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Abstract: In this work, we show that neural networks can be represented via the mathematical
theory of quiver representations. More specifically, we prove that a neural network is a quiver
representation with activation functions, a mathematical object that we represent using a network
quiver. Furthermore, we show that network quivers gently adapt to common neural network concepts
such as fully connected layers, convolution operations, residual connections, batch normalization,
pooling operations and even randomly wired neural networks. We show that this mathematical
representation is by no means an approximation of what neural networks are as it exactly matches
reality. This interpretation is algebraic and can be studied with algebraic methods. We also provide
a quiver representation model to understand how a neural network creates representations from
the data. We show that a neural network saves the data as quiver representations, and maps it to a
geometrical space called the moduli space, which is given in terms of the underlying oriented graph of
the network, i.e., its quiver. This results as a consequence of our defined objects and of understanding
how the neural network computes a prediction in a combinatorial and algebraic way. Overall,
representing neural networks through the quiver representation theory leads to 9 consequences and
4 inquiries for future research that we believe are of great interest to better understand what neural
networks are and how they work.

Keywords: neural networks; quiver representations; data representations

1. Introduction

Neural networks have achieved unprecedented performances in almost every area
where machine learning is applicable [1–3]. Throughout its history, computer science
has had several turning points with groundbreaking consequences that unleashed the
power of neural networks. To name a few, one might regard the chain rule backpropaga-
tion [4], the invention of convolutional layers [5] and recurrent models [4], the advent of
low-cost specialized parallel hardware (mostly GPUs) [6] and the exponential growth of
available training data as some of the most important factors behind today’s success of
neural networks.

Ironically, despite our understanding of every atomic element of a neural network
and our capability to successfully train it, it is still difficult with today’s formalism to
understand what makes neural networks so effective. As neural nets increase in size, the
combinatorics between its weights and activation functions makes it impossible (at least
today) to formally answer questions such as: (i) why neural networks (almost) always
converge towards a global minima regardless of their initialization, the data it is trained on
and the associated loss function; (ii) what is the true capacity of a neural net? (iii) what are
the true generalization capabilities of a neural net?

One may hypothesize that the limited understanding of these fundamental concepts
derives from the more or less formal representation that we have of these machines. Since
the 1980s, neural nets have been mostly represented in two ways: (i) a cascade of non-
linear atomic operations (be it, a series of neurons with their activation functions, layers,
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convolution blocks, etc.) often represented graphically (e.g., Figure 3 by He et al. [7]) and
(ii) a point in an N dimensional Euclidean space (where N is the number of weights in the
network) lying on the slope of a loss landscape that an optimizer ought to climb down [8].

In this work, we propose a fundamentally different way to represent neural networks.
Based on quiver representation theory, we provide a new mathematical footing to repre-
sent neural networks as well as the data they process. We show that this mathematical
representation is by no means an approximation of what neural networks are as it tightly
matches reality.

In this paper, we do not focus on how neural networks learn, but rather on the intrinsic
properties of their architectures and their forward pass of data. Therefore providing new
insights on how to understand neural networks. Our mathematical formulation accounts for
the wide variety of architectures there are, and also usages and behaviors of today’s neural
networks. For this, we study the combinatorial and algebraic nature of neural networks by
using ideas coming from the mathematical theory of quiver representations [9,10]. Although
this paper focuses on feed-forward networks, a combinatorial argument on recurrent neural
networks can be made to apply our results to them: the cycles in recurrent neural networks
are only applied a finite number of times, and once unraveled they combinatorially become
networks that feed information in a single direction with shared weights [11].

This paper is based on two observations that expose the algebraic nature of neural
networks and how it is related to quiver representations:

1. When computing a prediction, neural networks are quiver representations together
with activation functions.

2. The forward pass of data through the network is encoded as quiver representations.

Everything else in this work is a mathematical consequence of these two observations.
Our main contributions can be summarized by the following six items:

1. We provide the first explicit link between representations of quivers and neural networks.
2. We show that quiver representations gently adapt to common neural network con-

cepts such as fully connected layers, convolution operations, residual connections,
batch normalization, pooling operations, and any feed-forward architecture, since
this is a universal description of neural networks.

3. We prove that algebraic isomorphisms of neural networks preserve the network function
and obtain, as a corollary, that ReLU networks are positive scale invariant [12–14].

4. We present the theoretical interpretation of data in terms of the architecture of the
neural network and of quiver representations.

5. We mathematically formalize a modified version of the manifold hypothesis [3,11] in
terms of the combinatorial architecture of the network.

6. We provide constructions and results supporting existing intuitions in deep learning
while discarding others, and bring new concepts to the table.

2. Previous Work

In the theoretical description of the deep neural optimization paradigm given by Choro-
manska et al. [15], the authors underline that “clearly the model (neural net) contains several
dependencies as one input is associated with many paths in the network. That poses a major theo-
retical problem in analyzing these models as it is unclear how to account for these dependencies”.
Interestingly, this is exactly what quiver representations are about [9,10,16].

While as far as we know, quiver representation theory has never been used to study
neural networks, some authors have nonetheless used a subset of it, sometimes unbe-
knownst to them. It is the case of the so-called positive scale invariance of ReLU networks
which Dinh et al. [12] used to mathematically prove that most notions of loss flatness cannot
be used directly to explain generalization. This property of ReLU networks has also been
used by Neyshabur et al. [14] to improve the optimization of ReLU networks. In their paper,
they propose the Path-SGD (stochastic gradient descent), which is an approximate gradient
descent method with respect to a path-wise regularizer. Furthermore, Meng et al. [13]
defined a space where points are ReLU networks with the same network function, which
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they use to find better gradient descent paths. In this paper (cf. Theorem 1 and Corollary 2),
we prove that positive scale invariance of ReLU networks is a property derived from
the representation theory of neural networks that we present in the following sections.
We interpret these results as evidence of the algebraic nature of neural networks, as they
exactly match the basic definitions of representation theory (i.e., quiver representations
and morphisms of quiver representations).

Wood and Shawe-Taylor [17] used group representation theory to account for sym-
metries in the layers of a neural network. Our mathematical approach is different since
quiver representations are representations of algebras [9] and not of groups. Besides, Wood
and Shawe-Taylor [17] present architectures that match mathematical objects with nice
properties while we define the objects that model the computations of the neural network.
We prove that quiver representations are more suited to study networks due to their
combinatorial and algebraic nature.

Healy and Caudell [18] mathematically represent neural networks by objects called
categories. However, as mentioned by the authors, their representation is an approximation
of what neural nets are as they do not account for each of their atomic elements. In
contrast, our quiver representation approach includes every computation involved in a
neural network, be it a neural operation (i.e., dot product + activation function), layer
operations (fully connected, convolutional, pooling) as well as batch normalization. As
such, our representation is a universal description of neural networks, i.e., the results and
consequences of this paper apply to all neural networks.

Quiver representations have been used to find lower-dimensional sub-space structures
of datasets [19] without, however, any relation to neural networks. Our interpretation of
data is orthogonal to this one since we look at how neural networks interpret the data in
terms of every single computation they perform.

Following the discussion by S. Arora in his 2018 ICML tutorial [20] on the characteris-
tics of a theory for deep learning, our goal is precisely this. Namely, to provide a theoretical
footing that can validate and formalize certain intuitions about deep neural nets and lead to
new insights and new concepts. One such intuition is related to feature map visualization.
It is well known that feature maps can be visualized into images showing the input signal
characteristics and thus providing intuitions on the behavior of the network and its impact
on an image [21,22]. This notion is strongly supported by our findings. Namely, our data
representation introduced in Section 6 is a thin quiver representation that contains the
network features (i.e., neuron outputs or feature maps) induced by the data. Said otherwise,
our data representation includes both the network structure and the neuron’s inputs and
outputs induced by a forward pass of a single data sample (see Equation (5) in page 19
and the proof of Theorem 2). Our data quiver representations contain every feature map
during a forward pass of data and so it is aligned with the notion of representations in
representation learning [3,11,23].

We show in Section 7 that our data representations lie into a so-called moduli space.
Interestingly, the dimension of the moduli space is the same value that was computed
by Zheng et al. [24] and used to measure the capacity of ReLU networks. They empirically
confirmed that the dimension of the moduli space is directly linked to generalization. Our
results suggest that the findings mentioned above can be generalized to any neural network
via representation theory.

The moduli space also formalizes a modified version of the manifold hypothesis
for the data see [3] (Chapter 5.11.3). This hypothesis states that high-dimensional data
(typically images and text) live on a thin and yet convoluted manifold in their original space.
We show that this data manifold can be mapped to the moduli space while carrying the
feature maps induced by the data, and then it is related to notions appearing in manifold
learning [11,23]. Our results, therefore, create a new bridge between the mathematical
study of these moduli spaces [25–27] and the study of the training dynamics of neural
networks inside these moduli spaces.



Mathematics 2021, 9, 3216 4 of 42

Naive pruning of neural networks [28] where the smallest weights get pruned is also
explained by our interpretation of the data and the moduli space (see consequence 4 on
Section 7.1.2), since the coordinates of the data quiver representations inside the moduli
space are given as a function of the weights of the network and the activation outputs of
each neuron on a forward pass (cf. Equation (5) in page 19).

There exist empirical results where, up to certain restrictions, the activation functions
can be learned [29] and our interpretation of the data supports why this is a good idea in
terms of the moduli space. For further details see Section 7.2.3.

3. Preliminaries of Quiver Representations

Before we show how neural networks are related to quiver representations, we start
by defining the basic concepts of quiver representation theory [9,10,16]. The reader can
find a glossary with all the definitions introduced in this and the next chapters at the end
of this paper.

Definition 1 ([9] (Chapter 2)). A quiver Q is given by a tuple (V , E , s, t) where (V , E) is an
oriented graph with a set of vertices V and a set of oriented edges E , and maps s, t : E → V that
send ε ∈ E to its source vertex s(ε) ∈ V and target vertex t(ε) ∈ V , respectively.

Throughout the present paper, we work only with quivers whose sets of edges and
vertices are finite.

Definition 2 ([9] (Chapter 2)). A source vertex of a quiver Q is a vertex v ∈ V such that there
are no oriented edges ε ∈ E with target t(ε) = v. A sink vertex of a quiver Q is a vertex v ∈ V
such that there are no oriented edges ε ∈ E with source s(ε) = v. A loop in a quiver Q is an
oriented edge ε such that s(ε) = t(ε).

Definition 3 ([9] (Chapter 3)). If Q is a quiver, a quiver representation of Q is given by a pair
of sets

W :=
(
(Wv)v∈V , (Wε)ε∈E

)
where the Wv’s are vector spaces indexed by the vertices of Q, and the Wε’s are linear maps indexed
by the oriented edges of Q, such that for every edge ε ∈ E

Wε : Ws(ε) →Wt(ε).

Figure 1a illustrates a quiver Q while Figure 1b,c are two quiver representations of Q.

(a) (b) (c)

Figure 1. (a) A quiver Q with vertices V = {a, b, c, d} and oriented edges E = {α, β, γ, δ}, where the
source and target maps are defined by s(α) = a, s(β) = b, s(γ) = b, s(δ) = b, t(α) = b, t(β) = c,
t(γ) = d and t(δ) = b. (b) A quiver representation W over Q, where vertices a to d are complex 3D,
2D, 1D and 5D vector spaces, and Wα is a 2× 3 matrix, Wβ is a 1× 2 matrix, Wγ is a 5× 2 matrix and
Wδ is a 2× 2 matrix. (c) Another quiver representation U over Q, where a to d are complex 4D, 1D,
3D and 2D vector spaces, and Uα is a 1× 4 matrix, Uβ is a 3× 1 matrix, Uγ is a 2× 1 matrix and Uδ is
a 1× 1 matrix.
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Definition 4 ([9] (Chapter 3)). Let Q be a quiver and let W and U be two representations of Q.
A morphism of representations τ : W → U is a set of linear maps τ = (τv)v∈V indexed by the
vertices of Q, where τv : Wv → Uv is a linear map such that τt(ε)Wε = Uετs(ε) for every ε ∈ E .

To illustrate this definition, one may consider the quiver Q and its representations W
and U of Figure 1. The morphism between W and U via the linear maps τ are pictured
in Figure 2a. As shown, each τv is a matrix which allows to transform the vector space of
vertex v of W into the vector space of vertex v of U.

(a) (b)

Figure 2. (a) A morphism of representations τ : W → U is given by a family of matrices τ = (τv)v∈V ,
such that τa : C3 → C4, τb : C2 → C, τc : C → C3 and τd : C5 → C2 satisfy that τbWα =

Uατa, τcWβ = Uβτb, τdWγ = Uγτb, τbWδ = Uδτb. (b) Four diagrams showing that the transformations
τv must make them commutative for τ : W → U to be a morphism of representations.

Definition 5. Let Q be a quiver and let W and U be two representations of Q. If there is a morphism
of representations τ : W → U where each τv is an invertible linear map, then W and U are said to
be isomorphic representations.

The previous definition is equivalent to the usual categorical definition of isomor-
phism, see [9] (Chapter 3). Namely, a morphism of representations τ : W → U is an isomor-
phism if there exists a morphism of representations η : U → W such that η ◦ τ = idW and
τ ◦ η = idU . Observe here that the composition of morphisms is defined as a coordinate-
wise composition, indexed by the vertices of the quiver.

In Section 4, we will be working with a particular type of quiver representations,
where the vector space of each vertex is in 1D. These 1D representations are called thin
representations, and the morphisms of representations between thin representations are
easily described.

Definition 6. A thin representation of a quiver Q is a quiver representation W such that Wv =
C for all v ∈ V.

If W is a thin representation of Q, then every linear map Wε is a 1× 1 matrix, so
Wε is given by multiplication with a fixed complex number. We may and will identify
every linear map between one-dimensional spaces with the number whose multiplication
defines it.

Before we move on to neural networks, we will introduce the notion of group and
action of a group.

Definition 7 ([30] (Chapter 1)). A non-empty set G is called a group if there exists a function
· : G× G → G, called the product of the group denoted a · b, such that

• (a · b) · c = a · (b · c) for all a, b, c ∈ G.
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• There exists an element e ∈ G such that e · a = a · e = a for all a ∈ G, called the identity of G.
• For each a ∈ G there exists a−1 ∈ G such that a · a−1 = a−1 · a = e.

For example, the set of non-zero complex numbers C∗ (and also the non-zero real
numbers R∗) with the usual multiplication operation forms a group. Usually, one does
not write the product of the group as a dot and just concatenates the elements to denote
multiplication ab = a · b, as for the product of numbers.

Definition 8 ([30] (Chapter 3)). Let G be a group and let X be a set. We say that there is an
action of G on X if there exists a map · : G× X → X such that

• e · x = x for all x ∈ X, where e ∈ G is the identity.
• a · (b · x) = (ab) · x, for all a, b ∈ G and all x ∈ X.

In our case, G will be a group indexed by the vertices of Q, and the set X will be the
set of thin quiver representations of Q.

Let W be a thin representation of a quiver Q. Given a choice of invertible (non-zero)
linear maps τv : C→ C for every v ∈ V , we are going to construct a thin representation U
such that τ = (τv)v∈V : W → U is an isomorphism of representations. Since U is thin, we
have that Uv = C for all v ∈ V . Let ε : a→ b be an edge of E , we define the group action
as follows,

Uε = Wε ·
τb
τa

. (1)

Thus, for every edge ε ∈ E we get a commutative diagram

Ws(ε) Wt(ε)

Us(ε) Ut(ε).

Wε

Uε

τs(ε) τt(ε)

The construction of the thin representation U from the thin representation W and the
choice of invertible linear maps τ, defines an action on thin representations of a group.
The set of all possible isomorphisms τ = (τv)v∈V of thin representations of Q forms such
a group.

Definition 9. The change of basis group of thin representations over a quiver Q is

G = ∏
v∈V

C∗,

where C∗ denotes the multiplicative group of non-zero complex numbers. That is, the elements of G
are vectors of non-zero complex numbers τ = (τ1, . . . , τn) indexed by the set V of vertices of Q, and
the group operation between two elements τ = (τ1, . . . , τn) and σ = (σ1, . . . , σn) is by definition

τσ := (τ1σ1, . . . , τnσn).

We use the action notation for the action of the group G on thin representations.
Namely, for τ ∈ G of the form τ = (τv)v∈V and a thin representation W of Q, the thin
representation U constructed above is denoted τ ·W.

4. Neural Networks

In this section, we connect the dots between neural networks and the basic definitions
of quiver representation theory that we presented before. However, before we do so,
let us mention that since the vector space of each vertex of a quiver representation is
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defined over the complex numbers, it implies that the weights on the neural networks
that we are to present will also be complex numbers. Despite some papers on complex
neural networks [31], this approach may seem unorthodox. However, the use of complex
numbers is a mathematical pre-requisite for the upcoming notion of moduli space that
we will introduce in Section 7. Observe also, that this does not mean that in practice
neural networks should be based on complex numbers. It only means that neural networks
in practice, which are based upon real numbers, trivially satisfy the condition of being
complex neural networks, and therefore the mathematics derived from using complex
numbers apply to neural networks over real numbers.

For the rest of this paper, we will focus on a special type of quiver Q that we call
network quiver. A network quiver Q has no oriented cycles other than loops. Moreover, a
sub-set of d source vertices of Q are called the input vertices. The source vertices that are
not input vertices are called bias vertices. Let k be the number of all sinks of Q, we call
these the output vertices. All other vertices of Q are called hidden vertices.

Definition 10. A quiver Q is arranged by layers if it can be drawn from left to right arranging
its vertices in columns such that:

• There are no oriented edges from vertices on the right to vertices on the left.
• There are no oriented edges between vertices in the same column, other than loops and edges

from bias vertices.

The first layer on the left, called the input layer, will be formed by the d input vertices. The
last layer on the right, called the output layer, will be formed by the k output vertices. The layers
that are not input nor output layers are called hidden layers. We enumerate the hidden layers from
left to right as 1st hidden layer, 2nd hidden layer, 3rd hidden layer, and so on.

From now on Q will always denote a quiver with d input vertices and k output vertices.

Definition 11. A network quiver Q is a quiver arranged by layers such that:

1. There are no loops on source (i.e., input and bias) nor sink vertices;
2. There is exactly one loop on each hidden vertex.

An example of a network quiver can be found in Figure 3a.

(a) (b)

Figure 3. (a) A network quiver Q whose input layer is given by the vertices a and b, the vertex f is a
bias vertex and there is a skip connection from vertex c to vertex i. Note that we did not label the
edges to lighten the diagram. (b) A neural network over Q where Wα1 , Wα2 . . . , Wδ are linear maps
given by multiplication with a number, and the functions f = ( fc, fd, fe, f f , fg) are the activation
functions (could be sigmoid, tanh, ReLU, ELU, etc.)
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Definition 12. The delooped quiver Q◦ of Q is the quiver obtained by removing all loops of Q.
We denote Q◦ = (V , E◦, s◦, t◦).

When a neural network computes a forward pass (be it a multilayer perceptron, a
convolutional neural network and even a randomly wired neural network [32]), the weight
between two neurons is used to multiply the output signal of the first neuron and the
result is fed to the second neuron. Since multiplying with a number (the weight) is a linear
map, we get that a weight is used as a linear map between two 1D vector spaces during
inference. Therefore the weights of a neural network define a thin quiver representation of
the delooped quiver Q◦ of its network quiver Q, every time it computes a prediction.

When a neural network computes a forward pass, we get a combination of two things:

1. A thin quiver representation.
2. Activation functions.

Definition 13. An activation function is a one variable non-linear function f : C → C
differentiable except in a set of measure zero.

Remark 1. An activation function can, in principle, be linear. Nevertheless, neural network
learning occurs with all its benefits only in the case where activation functions are fundamentally
non-linear. Here, we want to provide a universal language for neural networks, so we will work
with neural networks with non-linear activation functions, unless explicitly stated otherwise, for
example as in our data representations in Section 6.

We will encode the point-wise usage of activation functions as maps assigned to the
loops of a network quiver.

Definition 14. A neural network over a network quiver Q is a pair (W, f ) where W is a thin
representation of the delooped quiver Q◦ and f = ( fv)v∈V are activation functions, assigned to the
loops of Q.

An example of neural network (W, f ) over a network quiver Q can be seen in
Figure 3b. The words neuron and unit refer to the combinatorics of a vertex together
with its activation function in a neural network over a network quiver. The weights of a
neural network (W, f ) are the complex numbers defining the maps Wε for all ε ∈ E .

When computing a prediction, we have to take into account two things:

• The activation function is applied to the sum of all input values of the neuron;
• The activation output of each vertex is multiplied by each weight going out of

that neuron.

Once a network quiver and a neural network (W, f ) are chosen, a decision has to be
made on how to compute with the network. For example, a hidden neuron may compute an
inner product of its inputs followed by the activation function, but others, like max-pooling,
output the maximum of the input values. We account for this by specifying in the next
definition how every type of vertex is used to compute.

Definition 15. Let (W, f ) be a neural network over a network quiver Q and let x ∈ Cd be an input
vector of the network. Denote by ζv the set of edges of Q with target v. The activation output of
the vertex v ∈ V with respect to x after applying a forward pass is denoted a(W, f )v(x) and is
computed as follows:

• If v ∈ V is an input vertex, then a(W, f )v(x) = xv;
• If v ∈ V is a bias vertex, then a(W, f )v(x) = 1;

• If v ∈ V is a hidden vertex, then a(W, f )v(x) = fv

(
∑

α∈ζv

Wαa(W, f )s(α)(x)

)
;

• If v ∈ V is an output vertex, then a(W, f )v(x) = ∑
α∈ζv

Wαa(W, f )s(α)(x);
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• If v ∈ V is a max-pooling vertex, then a(W, f )v(x) = maxα Re
(
Wαa(W, f )s(α)(x)

)
, where

Re denotes the real part of a complex number, and the maximum is taken over all α ∈ E such
that t(α) = v.

We will see in the next chapter how and why average pooling vertices do not require
a different specification on the computation rule, because it can be written in terms of these
same rules.

The previous definition is equivalent to the basic operations of a neural net, which
are affine transformations followed by point-wise non-linear activation functions, see
Appendix A where we clarify this with an example. The advantage of using the combina-
torial expression of Definition 15 is twofold, (i) it allows to represent any architecture, even
randomly wired neural networks [32], and (ii) it allows to simplify the notation on proofs
concerning the network function.

For our purposes, it is convenient to consider no activation functions on the output
vertices. This is consistent with current deep learning practices as one can consider the
activation functions of the output neurons to be part of the loss function (like softmax +
cross-entropy or as done by Dinh et al. [12]).

Definition 16. Let (W, f ) be a neural network over a network quiver Q. The network function
of the neural network is the function

Ψ(W, f ) : Cd → Ck

where the coordinates of Ψ(W, f )(x) are the activation outputs of the output vertices of (W, f )
(often called the “score” of the neural net) with respect to an input vector x ∈ Cd.

The only difference in our approach is the combinatorial expression of Definition 15
which can be seen as a neuron-wise computation, that in practice is performed by lay-
ers for implementation purposes. These expressions will be useful to prove our more
general results.

We now extend the notion of isomorphism of quiver representations to isomorphism
of neural networks. For this, we have to take into account that isomorphisms of quiver
representations carry the commutative diagram conditions given by all the edges in the
quiver, as shown in Figure 2. For neural networks, the activation functions are non-linear,
but this does not prevent us from putting a commutative diagram condition on activation
functions as well. Therefore, an isomorphism of quiver representations acts on a neural
network in the sense of the following definition.

Definition 17. Let (W, f ) and (V, g) be neural networks over the same network quiver Q. A
morphism of neural networks τ : (W, f )→ (V, g) is a morphism of thin quiver representations
τ : W → V such that τv = 1 for all v ∈ V that is not a hidden vertex, and for every hidden vertex
v ∈ V the following diagram is commutative

C C

C C.

fv

τvτv

gv

A morphism of neural networks τ : (W, f ) → (V, g) is an isomorphism of neural net-
works if τ : W → V is an isomorphism of quiver representations. We say that two neural networks
over Q are isomorphic if there exists an isomorphism of neural networks between them.
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Remark 2. The terms ‘network morphism’ [33], ‘isomorphic neural network’ and ‘isomorphic
network structures’ [34,35] have already been used with different approaches. In this work, we will
not refer to any of those terms.

Definition 18. The hidden quiver of Q, denoted by Q̃ = (Ṽ , Ẽ , s̃, t̃), is given by the hidden
vertices Ṽ of Q and all the oriented edges Ẽ between hidden vertices of Q that are not loops.

Said otherwise, Q̃ is the same as the delooped quiver Q◦ but without the source and
sink vertices.

Definition 19. The group of change of basis for neural networks is denoted as

G̃ = ∏
v∈Ṽ

C∗.

An element of the change of basis group G̃ is called a change of basis of the neural network (W, f ).

Note that this group has as many factors as hidden vertices of Q. Given an element
τ̃ ∈ G̃ we can induce τ ∈ G, where G is the change of basis group of thin representations
over the delooped quiver Q◦. We do this by assigning τv = 1 for every v ∈ V that is not a
hidden vertex. Therefore, we will simply write τ for elements of G̃ considered as elements
of G.

The action of the group G̃ on a neural network (W, f ) is defined on a given element
τ ∈ G̃ and a neural network (W, f ) by

τ · (W, f ) = (τ ·W, τ · f ),

where τ ·W is the thin representation such that for each edge ε ∈ E , the linear map(
τ ·W

)
ε
= Wε

τt(ε)

τs(ε)
following the group action of Equation (1), and the activation τ · f on

the hidden vertex v ∈ V is given by

(τ · f )v(x) = τv f
(

x
τv

)
for all x ∈ C. (2)

Observe that (τ ·W, τ · f ) is a neural network such that τ : (W, f ) → (τ ·W, τ · f )
is an isomorphism of neural networks. This leads us to the following theorem, which is
an important corner stone of our paper. Please refer to Appendix A for an illustration of
this proof.

Theorem 1. If τ : (W, f ) → (V, g) is an isomorphism of neural networks, then Ψ(W, f ) =
Ψ(V, g).

Proof. Let τ : (W, f ) → (V, g) be an isomorphism of neural networks over Q and ε :
s(ε) → t(ε) an oriented edge of Q. Considering the group action of Equation (1), if s(ε)

and t(ε) are hidden vertices then Vε = Wε ·
τt(ε)

τs(ε)
. However, if s(ε) is a source vertex, then

τs(ε) = 1 and Vε = Wετt(ε). Additionally, if t(ε) is an output vertex, then τt(ε) = 1 and

Vε =
Wε

τs(ε)
. Furthermore, for every hidden vertex v ∈ Ṽ we get the activation function

gv(z) = τv · fv

(
z
τv

)
for all z ∈ C.

We proceed with a forward pass to compare the activation outputs of both neural
networks with respect to the same input vector. Let x ∈ Cd be the input vector of the
networks, for every source vertex v ∈ V we have
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a(W, f )v(x) = a(V, g)v(x) =
{

xv ∈ C if v is an input neuron,
1 if v is a bias neuron.

(3)

Now let v ∈ V be a vertex in the first hidden layer and ζv the set of edges between the
source vertices and v ∈ V , the activation output of v in (W, f ) is

a(W, f )v(x) = fv

(
∑

ε∈ζv

Wε · a(W, f )s(ε)(x)

)
.

As an illustration, if (W, f ) is the neural network of Figure 3, the source vertices would
be a, b, f , the first hidden layer vertices would be c, d, e and the weights Wε in the previous
equation would be {Wα2 , Wα3} when v = d. We now calculate in (V, g) the activation
output of the same vertex v,

a(V, g)v(x) = τv fv

(
1
τv

∑
ε∈ζv

Vε · a(V, g)s(ε)(x)

)

= τv fv

(
1
τv

∑
ε∈ζv

Wετt(ε) · a(V, g)s(ε)(x)

)

since t(ε) = v, then τt(ε) = τv and

= τv fv

(
∑

ε∈ζv

Wε · a(V, g)s(ε)(x)

)

and since s(ε) is a source vertex, it follows from Equation (3) that a(W, f )s(ε)(x) =
a(V, g)s(ε)(x) and

= τv fv

(
∑

ε∈ζv

Wε · a(W, f )s(ε)(x)

)
= τva(W, f )v(x),

Assume now that v ∈ V is in the second hidden layer (e.g., vertex g or h in Figure 3),
the activation output of v in (V, g) is

a(V, g)v(x) = τv fv

(
1
τv

∑
ε∈ζv

Vε · a(V, g)s(ε)(x)

)

= τv fv

(
1
τv

∑
ε∈ζv

Wετv

τs(ε)
a(V, g)s(ε)(x)

)

= τv fv

(
∑

ε∈ζv

Wε

τs(ε)
a(V, g)s(ε)(x)

)

and since a(V, g)s(ε)(x) = τs(ε)a(W, f )s(ε)(x) from the equation above, then

= τv fv

(
∑

ε∈ζv

Wε

τs(ε)
τs(ε)a(W, f )s(ε)(x)

)

= τv fv

(
∑

ε∈ζv

Wεa(W, f )s(ε)(x)

)
= τva(W, f )v(x).
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Inductively, we obtain that a(V, g)v(x) = τva(W, f )v(x) for every vertex v ∈ V . Finally,
the coordinates of Ψ(W, f )(x) are the activation outputs of (W, f ) on the output vertices,
and analogously for Ψ(V, g)(x). Since τv = 1 for every output vertex v ∈ V , we obtain

Ψ(W, f )(x) = Ψ(V, g)(x)

which proves that an isomorphism between two neural networks (W, f ) and (V, g) pre-
serves the network function.

Remark 3. Max-pooling represents a different operation to obtain the activation output of neurons.
After applying an isomorphism τ to a neural network (W, f ), where the vertex v ∈ V is a max-
pooling vertex we obtain an isomorphic neural network (V, g), whose activation output on vertex v
is given by the following formula:

a(V, g)v(x) =



max
α ∈ E
t(α) = v

Re
(
Vαa(V, g)s(α)(x)

)
if Re(τv) ≥ 0

min
α ∈ E
t(α) = v

Re
(
Vαa(V, g)s(α)(x)

)
if Re(τv) < 0,

and

Vαa(V, g)s(α)(x) = τt(α)Wατ−1
s(α)τs(α)a(W, f )s(α)(x) = τt(α)Wαa(W, f )s(α)(x),

which is the main argument in the proof of the previous theorem, so the result applies to max-pooling.
Note also that max-pooling vertices are positive scale invariant.

4.1. Consequences

Representing a neural network over a network quiver Q by a pair (W, f ) and Theorem 1
has two consequences on neural networks.

4.1.1. Consequence 1

Corollary 1. There are infinitely many neural networks with the same network function, indepen-
dently of the architecture and the activation functions.

If each neuron of a neural network is assigned a change of basis value τv ∈ C, its
weights W can be transformed to another set of weights V following the group action of
Equation (1). Similarly, the activation functions f of that network can be transformed to
other ones g following the group action of Equation (2). For example, if f is ReLU and τv
is a negative real value, then g becomes an inverted-flipped ReLU function, i.e., min(0, x).
From the usual neural network representation stand point, the two neural networks (W, f )
and (V, g) are different as their activation functions f and g are different and their weights
W and V are different. Nonetheless, their function (i.e., the output of the networks given
some input vector x) is rigorously identical. This is true regardless of the structure of the
neural network, its activation functions and weight vector W.

Said otherwise, Theorem 1 implies that there is not a unique neural network with
a given network function and that an [infinite] amount of other neural networks with
different weights and different activation functions have the same network function and
that these other neural networks may be obtained with the change of basis group G̃.

4.1.2. Consequence 2

A weak version of Theorem 1 proves a property of ReLU networks known as positive
scale invariance or positive homogeneity [12,13,36–38]. Positive scale invariance is a prop-
erty of ReLU non-linearities, where the network function remains unchanged if we (for
example) multiply the weights in one layer of a network by a positive factor, and divide
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the weights on the next layer by that same positive factor. Even more, this can be done on a
per neuron basis. Namely, assigning a positive factor r > 0 to a neuron and multiplying
every weight that points to that neuron with r, and dividing every weight that starts on
that neuron by r.

Corollary 2 (Positive Scale Invariance of ReLU Networks). Let (W, f ) be a neural network
over Q over the real numbers where f is the ReLU activation function. Let τ = (τv)v∈V where
τv = 1 if v is not a hidden vertex, and τv > 0 for any other v. Then

τ · (W, f ) = (τ ·W, f ).

As a consequence, (τ ·W, f ) and (W, f ) are isomorphic neural networks. In particular, they
have the same network function, Ψ(τ ·W, f ) = Ψ(W, f ).

Proof. Recall that τ · (W, f ) = (τ ·W, τ · f ). Since ReLU satisfies f (τvx) = τv f (x) for all x

and all τv > 0 and since (τ · f ) corresponds to τv f
(

x
τv

)
at each vertex v as mentioned in

Equation (2), we get that τv f
(

x
τv

)
=

τv

τv
f (x) = f (x) for each vertex v and thus τ · f = f .

Finally, τ · (W, f ) = (τ ·W, τ · f ) = (τ ·W, f ).

We stress that this known result is a consequence of neural networks being pairs
(W, f ) whose structure is governed by representation theory, and therefore exposes the
algebraic and combinatorial nature of neural networks.

5. Architecture

In this section, we first outline the different types of architectures that we consider.
We also show how the commonly used layers for neural networks translate into quiver
representations. Finally, we will present in detail how an isomorphism of neural networks
can be chosen so that the structure of the weights gets preserved.

5.1. Types of Architectures

Definition 20 ([3] (p. 193)). The architecture of a neural network refers to its structure which
accounts for how many units (neurons) it has and how these units are connected together.

For our purposes, we distinguish three types of architectures: combinatorial architec-
ture, weight architecture and activation architecture.

Definition 21. The combinatorial architecture of a neural network is its network quiver. The
weight architecture is given by constraints on how the weights are chosen, and the activation
architecture is the set of activation functions assigned to the loops of the network quiver.

If we consider the neural network of Figure 3, the combinatorial architecture specifies
how the vertices are connected together, the weight architecture on how the weights Wε

are assigned and the activation architecture deals with the activation functions fv.
Two neural networks may have different combinatorial, weight and activation archi-

tecture like ResNet [7] vs. VGGnet [39] for example. Neural network layers may have the
same combinatorial architecture but a different activation and weight architecture. It is the
case for example of a mean pooling layer vs. a convolution layer. While they both encode a
convolution (same combinatorial architecture) they have a different activation architecture
(as opposed to conv layers, mean pooling has no activation function) and a different weight
architecture as the mean pooling weights are fixed, and on conv layers they are shared
across filters. This is what we mean by “constraints” on how the weights are chosen, namely,
weights in conv layers and mean-pooling layers are not chosen freely, as in fully connected
layers. Overall, two neural networks have globally the same architecture if and only if they
share the same combinatorial, weight and activation architectures.



Mathematics 2021, 9, 3216 14 of 42

Additionally, isomorphic neural networks always have the same combinatorial ar-
chitecture, since isomorphisms of neural networks are defined over the same network
quiver. However, an isomorphism of neural networks can change or not the weight and
the activation architecture. We will return to that concept at the end of this section.

5.2. Neural Network Layers

Here, we look at how fully-connected layers, convolutional layers, pooling layers,
batch normalization layers and residual connections are related to the quiver
representation language.

Let V j be the set of vertices on the j-th hidden layer of Q. A fully connected layer
is a hidden layer V j where all vertices on the previous layer are connected to all vertices
in V j. A fully connected layer with bias is a hidden layer V j that puts constraints on the
previous layer V j−1 such that the non-bias vertices of V j−1 are fully connected with the
non-bias vertices of layer V j. A fully connected layer has no constraints on its weight and
activation architecture but impose that the bias vertex has no activation function and not
connected with the vertex of the previous layer. The reader can find an illustration of this
in Figure 4.

(a) (b)

Figure 4. (a) Combinatorial architecture of a fully connected layer, one layer formed by a, b, c and the
other by d, e, f . This architecture has no restrictions on the weight nor the activation architectures.
(b) Two consecutive fully connected layers, first layer connecting a, b with c, d, and the second
connecting c, d with f , g, h and e is a bias vertex. The first without bias and the second with bias. Note
that there is no loop (activation function) on the bias vertex e.

A convolutional layer is a hidden layer V j whose vertices are separated in channels
(or feature maps). The weights are typically organized in filters (Fn)m

n=1, and each Fn is a
tensor made of channels. By “channels”, we mean that the shape of, for example, a 2D
convolution is given by w× h× c, where w is the width, h is the height and c is the number
of channels on the previous layer. A “filter” is given by the weights and edges on a conv
layer whose target lies in the same channel.

As opposed to fully connected layers, convolutional layers have constraints. One
of which is that convolutional layers should be partitioned into channels of the same
cardinality. Each filter Fn produces a channel on the layer V j by a convolution of V j−1 with
the filter Fn. Moreover, a convolution operation has a stride and may use padding.

A convolutional layer also has constraints on its combinatorial and weight architecture.
First, each V j is connected to a sub-set of vertices in the previous layer “in front” of which it
is located. The combinatorial architecture of a conv layer for one feature map is illustrated
in Figure 5a. Second, the weight architecture requires that the weights on the filters repeat
in every sliding of the convolutional window. In other words, the weights of the edges on
a conv layer must be shared across all filters as in Figure 5b.

A conv layer with bias is a hidden layer V j partitioned into channels, where each
channel is obtained by convolution of V j−1 with each filter Fn, n = 1, . . . , m, plus one bias
vertex in layer V j−1 that is connected to every vertex on every channel of V j. The weights
of the edges starting on the bias vertex should repeat within the same channel. Again,
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bias vertices do not have an activation function and are not connected to neurons of the
previous layer.

(a) (b) (c) (d)

Figure 5. (a) Combinatorial architecture of a convolutional and a pooling layer. (b) Weight and
activation architecture of a convolutional layer. (c) Weight and activation architecture of an average
pooling layer. (d) Weight and activation architecture of a max-pooling layer.

The combinatorial architecture of a pooling layer is the same as that of a conv layer,
see Figure 5a. However, since the purpose of that operation is usually to reduce the size
of the previous layer, it contains non-trainable parameters. Thus, pooling layers have a
different weight architecture than the conv layers. Average pooling fixes the weights in a
layer to 1/n where n is the size of the feature map, while max-pooling fixes the weights in a
layer to 1 and outputs the maximum over each window in the previous layer. Additionally,
the activation function of an average and max-pooling layer is the identity function. This
can be appreciated in Figure 5c,d.

Remark 4. Max-pooling layers are compatible with our constructions, but they force us to consider
another operation in the neuron, as was noted in Definition 15.

It is known that max-pooling layers give a small amount of translation invariance at each
level since the precise location of the most active feature detector is discarded, and this produces
doubts about the use of max-pooling layers, see [40,41]. An alternative to this is the use of attention-
based pooling [42], which is a global-average pooling. Our interpretation provides a framework
that supports why these doubts about the use of max-pooling layers exist: they break the algebraic
structure on the computations of a neural network. However, average pooling layers, and therefore
global-average pooling layers, are perfectly consistent with respect to our results since they are given
by fixed weights for any input vector while not requiring specification of another operation.

Batch normalization layers [43] require specifications on the three types of architec-
ture. Their combinatorial architecture is given by two identical consecutive hidden layers
where each neuron on the first is connected to only one neuron on the second, and there is
one bias vertex in each layer. The weight architecture is given by the batch norm operation,

which is x 7→ x− µ

σ2 γ + β where µ is the mean of a batch and σ2 its variance, and γ and β

are learnable parameters. The activation architecture is given by two identity activations.
This can be seen in Figure 6.

Remark 5. The weights µ and σ are not determined until the network is fed with a batch of data.
However, at test time, µ and σ are set to the overall mean and variance computed across the training
data set and thus become normal weights. This does not mean that the architecture of the network
depends on the input vector, but that the way these particular weights are chosen is by obtaining
mean and variance from the data.
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(a) (b)

Figure 6. (a) Combinatorial architecture of a batch normalization layer. (b) Weight and activation
architecture of a batch normalization layer. Observe that vertices b and d are bias vertices, and
therefore the layer computes x 7→ x− µ 7→ (x− µ)(γ/σ2) + β, which is the definition of the batch
norm operation.

The combinatorial architecture of a residual connection [7] requires the existence of
edges in Q that jump over one or more layers. Their weight architecture forces the weights
chosen for those edges to be always equal to 1. We refer to Figure 7 for an illustration of the
architecture of a residual connection.

(a) (b)

Figure 7. (a) Combinatorial architecture of a residual connection. (b) Weight architecture of a
residual connection.

5.3. Architecture Preserved by Isomorphisms

Two isomorphic neural networks can have different weight architectures. Let us
illustrate this with a residual connection. Let Q be the following network quiver

a b c d eα β γ δ

ε

and the neural network (W, f ) over Q given by

C C C C C.

fb fc fd

Wα
Wβ Wγ Wδ

1

Let τb 6= τd be non-zero numbers, we define a change of basis of the neural network
(W, f ) by τ = (1, τb, 1, τd, 1). After applying the action of the change of basis τ · (W, f ) we
obtain an isomorphic neural network given by

C C C C C.

τb · fb fc τd · fd

Wατb Wβ/τb Wγτd Wδ/τd

τb/τd

The neural networks (W, f ) and τ · (W, f ) are isomorphic and therefore they have the
same network function by Theorem 1. However, the neural network (W, f ) has a residual
connection, while τ · (W, f ) does not since the weight on the skip connection is not equal
to 1. Nevertheless, if we take τb = τd, then the change of basis τ′ = (1, τb, 1, τb, 1) will
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produce an isomorphic neural network with a residual connection, and therefore both
neural networks (W, f ) and τ′ · (W, f ) will have the same weight architecture.

The same phenomenon as for residual connections happens for convolutions, where
one has to choose a specific kind of isomorphism to preserve the weight architecture, as
shown in Figure 8. Isomorphisms of neural networks preserve the combinatorial architec-
ture but not necessarily the weight architecture nor the activation architecture.

Remark 6. Note that with the constructions given above any architecture can be written down as a
neural network over a network quiver in the sense of Definition 14, such as multilayer perceptrons,
VGG net, ResNet, DensNet, and so on.

Figure 8. An illustration of a convolutional layer. The black arrows with target g, h, i and j correspond
to the first channel, and the gray arrows with target k, l, m and n correspond to the second channel.
A change of basis τ ∈ G̃ that preserves the weight architecture of this convolutional layer, has to be
of the form τ = (τi)

m
i=a where τg = τh = τi = τj and τk = τl = τm = τn. Note that a convolution is

given by filters which share weights, so if the previous condition is not satisfied, after applying the
change of basis one will obtain weights that are not shared, so the resulting weights will not fit the
definition of a convolution.

5.4. Consequences

As for the previous section, expressing neural network layers through the basic
definitions of quiver representation theory has some consequences. Let us mention two.

5.4.1. Consequence 1

The first consequence derives from the isomorphism of residual layers. It is claimed
by Meng et al. [13] that there is no positive scale invariance across residual blocks. How-
ever, we can see that the quiver representation language allows us to prove that in fact
there is positive scale invariance across residual blocks for ReLU networks. Therefore,
isomorphisms allow to understand that there are far more symmetries on neural networks
than was previously known, as noted in Section 5.3, which can be written as follows:

Corollary 3. There is invariance across residual blocks under isomorphisms of neural networks.

5.4.2. Consequence 2

The second consequence is related to the existence of isomorphisms that preserve
the weight architecture and not the activation architecture. As in Figure 8, a change of
basis τ ∈ G̃, which preserves the weight architecture of this convolutional layer, has to
be of the form τ = (τi)

m
i=a where τg = τh = τi = τj and τk = τl = τm = τn. This is

what Meng et al. [13] do for the particular case of ReLU networks and positive change of
basis (they consider the action of the group ∏v∈Q̃ R>0 on neural networks). Note that if
the change of basis is not chosen in this way, the isomorphism will produce a layer with
different weights in each convolutional filter, and therefore the resulting operation will
not be a convolution with respect to the same filter. While positive scale invariance of
ReLU networks is a special kind of invariance under isomorphisms of neural networks
that preserve both the weight and the activation architecture, we may generalize this
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notion by allowing isomorphisms to change the activation architecture while preserving
the weight architecture.

Definition 22. Let (W, f ) be a neural network and let τ ∈ G̃ be an element of the group of change
of basis of neural networks such that the isomorphic neural network τ · (W, f ) has the same weight
architecture as (W, f ). The teleportation of the neural network (W, f ) with respect to τ is the
neural network τ · (W, f ).

Since teleportation preserves the weight architecture, it follows that the teleportation
of a conv layer is a conv layer, the teleportation of a pooling layer is a pooling layer,
the teleportation of a batch norm layer is a batch norm layer, and the teleportation of
a residual block is a residual block. Teleportation produces a neural network with the
same combinatorial architecture, weight architecture and network function while it may
change the activation architecture. For example, consider a neural network with ReLU
activations and real change of basis. Since ReLU is positive scale invariant, any positive
change of basis will leave ReLU invariant. On the other hand, for a negative change of
basis the activation function changes to min(0, x) and therefore the weight optimization
landscape also changes. This implies that teleportation may change the optimization
problem by changing the activation functions, while preserving the network function,
and the network gets “teleported” to either other place in the same loss landscape (if
the activation functions are not changed) or to a completely different loss landscape (if
activation functions are changed).

6. Data Representations

In machine learning, a data sample is usually represented by a vector, a matrix or
a tensor containing a series of observed variables. However, one may view data from
a different perspective, namely the neuron outputs obtained after a forward pass, also
known as “feature maps” for conv nets [3]. This has been done in the past to visualize what
neurons have learned [11,21,23].

In this section, we propose a mathematical description of the data in terms of the
architecture of the neural network, i.e., the neuron values obtained after a forward pass. We
shall prove that doing so allows to represent data by a quiver representation. Our approach
is different from representation learning [3] (p. 4) because we do not focus on how the
representations are learned but rather on how the representations of the data are encoded
by the forward pass of the neural network.

Definition 23. A labeled data set is given by a finite set D = {(xi, ti)}n
i=1 of pairs such that

xi ∈ Cd is a data vector (could also be a matrix or a tensor) and ti is a target. We can have ti ∈ Ck

for a regression and ti ∈ {C0, C1, . . . , Ck} for a classification.

Let (W, f ) be a neural network over a network quiver Q and a sample (x, t) of a data
set D. When the network processes the input x, the vector x percolates through the edges
and the vertices from the input to the output of the network. As mentioned before, this
results in neuron values (or feature maps) that one can visualize [21]. On its own, the
neuron values are not a quiver representation per se. However, one can combine these
neuron values with their pre-activations and the network weights to obtain a thin quiver
representation. Since that representation derives from the forward pass of x, it is specific
to it. We will evaluate the activation functions in each neuron and then construct with them
a quiver representation for a given input. We stress that this process is not ignoring the
very important non-linearity of the activation functions, so no information of the forward
pass is lost in this interpretation.

Remark 7. Every thin quiver representation V of the delooped quiver Q◦ defines a neural network
over the network quiver Q with identity activations, that we denote (V, 1). We do not claim that
taking identity activation functions for a neural network will result in something good in usual deep
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learning practices. This is only a theoretical trick to manipulate the underlying algebraic objects
we have constructed. As such, we will identify thin quiver representations V with neural networks
with identity activation functions (V, 1).

Our data representation for x is a thin representation that we call W f
x with identity acti-

vations whose function when fed with an input vector of ones 1d := (1, . . . , 1) ∈ Cd satisfies

Ψ(W f
x , 1)(1d) = Ψ(W, f )(x), (4)

where Ψ(W, f )(x) is the score of the network (W, f ) after a forward pass of x.
Recovering W f

x given the forward pass of x through (W, f ) is illustrated in Figure 9a,b.
Let us keep track of the computations of the network in the thin quiver representation W f

x

and remember that at the end, we want the output of the neural network (W f
x , 1) when fed

with the input vector 1d ∈ Cd, to be equal to Ψ(W, f )(x).

(a) (b)

(c)

Figure 9. (a) A neural network (W,f). (b) The induced thin quiver representation W f
x considered as a

neural network (W f
x , 1) and obtained after feed-forwarding x through (W, f ). It can be seen that feed-

forwarding a unit vector 1 through W f
x (i.e., Ψ(W f

x , 1)(1)) gives the same output than feed-forwarding
x through (W, f ) : Ψ(W f

x , 1)(1) = Ψ(W, f )(x). We refer to Theorem 2 for the general case. (c) In the
case Wαx = 0, we can add 1 to the corresponding pre-activation in W f

x to prevent from a division by
zero, while on the next layer we consider Wαx + 1 as the pre-activation.

If ε ∈ E is an oriented edge such that s(ε) ∈ V is a bias vertex, then the computations
of the weight corresponding to ε get encoded as

(
W f

x

)
ε
= Wε. If, on the other hand, s(ε) ∈ V

is an input vertex, then the computations of the weights on the first layer get encoded as(
W f

x

)
ε
= Wεxs(ε), see Figure 9b.

On the second and subsequent layers of the network (W, f ) we encounter activation
functions. Additionally, the weight corresponding to an oriented edge ε in W f

x will have to
cancel the unnecessary computations coming from the previous layer. That is,

(
W f

x

)
ε

has to

be equal to Wε times the activation output of the vertex s(ε) divided by the pre-activation
of s(ε). Overall, W f

x is defined as

(
W f

x

)
ε
=



Wεxs(ε) if s(ε) is an input vertex,
Wε if s(ε) is a bias vertex,

Wε

a(W, f )s(ε)(x)

∑
β∈ζs(ε)

Wβ · a(W, f )s(β)(x)
if s(ε) is a hidden vertex,

(5)

where ζs(ε) is the set of oriented edges of Q with target s(ε). In the case where the activation

function is ReLU, for ε an oriented edge such that s(ε) is a hidden vertex, either
(
W f

x

)
ε
= 0

or
(
W f

x

)
ε
= Wε.
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Remark 8. Observe that the denominator ∑
β∈ζs(ε)

Wβ ·a(W, f )s(β)(x) is the pre-activation of vertex

s(ε) and can be equal to zero. However, the set where this happens is of measure zero. Even in
the case that it turns out to be exactly zero, one can add a number η 6= 0 (for example η = 1)
to make it non-zero and then consider η as the pre-activation of that corresponding neuron, see
Figure 9c. Therefore, we will assume, without loss of generality, that pre-activations of neurons are
always non-zero.

The quiver representation W f
x of the delooped quiver Q◦ accounts for the combinatorics

of the history of all the computations that the neural network (W, f ) performs on a forward
pass given the input x. The main property of the quiver representation W f

x is given by the
following result. A small example of the computation of W f

x and a view into how the next
Theorem works can be found in Appendix B.

Theorem 2. Let (W, f ) be a neural network over Q, let (x, t) be a data sample for (W, f ) and
consider the induced thin quiver representation W f

x of Q◦. The network function of the neural
network (W f

x , 1) satisfies
Ψ(W f

x , 1)(1d) = Ψ(W, f )(x).

Proof. Obviously, both neural networks have different input vectors, that is, 1d for (W f
x , 1)

and x for (W, f ). If v ∈ V is a source vertex, by definition a(W f
x , 1)v(1d) = 1. We will

show that in the other layers, the activation output of a vertex in (W f
x , 1) is equal to the

pre-activation of (W, f ) in that same vertex. Assume that v ∈ V is in the first hidden layer,
let ζbias

v be the set of oriented edges of Q with target v and source vertex a bias vertex,
and let ζ

input
v be the set of oriented edges of Q with target v and source vertex an input

vertex. Then, for every ε ∈ ζv where ζv = ζbias
v ∪ ζ

input
v , we have that a(W f

x , 1)s(ε)(1
d) = 1,

and therefore
a(W f

x , 1)v(1d) = ∑
ε∈ζv

(
W f

x

)
ε
a(W f

x , 1)s(ε)(1
d)

= ∑
ε∈ζv

(
W f

x

)
ε

= ∑
ε∈ζbias

v

(
W f

x

)
ε
+ ∑

ε∈ζ
input
v

(
W f

x

)
ε

= ∑
ε∈ζbias

v

Wε + ∑
ε∈ζ

input
v

Wεxs(ε),

which is the pre-activation of vertex v in (W, f ), i.e., fv

(
a(W f

x , 1)v(1d)
)
= a(W, f )v(x). If

v ∈ V is in the second hidden layer then

a(W f
x , 1)v(1d) = ∑

ε∈ζv

(
W f

x

)
ε
a(W f

x , 1)s(ε)(1
d)

= ∑
ε∈ζv

Wε

a(W, f )s(ε)(x)

∑
β∈ζs(ε)

Wβ · a(W, f )s(β)(x)
a(W f

x , 1)s(ε)(1
d)

since ∑
β∈ζs(ε)

Wβ · a(W, f )s(β)(x) is the pre-activation of vertex s(ε) in (W, f ), by the above

formula we get that ∑
β∈ζs(ε)

Wβ · a(W, f )s(β)(x) = a(W f
x , 1)s(ε)(1

d), and then

a(W f
x , 1)v(1d) = ∑

ε∈ζv

Wεa(W, f )s(ε)(x),
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which is the pre-activation of vertex v in (W, f ) when fed with the input vector x. That is,
fv

(
a(W f

x , 1)v(1d)
)
= a(W, f )v(x). An induction argument gives the desired result since the

output layer has no activation function, and the coordinates of Ψ(W f
x , 1)(1d) and Ψ(W, f )(x)

are the values of the output vertices.

6.1. Consequences

Interpreting data as quiver representations has several consequences.

6.1.1. Consequence 1

The combinatorial architecture of (W, f ) and of (W f
x , 1) are equal, and the weight

architecture of (W f
x , 1) is determined by both the weight and activation architectures of the

neural network (W, f ) when it is fed the input vector x. This means that even though the
network function is non-linear because of the activation functions, all computations of the
forward pass of a network on a given input vector can be arranged into a linear object (the
quiver representation W f

x), while preserving the output of the network, by Theorem 2.
Even more, feature maps and outputs of hidden neurons can be recovered completely

from the quiver representations W f
x , which implies that the notion [11,23] of representation

created by a neural network in deep learning is a mathematical consequence of understanding
data as quiver representations.

It is well known that feature maps can be visualized into images showing the input
signal characteristics and thus providing intuitions on the behavior of the network and its
impact on an image [11,21–23]. This notion is implied by our findings as our thin quiver
representations of data W f

x include both the network structure and the feature maps induced
by the data, expressed by the formula

fv

(
a(W f

x , 1)v(1d)
)
= a(W, f )v(x),

see Equation (5) in page 19 and the proof of Theorem 2.
Practically speaking, it is useless to compute the quiver representation W f

x only to
recover the outputs of hidden neurons, that are even more efficiently computed directly
from the forward pass of data. Nevertheless, the way in which the outputs of hidden
neurons are obtained from the quiver representations W f

x is by forgetting algebraic structure,
more specifically forgetting pieces of the quiver, which is formalized by the notion of
forgetful functors in representation theory. All this implies that the notion of representation
in deep learning is obtained from the quiver representations W f

x by loosing information of
the computations of the neural network.

As such, using a thin quiver representation opens the door to a formal (and less
intuitive) way to understand the interaction between data and the structure of a network,
that takes into account all the combinatorics of the network and not only the activation
outputs of the neurons, as it is currently understood.

6.1.2. Consequence 2

Corollary 4. Let (x, t) and (x′, t′) be data samples for (W, f ). If the quiver representations W f
x and

W f
x′ are isomorphic via G̃ then Ψ(W, f )(x) = Ψ(W, f )(x′).

Proof. The neural networks (W f
x , 1) and (W f

x′ , 1) are isomorphic if and only if the quiver

representations W f
x and W f

x′ are isomorphic via G̃. By the last Theorem and the fact that
isomorphic neural networks have the same network function (Theorem 1) we obtain

Ψ(W, f )(x) = Ψ(W f
x , 1)(1d) = Ψ(W f

x′ , 1)(1d) = Ψ(W, f )(x′).
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By this Corollary and the invariance of the network function under isomorphisms
of the group G̃ (Theorem 1), we obtain that the neural network is representing the data
and the output on (W, f ) as the isomorphism classes

[
W f

x

]
:= {τ · W f

x : τ ∈ G̃} of the

thin quiver representations W f
x under the action of the change of basis group G̃ of neural

networks. This motivates the construction of a space whose points are isomorphism classes
of quiver representations, which is exactly the construction of “moduli space” presented in
the next section.

6.2. Induced Inquiry for Future Research

The language of quiver representations applied to neural networks brings new per-
spectives on their behavior and thus is likely to open doors for future works. Here is one
inquiry for the future.

If a data sample x is represented by a thin quiver representation W f
x , one can gen-

erate an infinite amount of new data representations W f
x′ via G̃ which all have the same

network output, by applying an isomorphism given by τ ∈ G̃ using Equation (1), and
then constructing an input x′ from it that produces such isomorphic quiver representation.
Doing so could have important implications in the field of adversarial attacks and network
fooling [44] where one could generate fake data at will which, when fed to a network, all
have exactly the same output as the original data x. This will require the construction of a
map from quiver representations to the input space, which could be done by using tools
from algebraic geometry to find sections of the map x 7→

[
W f

x

]
, for which the construction

of the moduli space in the next section is necessary, but not sufficient. This leads us to
propose the following question for future research:

“Can the data quiver representations W f
x be translated back to input data?”

Following the same logic, one could use this for data augmentation. Starting from
an annotated dataset D = {(x1, t1), (x2, t2), . . . , (xN , tN)}, one could represent each data
xi by a thin quiver representation : W f

xi , apply an arbitrary number of isomorphisms

to it: {τ1W f
xi , τ2W f

xi , . . . , τMW f
xi} and then convert these representations back to the input

data space.

7. The Moduli Space of a Neural Network

In this section, we propose a modified version of the manifold hypothesis of Goodfel-
low et al. [3] (Section 5.11.3). The original manifold hypothesis claims that the data lie in a
small dimensional manifold inside the input space. We will provide an explicit map from
the input space to the moduli space of a neural network with which the data manifold can
be translated to the moduli space. This will allow the use of mathematical theory for quiver
moduli spaces [25–27] to manifold learning, representation learning and the dynamics of
neural network learning [11,23].

Remark 9. Throughout this section, we assume that all the weights of a neural network and of the
induced data representations W f

x are non-zero. This can be assumed since the set where some of the
weights are zero is of measure zero, and even in the case where it is exactly zero we can add a small
number to it to make it non-zero and at the same time imperceptible to the computations of any
computer, for example, infinitesimally smaller than the machine epsilon.

In order to formalize our manifold hypothesis, we will attach an explicit geometrical
object to every neural network (W, f ) over a network quiver Q, that will contain the
isomorphism classes of the data quiver representations

[
W f

x

]
induced by any kind of

data set D. This geometrical object that we denote dMk(Q̃) is called the moduli space.
The moduli space only depends on the combinatorial architecture of the neural network,
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while the activation and weight architectures of the neural network determine how the
isomorphism classes of the data quiver representations

[
W f

x

]
are distributed inside the

moduli space.
The mathematical objects required to formalize our manifold hypothesis are known as

framed quiver representations. We will follow Reineke [25] for the construction of framed
quiver representations in our particular case of thin representations. Recall that the hidden
quiver Q̃ = (Ṽ , Ẽ , s̃, t̃) of a network quiver Q is the sub-quiver of the delooped quiver Q◦

formed by the hidden vertices Ṽ and the oriented edges Ẽ between hidden vertices. Every
thin representation of the delooped quiver Q◦ induces a thin representation of the hidden
quiver Q̃ by forgetting the oriented edges whose source is an input (or bias) vertex, or the
target is an output vertex.

Definition 24. We call input vertices of Q̃ the vertices of Q̃ that are connected to the input
vertices of Q, and we call output vertices of Q̃ the vertices that are connected to the output vertices
of Q.

Observe that the input vertices of the hidden quiver Q̃ may not all of them be source
vertices, so in the neural network we allow oriented edges from the input layer to deeper
layers in the network. Dually, the output vertices of the hidden quiver Q̃ may not all of
them be sink vertices, so in the neural network we allow oriented edges from any layer to
the output layer.

Remark 10. For the sake of simplicity, we will assume that there are no bias vertices in the quiver
Q. If there are bias vertices in Q, we can consider them as part of the input layer in such a way that
every input vector x ∈ Cd needs to be extended to a vector x′ ∈ Cd+b with its last b coordinates all
equal to 1, where b is the number of bias vertices. All the quiver representation theoretic arguments
made in this section are therefore valid also for neural networks with bias vertices under these
considerations. This also has to do with the fact that the group of change of basis of neural networks
G̃ has no factor corresponding to bias vertices, as the hidden quiver is obtained by removing all
source vertices, not only input vertices.

Let W̃ be a thin representation of Q̃. We fix once and for all a family of vector spaces
{Vv}v∈Ṽ indexed by the vertices of Q̃, given by Vv = Ck when v is an output vertex of Q̃
and Vv = 0 for any other v ∈ Ṽ .

Definition 25 ([25]). A choice of a thin representation W̃ of the hidden quiver and a map hv :
W̃v → Vv for each v ∈ Ṽ determines a pair (W̃, h), where h = {hv}v∈Ṽ , that is known as a
framed quiver representation of Q̃ by the family of vector spaces {Vv}v∈Ṽ .

We can see that hv is equal to the zero map when v is not an output vertex of Q̃, and
hv : C→ Ck for every v output vertex of Q̃.

Dually, we can fix a family of vector spaces {Uv}v∈Ṽ indexed by Ṽ and given by
Uv = Cd when v is an input vertex of Q̃ and Uv = 0 for any other v ∈ Ṽ .

Definition 26 ([25]). A choice of a thin representation W̃ of the hidden quiver and a map `v :
Uv → W̃v for each v ∈ Ṽ determines a pair (W̃, `), where ` = {`v}v∈Ṽ , that is known as a
co-framed quiver representation of Q̃ by the family of vector spaces {Uv}v∈Ṽ .

We can see that `v is the zero map when v is not an input vertex of Q̃, and `v : Cd → C
for every v an input vertex of Q̃.
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Definition 27. A double-framed thin quiver representation is a triple (`, W̃, h) where W̃ is a
thin quiver representation of the hidden quiver, (W̃, h) is a framed representation of Q̃ and (W̃, `)
is a co-framed representation of Q̃.

Remark 11. In representation theory, one does either a framing or a co-framing, and chooses a
stability condition for each one. In our case, we will do both at the same time, and use the definition
of stability given by [25] for framed representations, together with its dual notion of stability for
co-framed representations.

Definition 28. The group of change of basis of double-framed thin quiver representations
is the same group G̃ of change of basis of neural networks.

The action of G̃ on double-framed quiver representations for τ ∈ G̃ is given by

τ · (`, W̃, h) = (τ · `, τ · W̃, τ · h),

where each component of τ · h is given by (τ · h)v := (h1
v/τv, . . . , hk

v/τv), if we express
hv = (h1

v, . . . , hk
v), and each component of τ · ` is given by (τ · `)v := (`1

vτv, . . . , `k
vτv), if we

express `v = (`1
v, . . . , `k

v). Every double-framed thin quiver representation of Q̃ isomorphic
to (`, W̃, h) is of the form τ · (`, W̃, h) for some τ ∈ G̃. In the following theorem, we show
that instead of studying the isomorphism classes

[
W f

x

]
of the thin quiver representations

of the delooped quiver Q◦ induced by the data, we can study the isomorphism classes of
double-framed thin quiver representations of the hidden quiver.

Theorem 3. There exists a bijective correspondence between the set of isomorphism classes [W] via
G̃ of thin representations over the delooped quiver Q◦ and the set of isomorphism classes [(`, W̃, h)]
of double-framed thin quiver representations of Q̃.

Proof. The correspondence between isomorphism classes is due to the equality of the group
of change of basis for neural networks and double-framed thin quiver representations,
since the isomorphism classes are given by the action of the same group. Given a thin
representation W of the delooped quiver, it induces a thin representation W̃ of the hidden
quiver Q̃ by forgetting the input and output layers of Q. Moreover, if we consider the input
vertices of Q as the coordinates of Cd and the output vertices of Q as the coordinates of
Ck, then the weights starting on input vertices of Q define the map ` while the weights
ending on output vertices of Q define the map h. This can be seen in Figure 10. Given a
double-framed thin quiver representation (`, W̃, h), the entries ` (resp., h) are the weights
of a thin representation W starting (resp., ending) on input (resp., output) vertices, while
W̃ defines the hidden weights of W.

Figure 10. An illustration of a double-framed thin quiver representation (`, W̃, h). The boxes define
the vector spaces of the framing and co-framing, given by Cd and Ck, respectively.
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From now on, we will identify a double-framed thin quiver representation (`, W̃, h)
with the thin representation W of the delooped quiver Q◦ defined by (`, W̃, h) as in the
proof of the last theorem. We will also identify the isomorphism classes

[W] =
[
(`, W̃, h)

]
,

where the symbol on the left means the isomorphism class of the thin representation W
under the action of G̃, and the one on the right is the isomorphism class of the double-
framed thin quiver representation (`, W̃, h).

One would like to study the space of all isomorphism classes of double-framed thin
representations of the delooped quiver. However, it is well known that this space does
not have a good topology [45]. Therefore, one considers the space of isomorphism classes
of stable double-framed thin quiver representations instead of all quiver representations,
which can be shown to have a much richer topological and geometrical structure. In order
to be stable, a representation has to satisfy a stability condition that is given in terms of its
sub-representations. We will prove that the data representations W f

x are stable in this sense,
and to do so we will now introduce the necessary definitions.

Definition 29 ([10] (p. 14)). Let W be a thin representation of the delooped quiver Q◦ of a network
quiver Q. A sub-representation of W is a representation U of Q◦ such that there is a morphism of
representations τ : U →W where each map τv is an injective map.

Definition 30. The zero representation of Q is the representation denoted 0 where every vector
space assigned to every vertex is the zero vector space, and therefore every linear map in it is
also zero.

Note that if U is a quiver representation, then the zero representation 0 is a sub-
representation of U since τv = 0 is an injective map in this case.

We can see from Figure 11 that the combinatorics of the quiver are related to the
existence of sub-representations. Therefore, we explain now how to use the combinatorics
of the quiver to prove stability of our data-representations W f

x .

(a) (b) (c)

Figure 11. (a) A quiver Q. (b) A diagram showing a quiver representation of Q at the bottom and a
sub-representation at the top together with the morphism of representations τ from Definition 29
given by dotted oriented edges. (c) A diagram showing a quiver representation of Q at the bottom
and another one at the top. The representation at the top is not a sub-representation of the bottom
representation because there is no possible choice of morphism of representations τ that is injective
in every vertex.

Given a double-framed thin quiver representation (`, W̃, h), the image of the map `
lies inside the representation W̃. The map ` is given by a family of maps indexed by the
vertices of the hidden quiver Q̃, namely, ` = {`v : Cnv → W̃v | v ∈ Ṽ}. Recall that nv = 0 if
v is not an input vertex of the hidden quiver Q̃, and nv = d when v is an input vertex of Q̃.
The image of ` is by definition a family of vector spaces indexed by the hidden quiver Q̃,
given by

Im(`) =
(

Im(`)v
)

v∈Ṽ where Im(`)v ⊂ W̃v.

By definition, Im(`)v = {z ∈ W̃v = C | `v(w) = z for some w ∈ Cnv}. Recall that we
will interpret the data quiver representations W f

x as double-framed representations, and that
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W f
x respects the output of the network (W, f ) when it is fed the input vector x. According to

Equation (5), the weights in the input layer of W f
x are given in terms of the weights in the

input layer of the network W and the input vector x. Therefore, only on a set of measure
zero we have that some of the weights in the input layer of W f

x are zero, so we can assume,
without loss of generality, that the weights on the input layer of W f

x are all non-zero.
Dually, the kernel of the map h lies inside the representation W̃. The map h is given by

a family of maps indexed by the vertices of the hidden quiver Q̃, namely h = {hv : W̃v →
Cmv | v ∈ Ṽ}. Recall that mv = 0 if v is not an output vertex of the hidden quiver Q̃, and
mv = k when v is an output vertex of Q̃. Therefore, the kernel of h is by definition a family
of vector spaces indexed by the hidden quiver Q̃. That is,

ker(h) =
(
ker(h)v

)
v∈Ṽ where ker(h)v ⊂ W̃v.

By definition ker(h)v = {z ∈ W̃v | hv(z) = 0}. The set where all of hv are equal to zero
is of measure zero, and even in the case where it is exactly zero we can add a very small
number to every coordinate of hv to make it non-zero and that the output of the network
does not change significantly. Thus, we can assume, without loss of generality, that all the
maps hv are non-zero for every output vertex v of Q̃.

Definition 31. A double-framed thin quiver representation (`, W̃, h) is stable if the following two
conditions are satisfied:

1. The only sub-representation U of W̃ which is contained in ker(h) is the zero sub-representation, and
2. The only sub-representation U of W̃ that contains Im(`) is W̃.

Theorem 4. Let (W, f ) be a neural network and let (x, t) be a data sample for (W, f ). Then the
double-framed thin quiver representation W f

x is stable.

Proof. We express W f
x = (`, W̃, h) as in Theorem 3. As explained before Definition 31, we

can assume, without loss of generality, that for every input vertex v of Q̃ the map `v is
non-zero, and that for every output vertex v of Q̃ the map hv is non-zero.

We have that hv : C → Ck is a linear map, so its kernel is either 0 or C. However,
Ker(hv) = C if and only if hv = 0, and since hv 6= 0 we get that Ker(hv) = 0 and, as in
Figure 11, after the combinatorics of quiver representations, there is no sub-representation
of W̃ with all its factors corresponding to output vertices of Q̃, other than the zero represen-
tation. Since the combinatorics of network quivers forces a sub-representation contained
in ker(h) to be the zero sub-representation, we obtain the first condition for stability of
double-framed thin quiver representations.

Dually, we have that `v : Cd → C is a linear map, so its image is either 0 or C.
However, Im(`v) = 0 if and only if `v = 0, and since `v 6= 0 we get that Im(`v) = C
and, as in Figure 11, there is no sub-representation of W̃ that contains Im(`) other than W̃.
Therefore, the only sub-representation of W̃ that contains Im(`) is W̃.

Thus, W f
x = (`, W̃, h) is a stable double-framed thin quiver representation of the hidden

quiver Q̃.

Denote by dRk(Q̃) the space of all double-framed thin quiver representations.

Definition 32. The moduli space of stable double-framed thin quiver representations of Q̃ is
by definition

dMk(Q̃) :=
{
[V] : V ∈ dRk(Q̃) is stable

}
.

Note that the moduli space depends on the hidden quiver Q̃ and the chosen vector
spaces from which one double-frames the thin representations.
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Given a neural network (W, f ) and an input vector x ∈ Cd, we can define a map

ϕ(W, f ) : Cd → dRk(Q̃)

x 7→ W f
x .

By the last theorem, in the case where all the weights of W f
x are non-zero, this map

takes values in the moduli space which parametrizes isomorphism classes of stable double-
framed thin quiver representations

ϕ(W, f ) : Cd → dMk(Q̃).

Remark 12. For ReLU activations one can produce representations with some weights
(
W f

x

)
ε
= 0.

However, note that these representations W f
x can be arbitrarily approximated by representations

with non-zero weights. Nevertheless, the map ϕ(W, f ) with values in dRk(Q̃) still decomposes the
network function as in Consequence 1 below.

The following result is a particular case of Nakajima [45]’stheorem, generalized for
double-framings and restricted to thin representations, combined with Reineke [25]’s
calculation of framed quiver moduli space dimension adjusted for double-framings (see
Appendix C for details about the computation of this dimension).

Theorem 5. Let Q be a network quiver. There exists a geometric quotient dMk(Q̃) by the action
of the group G̃, called the moduli space of stable double-framed thin quiver representations of Q̃.
Moreover, dMk(Q̃) is non-empty and its complex dimension is

dimC
(

dMk(Q̃)
)
= #E◦ − #Ṽ .

In short, the dimension of the moduli space of the hidden quiver Q̃ equals the number of edges of Q◦

minus the number of hidden vertices.

Remark 13. The mathematical existence of the moduli space [25,45] depends on two things,

• the neural networks and the data may be build upon the real numbers, but we are considering
them over the complex numbers, and

• the change of basis group of neural networks G̃ is the change of basis group of thin quiver
representations of Q̃, which is a reductive group.

One may try to study instead the space whose points are isomorphism classes given by the
action of the sub-group H of the change of basis group G̃, whose action preserves both the weight
and the activation architectures. By doing so we obtain a group H that is not reductive, which gets
in the way of the construction, and therefore the existence, of the moduli space. This happens even in
the case of ReLU activation.

Finally, let us underline that the map ϕ(W, f ) from the input space to the representa-
tion space (i) takes values in the moduli space when all weights of the representations W f

x
are non-zero, and (ii) may or may not be 1-1. Even if ϕ(W, f ) is not 1-1, all the results in
this work still hold. The most important implication of the existence of the map ϕ(W, f ) is
our Consequence 1 below, which does not depend on ϕ(W, f ) being 1-1.

7.1. Consequences

The existence of the moduli space of a neural network has the following consequences.
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7.1.1. Consequence 1

The moduli space dMk(Q̃) as a set is given by

dMk(Q̃) =
{
[V] : V ∈ dRk(Q̃) is stable

}
.

That is, the points of the moduli space are the isomorphism classes of (stable) double-
framed thin quiver representations of Q̃ over the action of the change of basis group G̃ of
neural networks. Given any point in the moduli space [V] we can define

Ψ̂[V] := Ψ(V, 1)(1d)

since the network function is invariant under isomorphisms, which gives a map

Ψ̂ :d Mk(Q̃)→ Ck.

Furthermore, given a neural network (W, f ), we define a map ϕ(W, f ) : Cd →d
Mk(Q̃) by

ϕ(W, f )(x) :=
[
W f

x

]
∈ dMk(Q̃).

Corollary 5. The network function of any neural network (W, f ) is decomposed as

Ψ(W, f ) = Ψ̂ ◦ ϕ(W, f ).

Proof. This is a consequence of Theorem 2 since for any x ∈ C we have

Ψ̂ ◦ ϕ(W, f )(x) = Ψ̂
[
W f

x

]
= Ψ(W f

x , 1)(1d) = Ψ(W, f )(x).

This implies that any decision of any neural network passes through the moduli
space (and the representation space), and this fact is independent of the architecture, the
activation function, the data and the task.

7.1.2. Consequence 2

Let (W, f ) be a neural network over Q and let (x, t) be a data sample. If
(
W f

x

)
ε
= 0,

then any other quiver representation V of the delooped quiver Q◦ that is isomorphic to W f
x

has Vε = 0. Therefore, if in a dataset {(xi, ti)}N
i=1 the majority of samples (x, t) such that

for a specific edge ε ∈ Q◦ the corresponding weight on W f
x is zero, then the coordinates of[

W f
x

]
inside the moduli space corresponding to ε are not used for computations. Therefore,

a projection of those coordinates to zero corresponds to the notion of pruning of neural
networks, that is forcing to zero the smaller weights on a network [28]. From Equation (5)
in page 19, we can see that this interpretation of the data explains why naive pruning
works. Namely, if one of the weights in the neural network (W, f ) is small, then so does
the corresponding weight in W f

x for any input x. Since the coordinates of W f
x are given in

function of the weights of (W, f ), by Equation (5) in page 23 and the previous consequence,
a small weight of (W, f ) sends inputs x to representations W f

x with some coordinates equal
to zero in the moduli space. If this happens for a big proportion of the samples in the
dataset, then the network (W, f ) is not using all of the coordinates in the moduli space to
represent its data in the form of the map ϕ(W, f ) : Cd →d Mk(Q̃).

7.1.3. Consequence 3

LetM be the data manifold in the input space of a neural network (W, f ). The map
ϕ(W, f ) takesM ⊂ Cd to ϕ(W, f )(M) ⊂ dMk(Q̃). The subset ϕ(W, f )(M) generates a
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sub-manifold of the moduli space (as it is well known in topology [46]) that parametrizes
all possible outputs that the neural network (W, f ) can produce from inputs on the data
manifoldM. This means that the geometry of the data manifoldM has been translated
into the moduli space dMk(Q̃), and this implies that the mathematical knowledge [25–27]
that we have of the geometry of the moduli spaces dMk(Q̃) can be used to understand the
dynamics of neural network training, due to the universality of the description of neural
networks we have provided.

7.2. Induced Inquiries for Future Research
7.2.1. Inquiry 1

Following Consequence 1, one would like to look for correlations between the dimen-
sion of the moduli space and properties of neural networks. The dimension of the moduli
space is equal to the number of basis paths in ReLU networks found by Zheng et al. [24],
where they empirically confirm that it is a good measure for generalization. This number
was also obtained as the rank of a structure matrix for paths in a ReLU network [13],
however, they put restrictions on the architecture of the network to compute it. As we
noted before, the network function of any neural network passes through the moduli space,
where the data quiver representations W f

x lie, so the dimension of the moduli space could
be used to quantify the capacity of neural networks in general.

7.2.2. Inquiry 2

We can use the moduli space to formulate what training does to the data quiver
representations. Training a neural network through gradient descent generates an iterative
sequence of neural networks (W1, f ), (W2, f ), . . . , (Wm, f ) where m is the total number of
training iterations. For each gradient descent iteration i = 1, . . . , m we have

Im
(

ϕ(Wi, f )
)
⊂ dMk(Q̃).

The moduli space is given only in terms of the combinatorial architecture of the
neural network, while the weight and activation architectures determine how the points[
W f

x1

]
, . . . ,

[
W f

xn

]
are distributed inside the moduli space dMk(Q̃), because of Equation (5).

Since the training changes the weights and not (always) the network quiver (unless of
course in neural architecture search), we obtain that each training step defines a different
map ϕ(Wi, f ) : Cd →d Mk(Q̃). Therefore, the sub-manifold Im

(
ϕ(Wi, f )

)
is changing its

shape during training inside the moduli space dMk(Q̃).
A training of a neural network, which is a sequence of neural networks (W1, f ), . . . , (Wm, f ),

can be thought as, first adjusting the manifold Im
(

ϕ(W1, f )
)

into Im
(

ϕ(W2, f )
)
, then the

manifold Im
(

ϕ(W2, f )
)

into Im
(

ϕ(W3, f )
)
, and so on. This is a completely new way of

representing the training of neural networks that works universally for any neural network,
which leads to the following question:

“Can training dynamics be made more explicit in these moduli spaces in such a way
that allows proving more precise convergence theorems than the currently known?”

7.2.3. Inquiry 3

A training of the form (W1, f ), . . . , (Wm, f ) only changes the weights of the neural
network. As we can see, our data quiver representations depend on both the weights
and the activations, and therefore a usual training does not exploit completely the fact
that the data quiver representations are mapped via ϕ to the moduli space. Thus, the
idea of learning the activation functions, as it is done by Goyal et al. [29], will produce a
training of the form (W1, f1), . . . , (Wm, fm), and this allows the maps ϕ(Wi, fi) to explore
more freely the moduli space than the case where only the weights are learned. Our results
imply that a training that changes (and not necessarily learns) the activation functions
has the possibility of exploring more the moduli space due to the dependence of the map
ϕ(W, f ) on the activation functions. One would like to see if this can actually improve the
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training of neural networks, and these are exactly the results obtained by the experiments
of Goyal et al. [29]. Therefore, the following question arises naturally:

“Can neural network learning be improved by changing activation functions
during training?”

8. Conclusions and Future Works

We presented the theoretical foundations for a different understanding of neural net-
works using their combinatorial and algebraic nature, while explaining current intuitions
in deep learning by relying only on the mathematical consequences of the computations of
the network during inference. We may summarize our work with the following six points:

1. We use quiver representation theory to represent neural networks and their data processing;
2. This representation of neural networks scales to modern deep architectures like conv

layers, pooling layers, residual layers, batch normalization and even randomly wired
neural networks [32];

3. Theorem 1 shows that neural networks are algebraic objects, in the sense that the maps
preserving the algebraic structure also preserve the computations of the network.
Even more, we show that positive scale invariance of ReLU networks is a particular
case of this result;

4. We represented data as thin quiver representations with identity activations in terms
of the architecture of the network. We proved that this representation of data is
algebraically consistent (invariant under isomorphisms) and carries the important
notion of feature spaces of all layers at the same time;

5. We introduced the moduli space of a neural network, and proved that it contains
all possible (isomorphism classes of) thin quiver representations that result from
the computations of the neural network on a forward pass. This leads us to the
mathematical formalization of a modified version of the manifold hypothesis in
machine learning, given in terms of the architecture of the network;

6. Our representation of neural networks and the data they process is the first to uni-
versally represent neural networks: it does not depends on the chosen architecture,
activation functions, data, loss function, or even the task.

To the knowledge of the authors, the insights, concepts and results in this work are
the first of their kind. In the future, we aim to translate more deep learning objects into the
quiver representation language. For instance,

• Dropout [47] is a restriction of the training to several network sub-quivers. This
translates into adjustments of the configuration of the data inside the moduli space
via sub-spaces given by sub-quivers;

• Generative adversarial networks [48] and actor-critics [49] provide the stage for the
interplay between two moduli spaces that get glued together to form a bigger one;

• Recurrent neural networks [50] become a stack of the same network quiver, and
therefore the same moduli space gets glued with copies of itself multiple times;

• The knowledge stored in the moduli space in the form of the map ϕ(W, f ) provides a
new concept to express and understand transfer learning [51]. Extending a trained
network will globally change the moduli space, while fixing the map ϕ(W, f ) in the
sub-space corresponding to the unchanged part of the network quiver.

On expanding the algebraic understanding of neural networks, we consider the
following approaches for further research.

• Study the possibility to transfer the gradient descent optimization to the moduli space
with the goal of not only optimizing the network weights but also the activation func-
tions.

• The combinatorics of network quivers seem key to the understanding of neural
networks and their moduli spaces. Therefore, further study of network quivers by
themselves is required [9,10,16].
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• Continuity and differentiability of the network function Ψ(W, f ) and the map ϕ(W, f )
will allow the use of more specific algebraic-geometric tools [25,52]. Even more, the
moduli space is a toric variety and then we can use toric geometry [53] to study the
moduli space see [54,55].

• Neural networks define finite-dimensional representations of wild hereditary finite-
dimensional associative algebras, which can be studied with algebraic-combinatorial
techniques [9,56,57].

Finally, this work provides a language in which to state a different kind of scientific
hypotheses in deep learning, and we plan to use it as such. Many characterizations will
arise from the interplay of algebraic methods and optimization. Namely, when solving a
task in practical deep learning, one tries different hidden quivers and optimization hyper-
parameters. Therefore, measuring changes in the hidden quiver will become important.
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Appendix A. Example of Theorem 1

Here we illustrate with an example the result of Theorem 1, i.e., that an isomor-
phism between two neural networks (W, f ) and (V, g) preserves their network function
Ψ(W, f )(x) = Ψ(V, g)(x). Let us consider a ReLU multilayer perceptron (W, f ) with 2
hidden layers of 3 neurons each, 2 neurons on the input layer and 2 neurons on the output
layer. That is,

c

d

e h

g

f

i

j.

a

b

We denote by W1, W2 and W3 the weight matrices of the network from left to right.
Consider the explicit matrices

W1 =

 0.2 −0.4
−1.1 1.0
−0.1 −0.2

, W2 =

 −0.6 −0.2 −0.3
0.3 1.2 −0.4
−0.1 −1.0 0.2

, W3 =

(
0.5 −0.7 0.3
−1.2 0.1 −0.6

)
.
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Assume now that the input vector is the vector x =

(
−1.2
0.3

)
, then the output of the

first layer is

ReLU(W1x) = ReLU

 0.2(−1.2)− 0.4(0.3)
−1.1(−1.2) + 1.0(0.3)
−0.1(−1.2)− 0.2(0.3)

 = ReLU

 −0.36
1.62
0.06

 =

 0
1.62
0.06


The output of the second layer is

ReLU
(
W2(ReLU(W1x))

)
= ReLU

 −0.2(1.62)− 0.3(0.06)
1.2(1.62)− 0.4(0.06)
−1.0(1.62) + 0.2(0.06)



= ReLU

 −0.342
1.92
−1.608



=

 0
1.92

0

.

Therefore, the score (or output) of the network is

Ψ(W, f )(x) = W3

(
ReLU

(
W2(ReLU(W1x))

))

= W3

 0
1.92

0


=

(
−0.7(1.92)
0.1(1.92)

)

=

(
−1.344
0.192

)
.

Here we have computed the network function as a sequence of linear maps followed
by point-wise non-linearities. Let us remark that our definition of network function is
equivalent to this one since following Definition 15 we have

a(W, f )a(x) = −1.2,
a(W, f )b(x) = 0.3,
a(W, f )c(x) = ReLU(0.2(−1.2)− 0.4(0.3)) = ReLU(−0.36) = 0,
a(W, f )d(x) = ReLU(−1.1(−1.2) + 1.0(0.3)) = ReLU(1.62) = 1.62,
a(W, f )e(x) = ReLU(−0.1(−1.2)− 0.2(0.3)) = ReLU(0.06) = 0.06,
a(W, f ) f (x) = ReLU(−0.6(0)− 0.2(1.62)− 0.3(0.06)) = ReLU(−0.342) = 0,
a(W, f )g(x) = ReLU(0.3(0) + 1.2(1.62)− 0.4(0.06)) = 1.92,
a(W, f )h(x) = ReLU(−0.1(0)− 1.0(1.62) + 0.2(0.06)) = ReLU(−1.608) = 0,
a(W, f )i(x) = 0.5(0)− 0.7(1.92) + 0.3(0) = −1.344,
a(W, f )j(x) = −1.2(0) + 0.1(1.92)− 0.6(0) = 0.192.

Consider now a change of basis for (W, f ). As mentioned in the text, the change of
basis for the input and output neurons are set to 1 (i.e., τa = τb = τi = τj = 1). As for the six
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hidden neurons, let us consider the following six change of basis τ =

 −0.2 1.0
0.3 −1.0
−1.1 0.1

.

This change of basis can be applied to the weights following Equation (1). Since τ is 1 for
the input neurons, the weights of the first layer get transformed as follows

τW1 =

 0.2(−0.2) −0.4(−0.2)
−1.1(0.3) 1.0(0.3)
−0.1(−1.1) −0.2(−1.1)

 =

 −0.04 0.08
−0.33 0.3
0.11 0.22

.

The weights of the second layer become

τW2 =



−0.6
1.0
−0.2

−0.2
1.0
0.3

−0.3
1.0
−1.1

0.3
−1.0
−0.2

1.2
−1.0
0.3

−0.4
−1.0
−1.1

−0.1
0.1
−0.2

−1.0
0.1
0.3

0.2
0.1
−1.1


=



3 −0.2
0.3

0.3
1.1

0.3
0.2

−4 −0.4
1.1

0.05 −0.1
0.3

−0.02
1.1


,

and those of the third layer

τW3 =


0.5
1.0

−0.7
−1.0

0.3
0.1

−1.2
1.0

0.1
−1.0

−0.6
0.1

 =

(
0.5 0.7 3
−1.2 −0.1 −6

)
.

As for the activations, one has to apply Equation (2), i.e., τvReLU( x
τv
) in our case. Note

that if τv > 0 then τvReLU( x
τv
) = τv

τv
ReLU(x) = ReLU(x) which derives from the positive

scale invariance of ReLU. However, if τv < 0 then τvReLU( x
τv
) = min(x, 0) = g(x). Consid-

ering the change of basis matrix τ given before, it derives that τ f =

 g ReLU
ReLU g

g ReLU

.

Let us apply a forward pass on the neural network (τW, τ f ) for the same input

x =

(
−1.2
0.3

)
. On the first layer we have:

 g
ReLU

g

τW1x =

 g
ReLU

g

 −0.04(−1.2) + 0.08(0.3)
−0.33(−1.2) + 0.3(0.3)
0.11(−1.2) + 0.22(0.3)



=

 g
ReLU

g

 0.072
0.486
−0.066



=

 0
0.486
−0.066

.

Therefore, the activation output of the neurons in the first hidden layer is equal
to the activation output on the same neurons on the neural network (W, f ) times the
corresponding change of basis.
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Propagating the signal to the other layer leads to

τW2

 0
0.486
−0.066

 =



−0.2
0.3

(0.486) +
0.3
1.1

(−0.066)

−4(0.486)− 0.4
1.1

(−0.066)

−0.1
0.3

(0.486)− 0.02
1.1

(−0.066)


=

 −0.342
−1.92
−0.1608

,

and after applying the activation

 ReLU
g

ReLU

 we get the vector

 0
−1.92

0

. Finally,

Ψ
(
(τW, τ f )

)
(x) = τW3

 0
−1.92

0

 =

(
0.7(−1.92)
−0.1(−1.92)

)
=

(
−1.344
0.192

)
,

which is the same output as the one for (W, f ) computed before. We can also observe
that the activation output of each hidden (and output) neuron on (τW, τ f ) is equal to the
activation output on that same neuron in (W, f ) times the change of basis of that neuron,
as noted in the proof of Theorem 1.

Appendix B. Example of Theorem 2

Here we compute an example to illustrate that Ψ(W, f )(x) = Ψ(W f
x , 1)(1d). We will

work with the notation of Appendix A for the ReLU MLP with explicit weight matrices
W1, W2 and W3 and input vector x given by

W1 =

 0.2 −0.4
−1.1 1.0
−0.1 −0.2

, W2 =

 −0.6 −0.2 −0.3
0.3 1.2 −0.4
−0.1 −1.0 0.2

,

W3 =

(
0.5 −0.7 0.3
−1.2 0.1 −0.6

)
, x =

(
−1.2
0.3

)
.

Recall the definition of the representation W f
x ,

(
W f

x

)
ε
=



Wεxs(ε) if s(ε) is an input vertex,
Wε if s(ε) is a bias vertex,

Wε

a(W, f )s(ε)(x)

∑
β∈ζs(ε)

Wβ · a(W, f )s(β)(x)
if s(ε) is a hidden vertex.

Denote by V1, V2 and V3 the weight matrices of W f
x. We can easily see that V1 is given by

V1 =

 0.2(−1.2) −0.4(0.3)
−1.1(−1.2) 1.0(0.3)
−0.1(−1.2) −0.2(0.3)

 =

 −0.24 −0.12
1.32 0.3
0.12 −0.06

,
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As for the next weight matrices, we have already computed the pre-activations and
post-activations of each neuron in a forward pass of x through the network (W, ReLU) in
the last appendix, then

V2 =



−0.6
0
−0.36

−0.2
1.62
1.62

−0.3
0.06
0.06

0.3
0
−0.36

1.2
1.62
1.62

−0.4
0.06
0.06

−0.1
0
−0.36

−1.0
1.62
1.62

0.2
0.06
0.06


=

 0 −0.2 −0.3
0 1.2 −0.4
0 −1.0 0.2

,

and also

V3 =


0.5

0
−0.342

−0.7
1.92
1.92

0.3
0

−1.608

−1.2
0

−0.342
0.1

1.92
1.92

−0.6
0

−1.608

 =

(
0 −0.7 0
0 0.1 0

)
.

Let us compute a forward pass of the network (V, 1) = (W f
x , 1) given the input

(
1
1

)
and verify that the output is the same as that of Appendix A. We have that

V1

(
1
1

)
=

 −0.24− 0.12
1.32 + 0.3
0.12− 0.06



=

 −0.36
1.62
0.06

,

and

V2

 −0.36
1.62
0.06

 =

 −0.2(1.62)− 0.3(0.06)
1.2(1.62)− 0.4(0.06)
−1.0(1.62) + 0.2(0.06)



=

 −0.342
1.92
−1.608

,

and finally,

V3

 −0.342
1.92
−1.608

 =

(
−0.7(1.92)
0.1(1.92)

)
=

(
−1.344
0.192

)
.

As noted in the proof of Theorem 2, the activation output of each neuron in (W f
x , 1)

after a forward pass of the input vector
(

1
1

)
, is equal to the pre-activation of that same

neuron in (W, ReLU) after a forward pass of x.
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Appendix C. Double-Framed Quiver Moduli

Let Q = (V , E , s, t) be a network quiver. Recall that the delooped quiver Q◦ =
(V◦, E◦, s◦, t◦) is obtained from Q by removing all loops. The hidden quiver Q̃ = (Ṽ , Ẽ , s̃, t̃)
is obtained from the delooped quiver by removing the input and the output layers. Once
the complex vector spaces C are fixed to every vertex of Q, the space of stable thin repre-
sentations of Q◦ is

R := {W : Wα ∈ C∗ for every α ∈ E◦}.

This is an affine space isomorphic toR ∼= Cn, where n is the number of elements of
E◦. The change of basis group we consider here is the group

G̃ := ∏
v∈Ṽ

C∗,

whose action on R is given by Equation (1) in page 6, i.e., (τ ·W)α = τ−1
s(α)Wατt(α). The

action (Definition 8) of the group G̃ is free if given g, h ∈ G̃ the existence of an element x
with g · x = h · x implies that g = h.

Lemma A1. The action of the group G̃ is free.

Proof. Let τ = (τv)v∈Ṽ ∈ G̃ be an element different from the identity, that is, there is v ∈ Ṽ
such that τv 6= 1, and let W be a thin representation. Since v is a vertex of the hidden quiver,
there exists an edge α with target v and source s(α) = u. If u is a source vertex, then the
weight of τ ·W in the edge α is Wατv, which is different from Wα since Wα 6= 0. If u is not a
source, then the weight of g ·W in the edge α is τ−1

u Wατv which is different from Wα unless
τu = τv. We can apply the same argument to the vertex u until we reach a source of Q,
which shows that τ ·W 6= W for any τ that is not the identity of G̃. This is equivalent to the
action of the group being free [30].

Given the action of a group G on a set X, the G-orbit of an element x ∈ X is by
definition the set {g · x ∈ X : g ∈ G}. In our case, the G̃-orbit of a thin representation W is
the set

{τ ·W : τ ∈ G̃},

which is the isomorphism class of the representation W, i.e., the set of all representations
isomorphic to W. From Section 7 we obtain that the moduli space is the set of all G̃-orbits
of elements inR. We will use this to prove the following:

Theorem A1. The dimension of the moduli space is

dimC
(

dMk(Q̃)
)
= #E◦ − #Ṽ .

Proof. Let W be a thin representation of Q◦ with non-zero weights. For every hidden
vertex v ∈ Ṽ we are going to choose once and for all an oriented edge, that we denote
by αv : v′ → v. The collection of all the chosen edges αv and vertices that are targets and
sources of them form a subquiver of Q◦, that we denote Q∨. The number of hidden vertices
of Q and the number of edges in the quiver Q∨ are the same, by construction. Moreover,
there cannot be non-oriented cycles in the quiver Q∨ since we would have to had chosen
two oriented edges with the same target, and we are only choosing one in our construction.
This implies that Q∨ is a union of trees, and the intersection of any two of those trees can
only be a source vertex of Q by the same argument. Furthermore, for any of those trees the
only vertex that is not a hidden vertex is a unique source of Q corresponding to that tree.

We will show that we can choose a change of basis for each of these trees so that all its
weights can be set to 1 in the isomorphism class of W, i.e., the G̃-orbit of that representation.
Once this is done, we only have to count how many free choices we have left for weights of
Q◦ that have not been set to 1. This is exactly the number of oriented edges of Q◦ minus the
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number of hidden vertices (which are in correspondence with the oriented edges forming
the trees in Q∨). This will be the dimension of the space of G̃-orbits (i.e., the moduli space)
because the previous lemma implies that this is indeed the minimum number of weights to
describe the representation W up to isomorphisms.

Let T be a tree in Q∨ and let v be its source vertex. A change of basis τ ∈ G̃ has

τv = 1. Let α1 : v → v1 be an oriented edge of T with source v, and take τv1 =
1

Wα1

, so

after applying τ to W we obtain that (τ ·W)α1
= 1. Let α2 : v1 → v2 be an oriented edge

in T that starts in v1, and take τv2 =
1

Wα1Wα2

. After applying τ we obtain (τ ·W)α2
= 1.

An induction argument shows that up to isomorphism we can take all the weights of W
along the tree T to be equal to 1. Finally, the trees in Q∨ do not share any oriented edges,
therefore, they also do not share any vertices except for the source vertices, for which the
change of basis is set to 1. This means that we have chosen a change of basis for every
hidden vertex so that the resulting isomorphic representation has all its weights along the
trees of Q∨ equal to 1, which completes the proof.

Appendix D. Glossary

Here we gather all definitions given in this paper alphabetically.
Activation function. An activation function is a one-variable non-linear function

f : C→ C differentiable except in a set of measure zero.
Activation output of vertices/neurons. Let (W, f ) be a neural network over a network

quiver Q and let x ∈ Cd be an input vector of the network. Denote by ζv the set of edges of
Q with target v. The activation output of the vertex v ∈ V with respect to x after applying
a forward pass is denoted a(W, f )v(x) and is computed as follows:

• If v ∈ V is an input vertex, then a(W, f )v(x) = xv;
• If v ∈ V is a bias vertex, then a(W, f )v(x) = 1;

• If v ∈ V is a hidden vertex, then a(W, f )v(x) = fv

(
∑

α∈ζv

Wαa(W, f )s(α)(x)

)
;

• If v ∈ V is an output vertex, then a(W, f )v(x) = ∑
α∈ζv

Wαa(W, f )s(α)(x);

• If v ∈ V is a max-pooling vertex, then a(W, f )v(x) = maxα Re
(
Wαa(W, f )s(α)(x)

)
,

where Re denotes the real part of a complex number, and the maximum is taken over
all α ∈ E such that t(α) = v.

Architecture of a neural network (Ref. [3], p. 193). The architecture of a neural net-
work refers to its structure which accounts for how many units (neurons) it has and how
these units are connected together.

Change of basis group of thin representations. The change of basis group of thin
representations over a quiver Q is

G = ∏
v∈V

C∗,

where C∗ denotes the multiplicative group of non-zero complex numbers. That is, the
elements of G are vectors of non-zero complex numbers τ = (τ1, . . . , τn) indexed by the
set V of vertices of Q, and the group operation between two elements τ = (τ1, . . . , τn) and
σ = (σ1, . . . , σn) is by definition

τσ := (τ1σ1, . . . , τnσn).

Change of basis group of double-framed thin quiver representations. The group of
change of basis of double-framed thin quiver representations is the same group G̃ of
change of basis of neural networks.
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Change of basis group of neural networks. The group of change of basis for neural
networks is denoted as

G̃ = ∏
v∈Ṽ

C∗.

An element of the change of basis group G̃ is called a change of basis of the neural
network (W, f ).

Co-framed quiver representation (Ref. [25]). A choice of a thin representation W̃ of
the hidden quiver and a map `v : Uv → W̃v for each v ∈ Ṽ determines a pair (W̃, `), where
` = {`v}v∈Ṽ which is known as a co-framed quiver representation of Q̃ by the family of
vector spaces {Uv}v∈Ṽ .

Combinatorial/weight/activation architectures. The combinatorial architecture of a
neural network is its network quiver. The weight architecture is given by constraints
on how the weights are chosen, and the activation architecture is the set of activation
functions assigned to the loops of the network quiver.

Data quiver representations. Let (W, f ) be a neural network over the network quiver
Q and x ∈ Cd an input vector. The thin quiver representation W f

x is defined as

(
W f

x

)
ε
=



Wεxs(ε) if s(ε) is an input vertex,
Wε if s(ε) is a bias vertex,

Wε

a(W, f )s(ε)(x)

∑
β∈ζs(ε)

Wβ · a(W, f )s(β)(x)
if s(ε) is a hidden vertex,

Delooped quiver of a network quiver. The delooped quiver Q◦ of Q is the quiver
obtained by removing all loops of Q. We denote Q◦ = (V , E◦, s◦, t◦).

Double-framed thin quiver representation. A double-framed thin quiver represen-
tation is a triple (`, W̃, h) where W̃ is a thin quiver representation of the hidden quiver,
(W̃, h) is a framed representation of Q̃ and (W̃, `) is a co-framed representation of Q̃.

Framed quiver representation (Ref. [25]). A choice of a thin representation W̃ of the
hidden quiver and a map hv : W̃v → Vv for each v ∈ Ṽ determines a pair (W̃, h), where
h = {hv}v∈Ṽ , that is known as a framed quiver representation of Q̃ by the family of vector
spaces {Vv}v∈Ṽ .

Group (Ref. [30], Chapter 1). A non-empty set G is called a group if there exists a
function · : G× G → G, called the product of the group denoted a · b, such that

• (a · b) · c = a · (b · c) for all a, b, c ∈ G.
• There exists an element e ∈ G such that e · a = a · e = a for all a ∈ G, called the

identity of G.
• For each a ∈ G there exists a−1 ∈ G such that a · a−1 = a−1 · a = e.

Group action (Ref. [30], Chapter 3). Let G be a group and let X be a set. We say that
there is an action of G on X if there exists a map · : G× X → X such that

• e · x = x for all x ∈ X, where e ∈ G is the identity.
• a · (b · x) = (ab) · x, for all a, b ∈ G and all x ∈ X.

Hidden quiver. The hidden quiver of Q, denoted by Q̃ = (Ṽ , Ẽ , s̃, t̃), is given by the
hidden vertices Ṽ of Q and all the oriented edges Ẽ between hidden vertices of Q that are
not loops.

Input/Output vertices. We call input vertices of the hidden quiver Q̃ the vertices that
are connected to the input vertices of Q, and we call output vertices of the hidden quiver
Q̃ the vertices that are connected to the output vertices of Q.

Isomorphic quiver representations. Let Q be a quiver and let W and U be two repre-
sentations of Q. If there is a morphism of representations τ : W → U where each τv is an
invertible linear map, then W and U are said to be isomorphic representations.
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Labeled data set. A labeled data set is given by a finite set D = {(xi, ti)}n
i=1 of pairs

such that xi ∈ Cd is a data vector (could also be a matrix or a tensor) and ti is a target. We
can have ti ∈ Ck for a regression and ti ∈ {C0, C1, . . . , Ck} for a classification.

Moduli space. The moduli space of stable double-framed thin quiver representations
of Q̃ is by definition

dMk(Q̃) :=
{
[V] : V ∈ dRk(Q̃) is stable

}
.

Morphism/Isomorphism of neural networks. Let (W, f ) and (V, g) be neural net-
works over the same network quiver Q. A morphism of neural networks τ : (W, f ) →
(V, g) is a morphism of thin quiver representations τ : W → V such that τv = 1 for all
v ∈ V that is not a hidden vertex, and for every hidden vertex v ∈ V the following diagram
is commutative.

C C

C C.

fv

τvτv

gv

A morphism of neural networks τ : (W, f ) → (V, g) is an isomorphism of neural
networks if τ : W → V is an isomorphism of quiver representations. We say that two
neural networks over Q are isomorphic if there exists an isomorphism of neural networks
between them.

Morphism of quiver representations (Ref. [9], Chapter 3). Let Q be a quiver and let
W and U be two representations of Q. A morphism of representations τ : W → U is a set
of linear maps τ = (τv)v∈V indexed by the vertices of Q, where τv : Wv → Uv is a linear
map such that τt(ε)Wε = Uετs(ε) for every ε ∈ E .

Network function. Let (W, f ) be a neural network over a network quiver Q. The
network function of the neural network is the function

Ψ(W, f ) : Cd → Ck

where the coordinates of Ψ(W, f )(x) are the activation outputs of the output vertices of
(W, f ) (often called the “score” of the neural net) with respect to an input vector x ∈ Cd.

Network quiver. A network quiver Q is a quiver arranged by layers such that:

1. There are no loops on source (i.e., input and bias) nor sink vertices;
2. There is exactly one loop on each hidden vertex.

Neural network. A neural network over a network quiver Q is a pair (W, f ) where W
is a thin representation of the delooped quiver Q◦ and f = ( fv)v∈V are activation functions,
assigned to the loops of Q.

Quiver (Ref. [9], Chapter 2). A quiver Q is given by a tuple (V , E , s, t) where (V , E)
is an oriented graph with a set of vertices V and a set of oriented edges E , and maps
s, t : E → V that send ε ∈ E to its source vertex s(ε) ∈ V and target vertex t(ε) ∈ V ,
respectively.

Quiver arranged by layers. A quiver Q is arranged by layers if it can be drawn from
left to right arranging its vertices in columns such that:

• There are no oriented edges from vertices on the right to vertices on the left;
• There are no oriented edges between vertices in the same column, other than loops

and edges from bias vertices.

The first layer on the left, called the input layer, will be formed by the d input vertices.
The last layer on the right, called the output layer, will be formed by the k output vertices.
The layers that are not input nor output layers are called hidden layers. We enumerate the
hidden layers from left to right as: 1st hidden layer, 2nd hidden layer, 3rd hidden layer,
and so on.
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Quiver representation (Ref. [9], Chapter 3). If Q is a quiver, a quiver representation
of Q is given by a pair of sets

W :=
(
(Wv)v∈V , (Wε)ε∈E

)
where the Wv’s are vector spaces indexed by the vertices of Q, and the Wε’s are linear maps
indexed by the oriented edges of Q, such that for every edge ε ∈ E :

Wε : Ws(ε) →Wt(ε).

Representation space. The representation space dRk(Q̃) of the hidden quiver Q̃ of a
network quiver Q, is the set of all possible double-framed thin quiver representations of Q̃.

Source/Sink vertices (Ref. [9], Chapter 2). A source vertex of a quiver Q is a vertex
v ∈ V such that there are no oriented edges ε ∈ E with target t(ε) = v. A sink vertex of a
quiver Q is a vertex v ∈ V such that there are no oriented edges ε ∈ E with source s(ε) = v.
A loop in a quiver Q is an oriented edge ε such that s(ε) = t(ε).

Stable quiver representation. A double-framed thin quiver representation (`, W̃, h)
is stable if the following two conditions are satisfied:

1. The only sub-representation U of W̃ which is contained in ker(h) is the zero sub-
representation, and

2. The only sub-representation U of W̃ that contains Im(`) is W̃.

Sub-representation (Ref. [10], p. 14). Let W be a thin representation of the delooped
quiver Q◦ of a network quiver Q. A sub-representation of W is a representation U of Q◦

such that there is a morphism of representations τ : U → W where each map τv is an
injective map.

Teleportation. Let (W, f ) be a neural network and let τ ∈ G̃ be an element of the group
of change of basis of neural networks such that the isomorphic neural network τ · (W, f )
has the same weight architecture as (W, f ). The teleportation of the neural network (W, f )
with respect to τ is the neural network τ · (W, f ).

Thin quiver representation. A thin representation of a quiver Q is a quiver represen-
tation W such that Wv = C for all v ∈ V.

Zero representation. The zero representation of Q is the representation denoted 0
where every vector space assigned to every vertex is the zero vector space, and therefore
every linear map in it is also zero.
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