-Objective Artificial Bee Colony Algorithm

ABC was initially proposed to solve single-objective optimization problems. However,
most engineering problems are multi-objective problems; therefore, the ABC algorithm
was later extended to solve multi-objective optimization problems. There are several
approaches that can be used to extend a single-objective algorithm to a multi-objective
algorithm. In [34], the ABC algorithm was applied to solve the fixed-point problem
in mathematics. In [40], a Pareto-based ABC was proposed using a crowding distance
archive in NSGA-II to store non-dominated solutions, commonly used in multi-objective
algorithms. Several other publications are also available in which the ABC algorithm is
used to solve multi-objective problems [36,38–41]. In [48], a different Pareto dominance
approach was incorporated into PSO. This algorithm used an external archive to store the
Pareto solution that was used to enrich the exploratory capabilities. The approach using an
external archive provides better performance than approaches using a crowding distance
archive. Some data indicate that the ABC algorithm can maintain an adequate balance
between exploitation (employed bee phase and onlooker bee phase) and exploration (scout
bee phase) [50,51]. Therefore, ABC has a simple concept, good balance, fast convergence,
and fewer control parameters, making the ABC algorithm attractive to many researchers.
In this study, a modified ABC algorithm with Pareto optimality and an external archive
has been proposed to optimize the design of the PPF more efficiently.

4.2.1. Pareto Optimality

In multi-objective optimization problems, a conflict exists between solutions. In other
words, one solution cannot minimize or maximize all objectives simultaneously. Therefore,
Pareto optimality is used.

The set of objective vectors of the Pareto optimal set is called the Pareto front. The
search space of decision variables comprises several hypercubes to obtain an appropriate
Pareto front.

Suppose a multi-objective optimization problem, in which minimization of an objec-
tive function is required. That is,

Minimize Fj(x) (j = 1, 2, . . . , nF), (18)
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subject to
gk(x) ≤ 0

(
k = 1, 2, . . . , ng

)
, (19)

hl(x) = 0 (l = 1, 2, . . . , nh), (20)

where x and Fj(x) are the vector of decision variables and an objective function, respectively;
nF is the number of objective functions; gk(x) and hl(x) are the inequality and equality
constraints, respectively; and ng and nh represent the number of inequality and equality
constraints, respectively.

x = [x1, x2, . . . , xn]
t, x ∈ Ω ⊆ S, (21)

a region where a decision variable x satisfies all the constraints is called a feasible region
and is denoted by set Ω and S is assumed as a search space.

Suppose F1(x1) and F2(x2) are two objective functions:

Fm(x2) ≤ Fm(x1) ∀ m ∈ {1, 2, 3, . . . , k} and (22)

Fm(x2) < Fm(x1) ∃ m ∈ {1, 2, 3, . . . , k}. (23)

If a decision variable x2 ∈ Ω and its function Fm(x2) dominates over all other
Fm(x) functions for each x ∈ Ω, then the vector decision variable x2 belongs to the non-
dominated solution.

4.2.2. External Archive

Multi-objective problems involve non-dominated solutions. Several non-dominated
solutions are produced in each iteration; therefore, it is necessary to store these solutions.
For storing purposes, an external archive was used by researchers using PSO and an
evolutionary algorithm (EA). The size of the external archive was restricted and updated
during each iteration. In practice, a size of 100 solutions was used [48]. The storing solution
process is simple as the solution is stored if, and only if, it is a non-dominated solution
within the archive.

Figure 3 graphically depicts the concept of the selection and removal of the solution
from the external archive, as listed in [52]. If the solution is out of constraints (infeasible), it
will be rejected. If the solution comes under all constraints (feasible) and the archive is not
full, then it will be stored in the archive. If the archive is full, then the feasible solution will
be compared with other solutions. If it dominates one or more solutions, then it will be
stored and the infeasible one will be deleted from the archive.
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Similarly, the archive is filled with all feasible solutions. If, again, a new feasible
solution is produced and the archive is full, then an adaptive grid can be used to solve this
problem [53]. The adaptive grid defined as an objective space with several hypercubes.
If the archive is full and a new non-dominated solution is produced, then the solution
from the overcrowded hypercubes is randomly selected and deleted, as illustrated in
Figure 3. In other words, it leads to a uniform distribution of the solutions in the objective
space, and produces a well-distributed Pareto front.

4.2.3. Modified Artificial Bee Colony Algorithm

1. In the onlooker bee phase, a new search method is proposed for onlooker bees, in
which the first gbest position is determined using (16) by a roulette wheel mechanism
from an external archive. Thereafter, the gbest is used to adjust the moving trajectory
in the next iteration. The position is updated using (24),

vmn = xmn +∅mn(gbest− xmn), (24)

where vmn is the new location of the food source chosen by the onlooker bee, ∅mn
is the random number to adjust the production of neighbor food sources around
xmn, and gbest is the global position vector for onlooker bees with that of the food
source (pi).

2. The random number ∅mn is chosen between [0, 1], which is different from the original
ABC, and it creates a potential search space around gbest.

3. The Pareto approach and the external archive are integrated into the proposed
MOABC algorithm.

After performing all of these modifications, the critical steps of the proposed MOABC
algorithm are as follows:

1. Initialization phase

• Initialize the food source position.
• Define trail counter limit for the population and scout bees.
• Generate the first non-dominated solution.
• Generate external archives by inserting non-dominated solutions.
• Define trial counters for the food sources.
• Assign the food sources to the employed bees.

2. Employed bee phase

• Produce a new position of the food source.
• Evaluate the fitness of the identified food source position.
• If the fitness of the new position is better than the old one, update the new

position, and decrease the trial counter by 1; otherwise, increase it by 1.

3. Onlooker bee phase

• Choose the solution from the population using tournament selection probability.
• For each onlooker bee, produce a new food source position.
• Evaluate the fitness of the candidate food source.
• Apply the greedy selection procedure to choose the best source.
• Save the best solution obtained so far.

4. Scout bee phase

• If the solution cannot be improved after a limited number of trials, then a scout
bee occurs, and a new food source position is produced.

• Evaluate the fitness of the produced food-source position.
• Reset its trial counter.

If a termination condition is reached, then report the final best solution else go to the
employed bee phase.

The flowchart of the proposed MOABC algorithm is shown in Figure 4.



Mathematics 2021, 9, 3187 10 of 19Mathematics 2021, 9, x FOR PEER REVIEW 10 of 19 
 

 

Start

Onlooker Bee Phase: 

All onlooker bee 

distributed?

Initialize bee

Generate first non dominated 

solution and stored in external 

archive

Employed Bee Phase: 

Produce new source position 

by employed bee

Fitness evaluation

Solution selection

Produce new source 

position by onlooker 

bee

Fitness evaluation

Memorize the best food 

source position

Produce new food source 

position randomly by scout 

bee

Termination condition 

reached?

Report the final 

best solution

Yes

No

Yes

No

Scout Bee Phase: If the 

solution abandons send the 

scout bee

 

Figure 4. Flowchart of the proposed MOABC algorithm. 

4.2.4. Multi-Criteria Decision Making 

The selection of a final solution among the Pareto-optimal set is regarded as multiple 

criteria decision making (MCDM) in multi-objective optimization problems. In this study, 

a minimum Manhattan distance (MMD) method was used to select an appropriate solu-

tion from the non-dominated solutions to verify the superiority of the proposed MOABC 

method. 

Figure 4. Flowchart of the proposed MOABC algorithm.



Mathematics 2021, 9, 3187 11 of 19

4.2.4. Multi-Criteria Decision Making

The selection of a final solution among the Pareto-optimal set is regarded as multi-
ple criteria decision making (MCDM) in multi-objective optimization problems. In this
study, a minimum Manhattan distance (MMD) method was used to select an appropri-
ate solution from the non-dominated solutions to verify the superiority of the proposed
MOABC method.

The Manhattan distance is the sum of the absolute differences in Cartesian coordinates
for the distance between two points. The solution that minimizes the distance from the
normalized ideal vector is the MMD, as depicted in Figure 5.
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After normalization, the ideal vector yopt is denoted as,

yopt =
[

`1
L1

`2
L2

· · · `n
Ln

]t
, (25)

`1 = min
x∈N

yn(x) N = {x1, x2, · · · , xM}, (26)

Ln = max
x∈N

yn(x)−min
x∈N

yn(x). (27)

In the set of all feasible solutions, the minimum distance sum between the ideal vector
yopt and the selected solution is defined as the MMD:

min
x∈N

∣∣∣∣∣
∣∣∣∣∣yn(x)− yopt

∣∣∣∣∣
∣∣∣∣∣= min

x∈N

M

∑
n=1

∣∣∣∣∣
∣∣∣∣∣yn(x)

Ln
− `n

Ln

∣∣∣∣∣
∣∣∣∣∣. (28)

5. Simulation Result
5.1. Sample System

A system of 11.4 kV, 60 Hz, which included a harmonic source, was used for the
simulation experiment to prove the efficiency and accuracy of the proposed method. The
system with harmonic loads and various PPFs is shown in the line diagram depicted in
Figure 6, where the nonlinear load is considered as the source of harmonic current, and the
PPFs and the system can be regarded as the equivalent impedance. The remaining linear
loads can be ignored, owing to the large impedance. In this study, three cases considered
the harmonic filter planning. The system network was assumed to be balanced and the
harmonic current, harmonic voltage without filters, and utility tolerance for all three cases
are listed in Table 2, and it is evident that the fifth order harmonic current and current THD
of Case 1 exceeded the tolerance value. In Case 2, the second order and fifth order harmonic
current, fifth order harmonic voltage, current THD, and voltage THD all exceeded the
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tolerances. Moreover, the fifth order harmonic current and the fifth, seventeenth, and
nineteenth harmonic voltages of Case 3 also exceeded the tolerances.
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Table 2. Distributions of harmonic current and voltage without passive power filters.

Cases Harmonic Orders Current, A Voltage, V
IEEE Standard 519

Current, A Current, % Voltage, V Voltage, %

Case 1

1 828.37 6581.79 - - - -
2 7.02 11.18 8.28 1 197.5 3
3 8.64 20.63 33.1 4 197.5 3
4 5.92 18.85 8.28 1 197.5 3
5 45.8 182.3 33.1 4 197.5 3
7 19.0 105.9 33.1 4 197.5 3
11 15.4 134.9 16.6 2 197.5 3
13 9.4 97.28 16.6 2 197.5 3

THD (%) 6.55 4.11 - 5 - 5

Case 2

1 1558.3 6581.79 - - - -
2 19.2 30.57 15.58 1 197.5 3
3 36.8 87.88 62.33 4 197.5 3
4 5.41 17.23 15.58 1 197.5 3
5 98.0 390.1 62.33 4 197.5 3
7 18.0 100.3 62.33 4 197.5 3
11 13.2 124.3 31.17 2 197.5 3
13 12.6 130.4 31.17 2 197.5 3

THD (%) 7.04 6.86 - 5 - 5

Case 3

1 1558.3 6581.79 - - - -
2 9.45 15.05 15.58 1 197.5 3
3 15.6 37.26 62.33 4 197.5 3
4 3.77 12.0 15.58 1 197.5 3
5 62.7 249.6 62.33 4 197.5 3
7 21.0 117.0 62.33 4 197.5 3
11 19.4 166.9 31.17 2 197.5 3
13 17.0 175.9 31.17 2 197.5 3
17 16.0 216.5 23.38 1.5 197.5 3
19 15.5 234.4 23.38 1.5 197.5 3

THD (%) 4.92 7.42 - 5 - 5
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5.2. Setting Parameters

Therefore, the upper limit of the number of filters is set to three, and the passive
filter design is performed with the investment cost set to an unlimited amount. The
fundamental active power (load demand) of Case 1 was 14,590 kW, with a lagging pf
of 0.892. For both Cases 2 and 3, a fundamental active power of 20 MW, with a lagging
pf of 0.65 of fundamental active power was considered. The short-circuit current of the
system was in the range of 8,268 to 19,695 A. The parameters of the MOABC and other
optimization algorithms are listed in Table 3. The trial counter limit L was set to four. The
general trial counter limit L of the original ABC algorithm [32] is related to the number
of onlooker bees and the dimensions of the variables. However, the general trial counter
limit L may decrease the number of scout bees in the scout-bee phase and discourage the
exploration process.

Table 3. Parameters of MOABC and other optimization algorithms.

Parameter MOABC MOPSO MOBA

Number of iterations 200 200 200

Population size 20 20 20

Other related parameters

Trial counter limit,
L = 4

Number of employed bees,
Employzise = 20

Number of onlookers,
Onlookersize = 20
Number of scouts,

Scoutsize = 20

Cognitive parameter,
c1 = 2.0

Social parameter,
c2 = 2.0

Maximum frequency,
Fmax = 2.0

Minimum frequency,
Fmin = 2.0
Constants,

α = 0.9γ = 0.9

The decision variables xi for the optimal design of PPFs include the resistance size,
reactance size, and capacitor size. Therefore, vector xi can be defined as follows:

xi = [L1, C1, R2, L2, C2, R3, L3, C3]
t. (29)

The parameters of the proposed MOABC algorithm and the parameter ranges are
listed in Table 4.

Table 4. Parameters of the proposed MOABC algorithm.

Item Feasible Ranges of Parameters

Number of iterations 200
Population size 20

Number of objectives 4
Number of constraints 22
Size of external archive 100

Number of divisions 30
Maximum initial IC 4000 pu

R for PPFs 0.01–100 Ω
L for PPFs 0.01–50 mH
C for PPFs 0.01–900 µF

5.3. Accuracy Test

The generational distance (GD) was used to determine the accuracy of the proposed
method. GD is a method introduced by Veldhuizen and Lamont [54] to check the closeness
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of any selected method to the true Pareto front. The true Pareto front optimal set is
determined by the Monte Carlo method. GD can be defined as,

GD =

√
∑n

m d2
m

n
, (30)

where dm represents the Euclidean distance between the solutions by the proposed method
and the nearest member of the true Pareto optimal set, and n indicates the number of
final solutions.

The closeness of the solution determined by any method with the solution of the true
Pareto optimal set is inversely proportional to the GD value, that is, it lowers the value of
the GD, to closer to the true Pareto front. If the GD is zero, all solutions are equal to the
solutions of the true Pareto optimal set, which is an ideal case.

MOPSO was used for a comparison with the proposed MOABC. Both algorithms
were executed 50 times with 500 iterations to verify the accuracy of the proposed method.
It is evident from Table 5 that the GD results obtained by MOABC are better than those
obtained by MOPSO. Figure 7 shows that the 100 non-dominated solutions are inserted
in the external archive by MOABC in 42 iterations and 77 iterations are required using
MOPSO. Therefore, MOABC can be considered faster than MOPSO.

Table 5. Generational distance determined by MOABC and MOPSO (50 running times- 500 iterations).

Title
Generational Distance

Best Worst Average Median Std. Dev

MOABC 0.00000123 0.0186 0.0001646 0.0001193 0.000499
MOPSO 0.00000196 0.0258 0.0002459 0.0001707 0.000854
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5.4. Performance Test

Regarding the performance of the proposed method, Table 6 lists the planning results
of PPFs by MOABC compared to the results determined by the simulated algorithm (SA),
which was introduced in [25] for all three cases, with a 0.95 lagging power factor in Case
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1 and 0.97 lagging power factor in both Cases 2 and 3. The resistance (R), inductance (L),
and capacitance (C) values are shown in ohm (Ω), mH, and µF, respectively. The total cost,
THDI, and THDV of PPF design by MOABC were lower than those determined by SA, and
all the results were restrained under the tolerance limit of IEEE standard-519. As can be
seen, the performance of the parameters obtained by the MOABC method is better than
that of the SA method.

Table 6. Comparisons of passive-filter design results of MOABC with SA.

Cases Types of Filters MOABC SA

Case 1
(PF = 0.95)

Single-tuned (F1)
L1 = 13.75 L1 = 15.37
C1 = 22.67 C1 = 20.27

Single-tuned (F2)
L2 = 17.64 L2 = 16.45
C2 = 27.62 C2 = 29.61

THDI (%) 4.70 4.79
THDV (%) 1.29 1.30
Cost (pu) 233.70 234.26

Case 2
(PF = 0.97)

Single-tuned (F1)
L1 = 3.86 L1 = 4.32

C1 = 80.86 C1 = 72.24

C-Type (F2)

R2 = 54.18 R2 = 51.84
L2 = 8.72 L2 = 8.21

C2 = 295.79 C2 = 302.40
C∗ = 806.90 C∗ = 857.03

THDI (%) 4.93 4.95
THDV (%) 1.32 1.35
Cost (pu) 3176.23 3280.66

Case 3
(PF = 0.97)

Single-tuned (F1) L1 = 3.12 L1 = 3.67
C1 = 100.00 C1 = 105.42

3rd-order (F2)
R2 = 18.46 R2 = 15.37
L2 = 6.76 L2 = 4.30

C2 = 54.95 C2 = 35.68

C-Type (F3)

R3 = 24.5 R3 = 40.44
L3 = 39.40 L3 = 15.25

C3 = 209.05 C3 = 218.95
C∗ = 178.58 C∗ = 461.39

THDI (%) 3.87 4.81
THDV (%) 1.89 2.11
Cost (pu) 1827.38 2431.17

In CD PPFs, C∗= 1/
(
ω2

1L
)
.

In Case 1, the fifth harmonic current and THDI exceeded the tolerance limit. Therefore,
two single-tuned PPFs were used for elimination and to improve the reactive power. In
Case 2, second order and fifth order harmonic had to be overcome. Therefore, a single-
tuned PPF was used to mitigate the fifth order harmonic. However, the second order
harmonic was enlarged. If another single-tuned is used to suppress the second order
harmonic, then the system network faces overcompensation. Therefore, a C-type damped
filter was used according to the topologies mentioned in Section 4. In Case 3, the fifth
order harmonic current and seventeenth and nineteenth order harmonic voltages exceeded
the limit tolerances of the IEEE standard. The single-tuned suppressed the fifth harmonic
current, and a third order damped filter was used to eliminate the higher-order harmonic
voltages for greater than the seventeenth order, but it enlarged the lower-order harmonics.
In this situation, a C-type damped order was used to mitigate the second, third and fourth
order harmonic currents. A second order damped filter can also be used instead of a third
order damped filter.

For the MMD results, three cases were examined under four different PPF topologies.
Tables 7–9 demonstrate the MMD results of MOABC with two other algorithms: MOPSO
and MOBA for Cases 1, 2, and 3, respectively. In each case, 100 solutions obtained by
each algorithm were merged, and then the most balanced solution was determined out of
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300 solutions by MMD. The sequence of solutions is as follows: 1–100 (MOABC), 100–200
(MOPSO), and 200–300 (MOBA). Here, Type ‘1’, ‘2’, ‘3’, and ‘4’ denote single tuned PPF,
second-order damped PPF, third-order damped PPF, and C-type damped PPF, respectively.
In each case, the sequence of the most balanced solutions obtained by the MMD was
between 1–100, representing the set of solutions obtained by MOABC. It can be seen that
the performance of MOABC is better than that of MOPSO and MOBA in terms of the
MMD results.

Table 7. MMD result by merging all the three algorithms: MOABC (1–100), MOPSO (101–200), and MOBA (201–300) for
Case 1.

Type of
Filters

Sol.
No.

Parameter
Cost THDI THDV PF

L1 C1 R2 L2 C2 C∗ R3 L3 C3 C∗

1 07 4.13 96.13 204.65 4.85 1.21 0.99

1
35

4.54 68.70
311.24 3.76 1.04 0.991 16.95 28.75

1
67

7.07 44.13
496.85 4.23 1.13 0.992 51.20 10.46 50.00

1
76

8.01 38.95
665.61 4.41 1.18 0.983 48.37 12.36 47.70

Table 8. MMD result by merging all the three algorithms: MOABC (1–100), MOPSO (101–200), and MOBA (201–300) for
Case 2.

Type of
Filters

Sol.
No.

Parameter
Cost THDI THDV PF

L1 C1 R2 L2 C2 C* R3 L3 C3 C*

1
33

3.45 90.35
3461.57 4.80 1.26 0.984 51.31 7.71 310.27 912.61

1
11

2.76 113.11
3651.03 4.85 1.19 0.991 24.36 20.00

4 84.75 8.32 277.42 845.70

1
48

3.51 88.76
3917.31 4.76 1.26 0.992 86.77 34.27 34.49

4 87.85 8.85 273.56 795.05

1
01

3.57 87.28
3983.80 4.58 1.23 0.993 99.91 16.86 53.82

4 81.59 9.76 260.48 720.92

Table 9. MMD result by merging all the three algorithms: MOABC (1–100), MOPSO (101–200), and MOBA (201–300) for
Case 3.

Type of
Filters

Sol.
No.

Parameter
Cost THDI THDV PF

L1 C1 R2 L2 C2 C* R3 L3 C3 C*

1
46

3.23 96.51
913.74 3.63 1.84 0.991 10.40 46.88

2 22.20 10.02 189.74

1
58

3.12 100.00
1345.24 3.83 1.88 0.991 8.69 56.05

3 28.82 19.80 142.50

1
21

3.97 78.48
2078.88 3.84 1.41 0.982 100.0 1.46 42.69

4 24.14 50.00 274.03 140.72

1
66

4.85 64.31
1874.34 3.99 1.63 0.993 25.21 2.14 59.11

4 12.37 47.55 286.64 147.97
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6. Conclusions

In this study, a new MOABC method was proposed to optimize the planning of
PPF design. Four types of PPFs were considered in the optimization problem. Here, the
objective functions of minimizing the total harmonic distortion of current and voltage, total
cost, and of improving the power factor were used. In terms of accuracy, GD was used
to evaluate the accuracy of the results obtained by MOABC and to compare the results
with those obtained by MOPSO. The results indicate that the proposed method is highly
accurate. In terms of performance, MOABC was compared with SA in three different cases.
In each case, the results proved the superior performance of MOABC. In addition, the
MMD obtained by MOABC was compared with the other two well-known metaheuristic
algorithms (MOBA and MOPSO) for three different cases with four different PPF topologies
in each. All the results obtained for MOABC were better than those of the algorithms
mentioned above. Overall, a series of case studies and results have demonstrated the
accuracy, superiority, and better performance of the proposed method, and present the
potential to form PPF designs more efficiently.
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3. Michalec, L.; Jasiński, M.; Sikorski, T.; Leonowicz, Z.; Jasiński, L.; Suresh, V. Impact of Harmonic Currents of Nonlinear Loads on

Power Quality of a Low Voltage Network–Review and Case Study. Energies 2021, 14, 3665. [CrossRef]
4. Manito, A.; Bezerra, U.; Tostes, M.; Matos, E.; Carvalho, C.; Soares, T. Evaluating Harmonic Distortions on Grid Voltages Due to

Multiple Nonlinear Loads Using Artificial Neural Networks. Energies 2018, 11, 3303. [CrossRef]
5. Caicedo, J.; Romero, A.; Zini, H. Frequency domain modeling of nonlinear loads, considering harmonic interaction. In Proceedings

of the 2017 IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA), Bogota, Colombia, 31 May–2 June
2017; pp. 1–6.

6. Gheisarnejad, M.; Mohammadi-Moghadam, H.; Boudjadar, J.; Khooban, M.H. Active power sharing and frequency recovery
control in an islanded microgrid with nonlinear load and nondispatchable DG. IEEE Syst. J. 2019, 14, 1058–1068. [CrossRef]

7. Ismael, S.M.; Aleem, S.H.A.; Abdelaziz, A.Y.; Zobaa, A.F. State-of-the-art of hosting capacity in modern power systems with
distributed generation. Renew. Energy 2019, 130, 1002–1020. [CrossRef]

8. Ali, Z.M.; Diaaeldin, I.M.; Aleem, S.H.E.A.; El-Rafei, A.; Abdelaziz, A.Y.; Jurado, F. Scenario-Based Network Reconfiguration and
Renewable Energy Resources Integration in Large-Scale Distribution Systems Considering Parameters Uncertainty. Mathematics
2021, 9, 26. [CrossRef]

9. Li, D.; Yang, K.; Zhu, Z.Q.; Qin, Y. A Novel Series Power Quality Controller with Reduced Passive Power Filter. IEEE Trans. Ind.
Electron. 2016, 64, 773–784. [CrossRef]

10. Azebaze Mboving, C.S. Investigation on the Work Efficiency of the LC Passive Harmonic Filter Chosen Topologies. Electronics
2021, 10, 896. [CrossRef]

11. Bollen, M.H.; Das, R.; Djokic, S.; Ciufo, P.; Meyer, J.; Rönnberg, S.K.; Zavodam, F. Power Quality Concerns in Implementing Smart
Distribution-Grid Applications. IEEE Trans. Smart Grid 2017, 8, 391–399. [CrossRef]

12. Kalair, A.; Abas, N.; Saleem, Z.; Khan, N. Review of harmonic analysis, modeling and mitigation techniques. Renew. Sustain.
Energy Rev. 2017, 78, 1152–1187. [CrossRef]

http://doi.org/10.1016/j.seta.2021.101566
http://doi.org/10.3390/en14123665
http://doi.org/10.3390/en11123303
http://doi.org/10.1109/JSYST.2019.2927112
http://doi.org/10.1016/j.renene.2018.07.008
http://doi.org/10.3390/math9010026
http://doi.org/10.1109/TIE.2016.2527727
http://doi.org/10.3390/electronics10080896
http://doi.org/10.1109/TSG.2016.2596788
http://doi.org/10.1016/j.rser.2017.04.121


Mathematics 2021, 9, 3187 18 of 19

13. Das, J.C. Passive filters—Potentialities and limitations. IEEE Trans. Ind. Appl. 2004, 40, 232–241. [CrossRef]
14. Ahmed, M.; Nahid-Al-Masood; Aziz, T. An approach of incorporating harmonic mitigation units in an industrial distribution

network with renewable penetration. Energy Rep. 2021, 7, 6273–6291. [CrossRef]
15. Murugan, A.S.S. Meta-Heuristic Firefly Algorithm Based Optimal Design of Passive Harmonic Filter for Harmonic Mitigation.

Int. Res. J. Adv. Sci. Hub 2021, 3, 18–22.
16. Chang, G.W.; Wang, H.L.; Chuang, G.S.; Chu, S.Y. Passive Harmonic Filter Planning in a Power System with Considering

Probabilistic Constraints. IEEE Trans. Power Deliv. 2009, 24, 208–218. [CrossRef]
17. He, N.; Xu, D.G.; Huang, L.N. The Application of Particle Swarm Optimization to Passive and Hybrid Active Power Filter Design.

IEEE Trans. Ind. Electron. 2009, 56, 2841–2851. [CrossRef]
18. Chang, Y.P.; Tseng, W.K.; Tsao, T.F. Application of combined feasible-direction method and genetic algorithm to optimal planning

of harmonic filters considering uncertainty conditions. IEE Proc.-Gener. Transm. Distrib. 2005, 152, 729–736. [CrossRef]
19. Ko, C.N.; Chang, Y.P.; Wu, C.J. A PSO Method With Nonlinear Time-Varying Evolution for Optimal Design of Harmonic Filters.

EEE Trans. Power Syst. 2009, 24, 437–444. [CrossRef]
20. Kawann, C.; Emanuel, A.E. Passive shunt harmonic filters for low and medium voltage: A cost comparison study. IEEE Trans.

Power Syst. 1996, 11, 1825–1831. [CrossRef]
21. Lin, K.P.; Lin, M.H.; Lin, T.P. An advanced computer code for single-tuned harmonic filter design. IEEE Trans. Ind. Appl. 1998, 34,

640–648. [CrossRef]
22. Makram, E.B.; Subramaniam, E.V.; Girgis, A.A.; Catoe, R. Harmonic Filter Design Using Actual Recorded Data. IEEE Trans. Ind.

Appl. 1993, 29, 1176–1183. [CrossRef]
23. Chen, Y.M. Passive filter design using genetic algorithms. IEEE Trans. Ind. Electron. 2003, 50, 202–207. [CrossRef]
24. Chang, G.W.; Wang, H.L.; Chu, S.Y. Strategic placement and sizing of passive filters in a power system for controlling voltage

distortion. IEEE Trans. Power Deliv. 2004, 19, 1204–1211. [CrossRef]
25. Chou, C.J.; Liu, C.W.; Lee, J.Y.; Lee, K.D. Optimal planning of large passive-harmonic-filters set at high voltage level. EEE Trans.

Power Syst. 2000, 15, 433–441. [CrossRef]
26. Badugu, R.; Acharya, D.; Das, D.K.; Prakash, M. Class Topper Optimization Algorithm based Optimum Passive Power Fil-

ter Design for Power System. In Proceedings of the 2021 5th International Conference on Computing Methodologies and
Communication (ICCMC), Erode, India, 8–10 April 2021; pp. 648–652.

27. Wang, Y.; Liu, H.; Yin, K.; Yuan, Y. A Full-Tuned Filtering Method for Dynamic Tuning Passive Filter Power Electronics. J. Control.
Autom. Electr. Syst. 2021, 32, 1771–1781. [CrossRef]

28. Wang, Y.; Yin, K.; Liu, H.; Yuan, Y. A Method for Designing and Optimizing the Electrical Parameters of Dynamic Tuning Passive
Filter. Symmetry 2021, 13, 1115. [CrossRef]

29. Azab, M. Multi-objective design approach of passive filters for single-phase distributed energy grid integration systems using
particle swarm optimization. Energy Rep. 2020, 6, 157–172. [CrossRef]

30. Wang, S.; Ding, X.; Wang, J. Multi-objective optimization design of passive filter based on particle swarm optimization. J. Physics
Conf. Ser. 2020, 1549, 032017. [CrossRef]

31. Yang, N.-C.; Liu, S.-W. Multi-Objective Teaching–Learning-Based Optimization with Pareto Front for Optimal Design of Passive
Power Filters. Energies 2021, 14, 6408. [CrossRef]

32. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report-TR06; Erciyes University: Kayseri,
Turkey, 2005.

33. Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2008, 8, 687–697.
[CrossRef]

34. Mansouri, P.; Asady, B.; Gupta, N. The Bisection-Artificial Bee Colony algorithm to solve Fixed point problems. Appl. Soft Comput.
2015, 26, 143–148. [CrossRef]

35. Benyoucef, A.S.; Chouder, A.; Kara, K.; Silvestre, S.; Sahed, O.A. Artificial bee colony based algorithm for maximum power point
tracking (MPPT) for PV systems operating under partial shaded conditions. Appl. Soft Comput. 2015, 32, 38–48. [CrossRef]

36. Zou, W.P.; Zhu, Y.L.; Chen, H.N.; Zhang, B.W. Solving Multiobjective Optimization Problems Using Artificial Bee Colony
Algorithm. Discret. Dyn. Nat. Soc. 2011, 2011, 569784. [CrossRef]

37. Karaboga, D.; Akay, B. A modified Artificial Bee Colony (ABC) algorithm for constrained optimization problems. Appl. Soft
Comput. 2011, 11, 3021–3031. [CrossRef]

38. Akay, B. Synchronous and asynchronous Pareto-based multi-objective Artificial Bee Colony algorithms. J. Glob. Optim. 2013, 57,
415–445. [CrossRef]

39. Xiang, Y.; Zhou, Y.R. A dynamic multi-colony artificial bee colony algorithm for multi-objective optimization. Appl. Soft Comput.
2015, 35, 766–785. [CrossRef]

40. Akbari, R.; Hedayatzadeh, R.; Ziarati, K.; Hassanizadeh, B. A multi-objective artificial bee colony algorithm. Swarm Evol. Comput.
2012, 2, 39–52. [CrossRef]

41. Xiang, Y.; Zhou, Y.R.; Liu, H.L. An elitism based multi-objective artificial bee colony algorithm. Eur. J. Oper. Res. 2015, 245,
168–193. [CrossRef]

42. Chu, R.F.; Wang, J.C.; Chiang, H.D. Strategic-Planning of Lc Compensators in Nonsinusoidal Distribution-Systems. EEE Trans.
Power Deliv. 1994, 9, 1558–1563. [CrossRef]

http://doi.org/10.1109/TIA.2003.821666
http://doi.org/10.1016/j.egyr.2021.09.072
http://doi.org/10.1109/TPWRD.2008.2005371
http://doi.org/10.1109/Tie.2009.2020739
http://doi.org/10.1049/ip-gtd:20045203
http://doi.org/10.1109/Tpwrs.2008.2004845
http://doi.org/10.1109/59.544649
http://doi.org/10.1109/28.703952
http://doi.org/10.1109/28.259730
http://doi.org/10.1109/TIE.2002.807664
http://doi.org/10.1109/TPWRD.2003.822954
http://doi.org/10.1109/59.852156
http://doi.org/10.1007/s40313-021-00742-9
http://doi.org/10.3390/sym13071115
http://doi.org/10.1016/j.egyr.2019.12.015
http://doi.org/10.1088/1742-6596/1549/3/032017
http://doi.org/10.3390/en14196408
http://doi.org/10.1016/j.asoc.2007.05.007
http://doi.org/10.1016/j.asoc.2014.09.001
http://doi.org/10.1016/j.asoc.2015.03.047
http://doi.org/10.1155/2011/569784
http://doi.org/10.1016/j.asoc.2010.12.001
http://doi.org/10.1007/s10898-012-9993-1
http://doi.org/10.1016/j.asoc.2015.06.033
http://doi.org/10.1016/j.swevo.2011.08.001
http://doi.org/10.1016/j.ejor.2015.03.005
http://doi.org/10.1109/61.311210


Mathematics 2021, 9, 3187 19 of 19

43. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 2002, 6, 182–197. [CrossRef]

44. Knowles, J.D.; Corne, D.W. Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evol. Comput.
2000, 8, 149–172. [CrossRef] [PubMed]

45. Knowles, J.; Corne, D. Properties of an adaptive archiving algorithm for storing nondominated vectors. IEEE Trans. Evol. Comput.
2003, 7, 100–116. [CrossRef]

46. Reyes-Sierra, M.; Coello, C.C. Multi-objective particle swarm optimizers: A survey of the state-of-the-art. Int. J. Comput. Intell.
Res. 2006, 2, 287–308.

47. Coello, C.C.; Lechuga, M.S. MOPSO: A proposal for multiple objective particle swarm optimization. In Proceedings of the 2002
Congress on Evolutionary Computation, Honolulu, HI, USA, 12–17 May 2002; pp. 1051–1056.

48. Coello, C.A.C.; Pulido, G.T.; Lechuga, M.S. Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol.
Comput. 2004, 8, 256–279. [CrossRef]

49. Chiu, W.-Y.; Yen, G.G.; Juan, T.-K. Minimum manhattan distance approach to multiple criteria decision making in multiobjective
optimization problems. IEEE Trans. Evol. Comput. 2016, 20, 972–985. [CrossRef]

50. Mernik, M.; Liu, S.H.; Karaboga, D.; Crepinsek, M. On clarifying misconceptions when comparing variants of the Artificial Bee
Colony Algorithm by offering a new implementation. Inf. Sci. 2015, 291, 115–127. [CrossRef]

51. Xiang, Y.; Peng, Y.M.; Zhong, Y.B.; Chen, Z.Y.; Lu, X.W.; Zhong, X.J. A particle swarm inspired multi-elitist artificial bee colony
algorithm for real-parameter optimization. Comput. Optim. Appl. 2014, 57, 493–516. [CrossRef]

52. Yang, N.C.; Le, M.D. Multi-objective bat algorithm with time-varying inertia weights for optimal design of passive power filters
set. IET Gener. Transm. Distrib. 2015, 9, 644–654. [CrossRef]

53. IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems; IEEE: New York, NY, USA, 1993;
pp. 1–100.

54. Van Veldhuizen, D.A.; Lamont, G.B. Multiobjective Evolutionary Algorithm Research: A History and Analysis. 1998. Available
online: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.8924 (accessed on 1 October 2021).

http://doi.org/10.1109/4235.996017
http://doi.org/10.1162/106365600568167
http://www.ncbi.nlm.nih.gov/pubmed/10843519
http://doi.org/10.1109/TEVC.2003.810755
http://doi.org/10.1109/TEVC.2004.826067
http://doi.org/10.1109/TEVC.2016.2564158
http://doi.org/10.1016/j.ins.2014.08.040
http://doi.org/10.1007/s10589-013-9591-2
http://doi.org/10.1049/iet-gtd.2014.0965
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.8924

	Introduction 
	Background 
	Aim and Contributions 
	Paper Organization 

	Passive Power Filters and Their Characteristics 
	Problem Formulation 
	Objective Functions 
	Minimizing Total Harmonic Distortion of Current 
	Minimizing Total Harmonic Distortion of Voltage 
	Minimizing Initial Investment Cost 
	Maximizing Total Fundamental Reactive Power Compensation 

	Constraints 
	Total Harmonic Distortion 
	Individual Harmonic Distortion 
	Total Fundamental Reactive Power Compensation 


	Proposed Algorithm 
	Single-Objective Artificial Bee Colony Algorithm 
	Multi-Objective Artificial Bee Colony Algorithm 
	Pareto Optimality 
	External Archive 
	Modified Artificial Bee Colony Algorithm 
	Multi-Criteria Decision Making 


	Simulation Result 
	Sample System 
	Setting Parameters 
	Accuracy Test 
	Performance Test 

	Conclusions 
	References

